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A NONCOMMUTATIVE EXTENSION

OF MAHLER’S INTERPOLATION THEOREM

June 28, 2021

JEAN-ÉRIC PIN AND CHRISTOPHE REUTENAUER

Abstract. We prove a noncommutative generalisation of Mahler’s the-
orem on interpolation series, a celebrated result of p-adic analysis.
Mahler’s original result states that a function from N to Z is uniformly
continuous for the p-adic metric dp if and only if it can be uniformly
approximated by polynomial functions. We prove an analogous result
for functions from a free monoid A∗ to a free group F (B), where dp is
replaced by the pro-p metric.

1. Introduction

The aim of this paper is to give a noncommutative version of Mahler’s the-
orem on interpolation series [8]. This new version, which applies to functions
from a free monoid A∗ to a free group F (B), extends a previous extension,
due to Silva and the first author [15], for functions from A∗ to Z. Several
results of our new article were announced in the conference paper [11], in
which most proofs were either omitted or just sketched out.

Throughout this paper, p denotes a prime number.

1.1. Original motivation

Our original motivation, described in more details in Section 9.2, seems
at first sight to have nothing to do with Mahler’s theorem. It is inspired
by automata theoretic questions, see [12, 14] for more details. Recall that a
subset L of A∗ (also called a language) is recognized by a monoid M if there
exist a monoid morphism ϕ∶A∗ →M such that L = ϕ−1(ϕ(L)).

Following Eilenberg [6], let Gp denote the class of all languages recognised
by a finite p-group. An elegant description of these languages was given
by Eilenberg (see Theorem 9.2) using a noncommutative extension of the
binomial coefficients, described in Section 2.1. Our original motivation was
to obtain a satisfactory description of the functions f ∶A∗ → B∗ such that,
for each language L in Gp, the language f−1(L) is also in Gp.

The connection with Mahler’s theorem stems from the fact that these
functions are exactly the uniformly continuous functions, when A∗ and B∗
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are equipped with the pro-p metric, defined in Section 6.4. When ∣A∣ = ∣B∣ =
1, A∗ and B∗ are isomorphic to the additive monoid N, the pro-p metric is
the p-adic metric and our problem amounts to describe the functions from
N to N which are uniformly continuous for the p-adic metric. As we will see
in the next section, this is precisely the goal of Mahler’s theorem. To return
to the general case, it was therefore natural to look for a noncommutative
version of this theorem

1.2. Mahler’s interpolation theorem

Mahler’s interpolation theorem [8] is usually stated for functions of p-
adic numbers, but this full version can be easily recovered from the simpler
version given in Theorem 1.1 below. Recall that the difference operator ∆

associates to each function f ∶N → Z, the function ∆f ∶N → Z defined by
(∆f)(n) = f(n + 1) − f(n). Let ∆k be the k-th iteration of ∆. Setting
δkf = (∆kf)(0) for every nonnegative integer k and fr(n) = ∑rk=0 (

n
k
)δkf ,

Mahler’s theorem can be stated as follows:

Theorem 1.1 (Mahler). Let f ∶N → Z be a function. The following condi-
tions are equivalent:

(1) f is uniformly continuous for the p-adic metric,

(2) the functions ∆rf tend uniformly to 0 when r tends to ∞,

(3) the p-adic norm of δrf tends to 0 when r tends to ∞,

(4) f is the uniform limit of the functions fr when r tends to ∞.

Just to clarify, N and Z are equipped in this statement with the p-adic
metric and the uniformity used in conditions (2) and (4) is that of uniform
convergence on the space of functions from N to Z, described in more details
in Propositions 6.9 and 6.10.

Mahler’s theorem is based on another result of independent interest. New-
ton’s forward difference formula states that, for all natural numbers n,
f(n) = ∑∞k=0 (

n
k
)δkf , a sum which is finite for each given n. A remarