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Abstract.A nonconventional application of worm gears exploits the irreversibility of these power transmission
devices in order to realize fast emergency braking. This application can be used to secure lifting devices.
A limiting factor in the design of these instantaneous braking systems is the residual deformations of the worm/
wheel contacting teeth, due to the impact between them at each emergency stop. The prediction of these residual
displacements requires solving of an elastic–plastic, multi-scale and multi-contact problem. Original numerical
tools were developed in this study to solve the problem at global and local scales. The method has been validated
by comparing the obtained results with 3D measurements on new and deformed worm/wheel pairs. In order to
predict the issue of the worm gear after an impact, a criterion based on kinematic errors is proposed. Applying
this criterion gives the maximal admissible torque for the braking system to be operational after the impact.

Keywords: worm gear / elastic–plastic / multi-scale / multi-contact / residual displacements /
kinematic errors
1 Introduction

Worm gears are one of the most important devices used for
power transmission between spatial crossed axes. They are
employed in applications requiring high reduction ratio,
relatively low speed drive and compactness. They are
indeed capable of transmitting a large reduction ratio with
a single stage, consisting of a worm with helical thread and
a toothed wheel, meaning small volume, low inertia and
quiet operation compared to parallel axis gearing which
would require multiple stages to achieve an equivalent
ratio. Therefore, worm gears are widely employed in
industrial applications such as automotive applications
(mainly for actuators), steam turbines, lifts, conveyor belts
and stringed musical instruments. However, they present
some disadvantages compared to parallel axis gearing, such
as delicate assembling, or high wear rate and lower
efficiency due to the sliding between the contacting teeth.
Another feature of worm gear is the self-locking effect that
may occur when the wheel drives the system. In other
terms, above some critical worm helix angle, the system
becomes unable to reverse the direction of power
transmission, because of the important friction induced
between the worm/wheel pair.
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A nonconventional application of worm gears exploits
this latter feature in order to secure lifting devices during
uncontrolled movements, such as over-speed, backwashing
and gear failure. This feature is used in the Fastbrake©
system developed by FOC Transmissions. An illustration
of this system is shown in Figure 1. In the Fastbrake©
system, the motion of the worm/wheel pair is synchronized
in order to ensure a contactless rotation during normal
operation of the lifting equipment. An electromechanical
system is used to detect movement anomalies, and
commands the stop of the worm servo-control if any such
anomaly occurs. Only at this moment the wheel comes into
contact with the worm, and because of the irreversibility of
the worm gear system, the lifting device comes to stop. The
response time of this braking system corresponds thus to
the time needed for the wheel to take up the clearance and
to come into contact with the worm. This working principle
reduces considerably the response time of the braking
system compared to standard disk brakes. A limitation of
the system however is caused by the residual deformation
of the worm and the wheel during impact following an
emergency brake. Such residual deformation can actually
reduce the clearance between wheel/worm teeth necessary
for the contactless rotation of the worm gear during the
normal operation of the lifting device. The question that
arises is whether the braking systemwill be able to run after
emergency brakes.
monsAttribution License (https://creativecommons.org/licenses/by/4.0),
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Fig. 1. Schematic representation of lifting device equipped with
Fastbrake© system. (Courtesy of FOC Transmissions)
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In order to predict the issue of the braking system, a
problem with the following characteristics needs to be
solved. First, it is a nonlinear elastic–plastic contact
problem, therefore requiring an iterative approach
adapted to contact situations [1]. Second, it is a multi-
scale problem since the residual deformation is a
combination of global structural bending deformations
and local contact deformations. Third, it is a multi-
contact problem since it requires the consideration of the
contacts occurring simultaneously on several wheel/worm
teeth [2]. In the literature, examples can be found on
solving local plastic problems in gears. For instance,
Huesmann et al. [3] employed an automatic incrementa-
tion technique to study the elastic–plastic contact
between two teeth of a cylindrical gear. In this respect,
they applied an algorithm of boundary element method,
and used a fast iterative algorithm in order take into
account the non-linear behavior of plastic deformation. He
et al. [4] developed a model coupling an elastic–plastic
finite element method together with continuous damage
theory in order to investigate the contact fatigue crack
initiation process of a heavy-duty wind turbine gear. They
used this to model to determine the influence of plastic
deformation on the fatigue life of this type of gears.
However, to the best of the author’s knowledge, no study
has been conducted to examine the multi-scale plastic
deformation of gears in general, and worm gears in
particular.

In this paper, an efficient dialogue between comple-
mentary numerical tools is presented that allows overcom-
ing the limitations of existing numerical tools solving
elastic–plastic, multi-contact and multi-scale problems.
Once a estimation of residual displacements is obtained, a
criterion based on kinematic error is proposed in order to
predict whether the braking system would be operational
after an emergency stop or not.
2 Resolution of the elastic–plastic,
multi-scale, multi-contact problem

2.1 General procedure

Figure 2 is a diagram depicting the different steps involved
in the dialogue between three numerical simulation
software, namely: ROUVISLAM, ABAQUS and ISAAC,
in order to predict the elastic–plastic, multi-scale and
multi-contact displacement in worm gears.

Since the contact line location between the gears flanks
is not known when an emergency stop occurs, the three
simulation tools are used to perform the following
computations at any kinematic position of the worm/
wheel pair.

–
 In step 1, the torque is applied on the worm/wheel pair in
ROUVISLAM (developed by the LaMCoS Lab. and
Mecalam Cie) in order to compute semi-analytically the
quasi-static load sharing due to the applied torque. In
other terms, it provides the nodal force field or
equivalently the pressure field on the different worm
and wheel teeth in contact, for a given kinematic
position, assuming an elastic behavior.
–
 In steps 2–3, the nodal force field is transferred to the
standard ABAQUS software in order to compute by
finite element method the residual teeth bending
displacement field.
–
 In steps 4–5, the pressure field is transferred to the
ISAAC software (developed by the LaMCoS Lab.) in
order to compute semi-analytically the residual contact
displacement field. The choice of a semi-analytical solver
for the resolution of the contact problem is justified by its
faster convergence and its robustness compared to a
finite element solver. In addition, the semi-analytical
solver allows overcoming difficulties of finite element
method in dealing with nodal forces.
–
 In steps 6–8, the bending and the contact residual
displacement fields resulting from the plastic deforma-
tion at the local (contact deformation) and global (tooth
bending) scales are transferred to ROUVISLAM, in order
to compute the kinematic errors, and to predict whether
the worm gear will be able to continue to ensure the
safety of the lifting system.

Several codes have been implemented in python and
MATLAB in order to couple the different numerical
simulation software. Namely, these codes allow for the
transfer of the different fields (nodal force, pressure,
bending residual displacement and contact residual
displacement) between ROUVISLAM, ABAQUS and
ISAAC software (steps 2, 4, 6 and 7).

2.2 ROUVISLAM: elastic, multi-contact problem

The resolution of a multi-contact problem is complex by
nature, and it cannot be achieved analytically. Instead, the
quasi-static computation of pressure distribution among
the contacts occurring simultaneously between worm/
wheel pair is realized in the following steps:



Fig. 2. Diagram for ROUVISLAM–ABAQUS–ISAAC dialogue for the resolution of the elastic–plastic, multi-scale and multi-contact
problem.
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–
 In the 1st step, the precise geometry of the worm/wheel
pair is generated through the simulation of the cutting
processes [5].
–
 In the 2nd step, an unloaded kinematic simulation is
performed in order to delimit the contact zone between
the worm and the wheel [2]. A slippedmesh constituted of
rectangles of constant size is then constructed following
the unloaded contact line. (see Fig. 3a).
–
 In the 3rd step, the worm gear under load is simulated by
solving simultaneously, over the slipped mesh covering
the contact zone, a set of two equations, i.e. the equation
of compatibility of displacements and the equation of
load balance. The resolution is performed under quasi-
static and linear elastic behavior assumptions.

The equation of compatibility of displacements [6]
gives the angular gap after loading, yang, at two zones
(see Fig. 3b):

Inside the contact zone: pi ≥ 0 and yangi ¼ 0; ð1Þ

Outside the contact zone: pi ¼ 0 and yangi ≥ 0; ð2Þ
with

yangi ¼ Uang
1i þ Uang

2i þ eiangi � aang; ð3Þ
where Uang

1 and Uang
2 are the angular displacements of the

two surfaces in contact, eiang is the angular gap between the
2 surfaces before loading, and aang is the global body
adjustment. These angular quantities (gap or displace-
ments) are all given around the axis of the wheel. The
angular displacements Uang

i1 and Uang
i2 are expressed as

linear functions of the pressure:

Uang
i1 þ Uang

i2 ¼ Ui1 þ Ui2

Ri

XN
j¼1

Cijpj; ð4Þ

where Ui1 and Ui2 are the linear displacement of the
two surfaces in contact, Ri is the proportionality
constant between the angular displacements, Uang

i1 and
Uang

i2 , and the linear displacements, Ui1 and Ui2.
The coefficients Cij are the terms of the influence
matrix expressing the displacements at any point i as
a result of a pressure pj corresponding to a unit force fj
applied at any point j. This matrix Cij is the sum of the
different contributions, namely: the bending deforma-
tions of the worm and the wheel, Cb;worm

ij and Cb;wheel
ij , and

the contact deformation of the surfaces in the contact
zone, Cc

ij [7].
The bending influence matrix, Cb;worm

ij and Cb;wheel
ij , are

calculated with an automatic finite element model in
CATIA. In this model, the wheel’s bore and the worm’s
shaft are clamped. Unit forces fj are then applied
successively at each point j and the resulting displacements
are then computed on the set of points i. In order to get only
the contribution of the bending deformation and to avoid
any error in proximity of the loaded nodes, the difference
between computation results of the two distinct config-
urations is taken [8]. In the first configuration, the flanks



Fig. 3. (a) Unloaded contact zone. (b) Parameters involved in the equations of compatibility of displacements and the equation of load
balance.
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opposite to those subjected to pressure are left free, while in
the second case, these flanks are clamped.

The contact influence matrix Cc
ij is computed using

Kalker’s semi-analytical approach based on Boussinesq’s
equation [9,10]. This equation provides contact displace-
ments Uc

i as a function of the pressure field pj:

Uc
i ¼

1� n21
E1

� 1� n22
E2

� �
∬

p x; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xið Þ2 þ y� yið Þ2

q dxdy;

ð5Þ
whereE1 andE2 are the Young’s modulus, and n1 and n2 are
the Poisson’s coefficients of the worm’s and the wheel’s
materials.

On the other hand, the equation of load balance imposes
that the pressure pmust compensate for the driving torque
Cdriving (defined in the frame of the worm):

XN
j¼1

pisini � Mið Þx ¼ Cdriving ð6Þ

where si is a rectangular surface around the point i, andni is
the normal direction to the surface si, Mi is the vector
defining the position of the point i in the frame of the worm.

Combining the equation of compatibility of displace-
ment and the equation of load balance gives rise to a
recursive formula for the pressure pi at any point i:

pi ¼
CdrivingPN

i¼1
piRisiPN

j¼1
Cijpjð Þþei

ang
i

 ! piPN
j¼1 Cijpj
� �þ eiangi

: ð7Þ
This formula is numerically solved using the fixed-point
method, whose convergence is based on the global body
adjustment aang which must be constant in the contact
zone. Load sharing can also be expressed in terms of nodal
force field fi given by:

fi ¼ pisi: ð8Þ

2.3 Force field transfer from ROUVISLAM to
ABAQUS

The force field fi is calculated in the local slipped mesh
constructed in ROUVISLAM, and the nodes of this mesh
do not necessarily coincide with those of ABAQUS mesh.
Therefore, an automatic procedure is developed to carry
out the transfer of the nodal force field from ROUVISLAM
slipped mesh to ABAQUS mesh (Fig. 4).

In this procedure, a nodal force fi, applied on the node
i of the ROUVISLAM mesh, is assumed to have a
corresponding set of nodal forces FiJ, applied on the
nodes J of ABAQUS mesh. Furthermore, the nodal force
fi is assumed to be a weighted average of the set of forces
FiJ:

FiJ ¼ wiJX
k
wkJ

fi; ð9Þ

where wiJ is the weight associated to a force FiJ. It can be
easily shown that this assumption preserves the sum of
nodal forces after field transfer:X

J

FiJ ¼ fi: ð10Þ



Fig. 4. (a) Nodal force redistribution from ROUVISLAM slipped mesh (black) to ABAQUS mesh (grey). (b) Redistribution function
and the involved parameters.

Fig. 5. Geometry partitioning of the worm using a “generalized” cylinder with elliptical section and curved axis. After partitioning, the
upper part of the worm is elastic, and the lower part is elastic–plastic.
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The greater the weight wiJ is, the greater will be the
contribution of the force applied on the node J in ABAQUS
mesh to the force applied on the node i in ROUVISLAM
mesh. More precisely, wiJ is chosen such that it is
maximized when the distance riJ between points i and J
tends to zero when riJ=∞:

wiJ riJð Þ ¼ exp ln að Þ riJ
r0

� �2
 !

: ð11Þ

With this choice, we will get:

wiJ riJð Þ ¼
1whenriJ ¼ 0;
awhenriJ ¼ r0;
0whenriJ ¼ ∞;

8<
: ð12Þ

with a being fixed to 0.001. The distance r0 is manually
adjusted in order to have a nodal force field FiJ on the
ABAQUS mesh visually representative of the nodal force
field fi on ROUVISLAM mesh.
2.4 ABAQUS: Elastoplastic global bending problem

An automatic procedure creates the ABAQUS model,
including the importation of the CATIA model (generated
via ROUVISLAM software), the application of the nodal
forces as well as the application of boundary conditions.
ABAQUS software is customized in order to carry out the
calculation of the residual bending displacements.

In this model, the wheel’s bore and the worm’s shaft are
clamped. In addition, quadratic prism elements are also used
tomeshthegeometry. Inorder toaccountonly for the residual
displacements, the computations are carried in 2 steps. In the
1st step (loading step), the geometry is loaded so the
elastoplasticdisplacementscanbedetermined. Inthe2ndstep
(unloading step), the geometry is unloaded so to restore the
elastic displacements and get pure residual displacements.

On the other hand, in order to account only for
bending displacements, each of the worm and the wheel
geometries is partitioned into two parts. The 1st part
comprises the contact zones and it is modeled using an
elastic constitutive law, and the 2nd part comprises the
rest of the geometry and it is modeled with an elastic–
plastic constitutive law (see Fig. 5). An automatic
procedure is implemented to calculate the partitioning
parameters that minimize the size of the elastic part. With
such geometry partitioning, while the contact displace-
ments will be present in the loading step, they will be
completely eliminated at the end of the unloading step, so
only displacements due to the bending of the foot of the
teeth will be retained. Figure 6 shows an example of nodal
force field and the resulting residual bending displacement
of a worm.



Fig. 6. ABAQUS simulations obtained with 750 Nm torque on the worm (only 9 teeth are shown). (a) Nodal force field in
ROUVISLAM mesh, (b) Nodal force field in ABAQUS mesh, (c) Residual bending displacements.
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2.5 Pressure field transfer from ROUVISLAM to
ISAAC

An automatic procedure is developed to carry out the
transfer of the nodal force field fi from ROUVISLAM
slipped mesh to ABAQUS mesh. The field transfer is
carried out by a simple interpolation: the pressure on an
element k of ISAAC is obtained by interpolation of the
values of the pressures on the neighboring elements i (the
first 6 neighbors) of ROUVISLAM mesh.

2.6 ISAAC: Elastoplastic local contact problem

The computation of the contact residual displacements is
performedwith ISAACwhich is farmore accurate in solving
contactproblems than the standardABAQUSsoftwarewith
equivalent computation time. ISAAC is a 3D elastic–plastic
contact code based on a semi-analytical solver, initially
developed by Jacq et al. [1]. It integrates two principal
modules: an elastic contact solver, and a plasticity loop.

The elastic contact solver module takes the external
load W as input, and gives the contact surface GC, the
pressure distribution p and the elastic surface displacement
ue as output. This module solves simultaneously a set of
three equations.

The 1st equation is the load balance between the total
external load W and the pressure p applied at any point
x=(x1, x2) on the contact surface GC:

W ¼ ∫
GC

p xð ÞdG: ð13Þ

The 2nd equation expresses the surface separation h as
the sum of the initial surface separation hi, the rigid body
displacement d, and the elastic normal displacements ue

3 of
the two bodies in contact:

h xð Þ ¼ hi xð Þ þ dþ ue
3 xð Þ; ð14Þ

The elastic normal displacement ue
3 can be expressed

using the Boussinesq relation:

ue
3 xð Þ ¼ ∫

GC

U x; jð Þp jð ÞdG: ð15Þ

In this expression, U (x, j) is the influence matrix (also
called Green’s function) which contains the displacement
at any point x as a result of a unit load at a point j.

The 3rd equation imposes the contact condition, i.e. the
non-interpenetration between the two bodies. The surface
separation h must be larger than or equal to zero, or more
specifically:

h x1;x2ð Þ≥ 0 if x1;x2ð Þ∉GC

h x1;x2ð Þ ¼ 0 if x1;x2ð Þ∈GC: ð16Þ
In the contact solver, the contact surface GC is initially

unknown. Therefore, the resolution algorithm is iterative
so it allows the determination of both contact surface GC
and residual contact displacement field. To reduce the
computing time significantly, a conjugate gradient method
(CGM) developed by Polonsky and Keeris is used [11]. In
order to reduce further the computation time, the costly
multiplication operations in each CGM iteration are
performed using discrete convolution fast Fourier trans-
form (DC-FFT) as presented by Liu et al. [12].

Then comes the plasticity loop module that takes the
pressure distribution p (as determined by the contact
solver) as input, and gives the residual normal displace-
ment ur and the sub-surface residual stress sr as output.
The plasticity loop requires the knowledge of the
constitutive law of the plastic material, and it is performed
in the framework of Betti’s reciprocal theorem [13]. This
latter theorem allows the calculation of total displacements
u and stress s as the summation of the contributions of the
elastic and the residual states:

u Að Þ ¼ ue Að Þ þ ur Að Þ; ð17Þ

s Bð Þ ¼ se Bð Þ þ sr Bð Þ; ð18Þ
where Ais any point of the surface G of the contacting
bodies, and B is any point within the volume V (or more
specifically the finite plastic strain nuclei Vp) of the bodies
in contact.

In order to fully solve the elastoplastic contact problem,
it is necessary to account for the geometrymodification as a
result of the residual surface displacements ur (determined
in the plasticity loop) in the elastic contact solver.
Actually, an iteration between the two modules is
necessary to get a converging solution of the elastoplastic
problem.

ISAAC software has been used together with its various
modules to solve not only plastic contact problems
[1,14–17], but also to account for the effect of the
viscoelasticity [18,19], the anisotropy [20], the presence
of sub-surface heterogeneities or surface coating [21–23] as
well as the wear of the surfaces in contact [17,24]. The
current work considers only the plasticity loop, whereas
the contact surface GC, the pressure distribution p and the
elastic surface displacement ue are computed in the contact
solver of ROUVISLAM. For displacement calculation in
ISAAC, the teeth surfaces were meshed using constant-size
rectangular elements (element size: 2mm� 0.1mm). The
different teeth are then simulated one by one. Figure 7
shows a pressure field and the resulting residual contact
displacement on one the worm’s teeth.

2.7 Displacement field transfer to ROUVISLAM

Once the bending residual displacements (ABAQUS) and
the contact residual displacements (ISAAC) are deter-
mined, ROUVISLAM can estimate the influence of these
displacements on the operation of the system. This is done
by integrating the residual displacements in the calculation
of the kinematic error used as a criterion for the operation
of the Fastbrake© system (see below).



Fig. 7. ISAAC simulations obtained with 750 Nm torque:
(a) Nodal force field, (b) Residual bending displacements on the
central teeth of the wheel.

Fig. 8. Comparison between positive backlash and positive gap
(properly aligned kinematic errors) criteria.
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2.8 Operation criteria based on kinematic error

In this study, we consider only the plastic deformation to
determine whether the worm gear will continue to run after
a first emergency stop. Another issue is related to the
fracture limit of the materials used in the fabrication of the
worm and the wheel. The pressures values obtained in this
study are far below these limits.

Assume an assembled worm/wheel pair, with the teeth
of the wheel positioned midway between the teeth of the
worm at a given kinematic position. If the worm is fixed,
then the clockwise and anticlockwise kinematic errors are
the maximum (algebraic) displacements that the wheel
can make while rotating in, respectively, the clockwise or
anticlockwise direction before coming into contact with
the worm. In order to ensure the operation of a meshing
worm gear, the difference between the clockwise and the
anticlockwise kinematic errors, also called the backlash,
must be always positive. Otherwise, the teeth of the worm
and the wheel would interpenetrate, meaning that the
system would stop running. Things become more
complicated in the Fastbrake© system after an emergency
stop. First because in the Fastbrake© system, the worm
and the wheel are not meshing; they actually run
independently in order to ensure their contactless rotation
of the worm gear. Second because after an emergency stop,
some of the worm’s and wheel’s teeth will be deformed. So
if the worm gear is to run again, then different
configurations are encountered, depending on whether
the worm and the wheel’s teeth facing each other are
deformed or not, namely: (i) non-deformed worm’s zone
against non-deformed wheel’s zone, (ii) non-deformed
worm’s zone against deformed wheel’s zone, (iii) deformed
worm’s zone against non-deformed wheel’s zone, and
(iv) deformed worm’s zone against deformed wheel’s zone.
Now if the worm’s teeth is initially positioned in the
middle of the available space between the wheel’s teeth in
one of the configurations (for instance non-deformed
worm’s zone in front of non-deformed wheel’s zone), then
the positive backlash in this initial configuration avoids
the penetration of the worm’s and the wheel’s teeth.
However after awhile, a newconfiguration (for instance non-
deformed worm’s zone in front of deformed wheel’s zone)
might be encountered, and the worm/wheel positioning
made at the initial configuration will not necessarily avoid
the contact between worm and wheel teeth in the new
configuration.This is trueevenwhenthebacklash in thisnew
configuration is positive since the initial positioning of the
worm’s and wheel’s teeth were made at the initial
configuration, not at the new one. Therefore, in the case of
the emergency brake system, another criterion based on a
proper alignment of the clockwise and anti-clockwise curves
is proposed, as shown in Figure 8, which guarantees the
contactless operation of the worm gear. Indeed, if the
clockwise kinematic error of the new configuration is larger
than the anti-clockwise kinematic error of the initial
configuration, then contactless rotation is a guarantee of
the non-meshing worm gear at the new configuration. The
initial and the new configurations are however arbitrary.
Therefore, the contactless operation of the non-meshing
worm gear can be guaranteed in all configurations, only with
a positive “gap” between the smallest clockwise kinematic
error and the largest anti-clockwise kinematic error,
computed for the different configurations. Otherwise, if
instead of the positive gap, the clockwise kinematic error at
someconfigurationbecomessmaller thanthekinematicerror
in another configuration, then the worm/wheel pair may
interpenetrate.

It is possible to know in advance the configurations
corresponding to the minimum clockwise kinematic error
and themaximumanti-clockwise kinematic error. Indeed, as
shown in Figure 9, the deformation of the wheel involves a
shift in the kinematic error, whereas the deformation of the



Fig. 9. Example of kinematic errors: (a) anti-clockwise,
(b) clockwise.
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worm involves only a peak. In fact, when scanning the
kinematic positions, the deformed zone always remains in
contact for the wheel, while it only makes a brief passage for
theworm.With the twodeformations involved,we observe a
shifted peak in the clockwise kinematic errormeaning that it
is the less favorable configurationasone could expect.Onthe
other hand, the undeformed worm gear configuration
involves no change in the anti-clockwise kinematic error
change, meaning that it is the most favorable configuration,
as one could expect as well. Therefore, in order to verify the
contactless operation after an emergency brake, the less
favorable configuration, i.e. deformed worm-wheel pair,
mustbe comparedwith themost favorable configuration, i.e.
undeformed worm-wheel pair.

3 Results and discussion

3.1 Validation

Numerical simulations are compared to measurements in
order to validate the method presented above to solve the
elastic–plastic, multi-scale and multi-contact problem
encountered in the worm gear used in the Fastbrake©
system. For the numerical simulations, the geometrical
parameters were precisely extracted from 3D point cloud as
obtained with a Coordinate Measuring Machine (CMM)
(Zeiss MC 550, Germany). A portion of the wheel
containing 1/5 of the teeth was used for the different
simulations in order to reduce computation time. In
addition, the constitutive elastic–plastic laws of the
material of the wheel and the one of the worm were
identified via a tensile test machine (ZwickRoell, France).
The measured data were used directly in ABAQUS model
or fitted with a swift law for ISAAC simulations.

The contact tests data were provided by FOC Trans-
missions. These tests were conducted with the help of a
pressing device (see Fig. 10a). In this device, the worm
gears were subjected to impacts of various forces, by
pressing the worm against the wheel, with the latter being
clamped inside a housing. Figure 10b shows an example of
the impacted wheel. The geometrical parameters were
measured again for the impacted worm gears using the
CMM and compared to those obtained previously on
the non-impacted worm gears, in order to determine the
residual displacements.

The kinematic position of the worm/wheel pair in which
the impactoccurredwas identifiedbycomparing theposition
and the shape of the impact-inducedmarkswith those of the
resulting pressure zones as obtained with ROUVISLAM
software (see Fig. 10b). After the comparison, the kinematic
position of impact of the examined worm/wheel pair turned
out to be equal to 70 mrad.

Figure 11 shows the comparison between numerical and
experimental values of the tooth space of the worm and the
wheel subjected to a load of 392400N (corresponding to a
torque on the worm of 750 Nm) at the kinematic position=
70 mrad. The close proximity between simulation and
measurements at such low scale deformations demonstrates
the robustness of the developed numerical model.
3.2 Parametric study: maximum displacement and
limit of operation

Using the different tools developed in the study, it is
possible to study the influence of the different geometrical
and the operational parameters on the value of the residual
displacements of the worm/wheel pair after an emergency
stop. This study can be particularly used to predict the
maximum admissible load (or torque) to which the worm
gear can be subjected so the Fastbrake© system can run
again after the emergency brake.

In what follows, the influence of the load and the
kinematic position is considered. Figure 12 shows the
maximal total displacement obtained at different loads and
kinematic positions. Several observations can be made.
First, larger displacements are observed in the case of the
worm. This may be explained by the fact that the elliptical
form of the worm’s thread rigidifies this latter against
bending. Second, a net increase of displacements is
observed with increasing load as one may expect, and
the increase depends on the kinematic position.

Figure 13 shows the maximal clockwise kinematic error
obtained at different loads as a function of the kinematic
position ranging from �70 to +70 mrad. The clockwise
kinematic errors are compared in the same figure with
minimal anti-clockwise error (obtained with non-deformed
worm and wheel’s teeth). This curve suggests a maximal
admissible torque value somewhere between 900 and 1050
Nm. Above this maximal admissible value, the system is
not guaranteed to continue to run.



Fig. 10. (a) Pressing device; (b); Determination of the kinematic position by comparison between the traces after impact on the wheel
and the pressure field as calculated by ROUVISLAM.

Fig. 11. Comparison between the space width values obtained numerically and experimentally for (a) the worm and (b) the wheel.
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Fig. 12. Results of simulation of the total displacement on the worm and the wheel as a function of kinematic position for (a) the worm
and (b) the wheel.

Fig. 13. Comparison between themaximum clockwise kinematic errors (corresponding to the configuration of deformed worm against
deformed wheel, computed at different torques), with the minimum anti-clockwise kinematic error (corresponding to the configuration
of non-deformed worm against non-deformed wheel, computed at zero torque).
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4 Conclusions

In this work, an efficient dialogue procedure is developed
in order to solve a complex contact problem, i.e. elastic–
plastic, multi-scale and multi-contact problem. Finite
elementmethod is used to compute the influence coefficients
of the worm and the wheel (ROUVISLAM), as well as the
bending of these with the applied nodal force field
(ABAQUS). Semi-analytical method is used to compute
the load sharing due to the applied torque (ROUVISLAM),
and to find out the contact residual displacements due to the
applied pressure field (ISAAC). The method gives good
agreement with measurements. A criteria based on the
kinematic errors is proposed to predict whether the system
will continue to run after a first emergency stop or not. A
parametric study was carried out in order to find the
maximumload towhich the systemcanbe subjected so it can
continue to run after the emergency stop.

The procedure can be further enhanced for large
displacements, by including an iteration process between
load sharing calculation (ROUVISLAM software) and
residual displacements calculation (ABAQUS and ISAAC
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softwares). Indeed, the computed load sharing ismadeunder
elastic linear assumption, which can be considered valid for
small displacements. By including the effect of residual
displacements, in particular the flattening of the surfaces
under the contact, on the computation of the load sharing,
the elastic–plastic effect can bemodeledmore precisely. The
developed procedure can be also used as a tool for the design
of worm gears. For this design study, the impact on the
operation criterion of each of the worm/wheel geometrical
and assembly parameters must be determined. Once done,
the developed numerical procedure can be used to optimize
these parameters in order to guarantee longer-life to worm
gear systems for the fast braking application. Finally, the
integration of contact aspects in the developed numerical
tools (namelywith ISAAC)opens thepossibility to studythe
effect of surface treatment on the resistance of thewormgear
system to fracture.
Nomenclature
Cij
 Matrix of influence (displacement at point j as a
result of a unit force at point i)
Cb;worm
ij
 Bending matrix of influence of the worm
Cb;wheel
ij
 Bending matrix of influence of the wheel
Cc
ij
 Contact matrix of influence
Cdriving
 Driving torque on the worm

E1
 Young’s modulus of the worm

E2
 Young’s modulus of the wheel

eiangi
 Angular gap before loading at point i around the

axis of the wheel

fi
 Nodal force at point i

h
 Surface separation after deformation

hi
 Initial surface separation (before deformation)

i
 Point (or element) of ROUVISLAM mesh

j
 Point of ABAQUS mesh

k
 Element of ISAAC mesh

ni
 Normal vector to the surface si around the point i

in ROUVISLAM mesh

pi
 Pressure at point i

Fij
 Nodal force at point J in ABAQUS mesh after

redistribution of the nodal force at point i in
ROUVISLAM mesh
Ri
 Proportionality constant between angular be-
tween linear and angular displacements
riJ
 Distance between point J in ABAQUS mesh and
point i in ROUVISLAM mesh
r0
 Threshold distance in the definition of the weight
used in the redistribution of the nodal force fi in
ROUVISLAM mesh as nodal forces FiJ in
ABAQUS mesh
si
 Rectangular surface around the point i of
ROUVISLAM mesh
ue
 Elastic surface displacement

ur
 Residual surface displacement

ue
3
 Elastic normal displacements of the two bodies in

contact

U (x, j)
 Green’s function or influence matrix (displace-

ment at point x as a result of unit force at point j)
Ui1
 Displacement of surface 1 (worm) at point i

U2i
 Displacement of surface 2 (wheel) at point i

Uang

1i
 Angular displacement of surface 1 (worm) at
point i around the axis of the wheel
Uang
2i
 Angular displacement of surface 2 (wheel) at

point i around the axis of the wheel

wij
 Weight of point j for the redistribution of nodal

force fi in ROUVISLAM mesh as nodal forces FiJ
in ABAQUS mesh
W
 Total external load applied on a tooth of the
worm or the wheel
yangi
 Angular gap after loading at point i around the
axis of the wheel
a
 Threshold value of the weight used in the
redistribution of the nodal force fi in ROUVI-
SLAMmesh as nodal forcesFiJ in ABAQUSmesh
aang
 Angular global body adjustment around the axis
of the wheel
d
 Rigid body displacement

n1
 Poisson’s coefficient of the worm

n2
 Poisson’s coefficient of the wheel

G
 Body surface

GC
 Contact surface

se
 Elastic stress

sr
 Residual stress

V
 Body volume

Vp
 Plastic strain nuclei
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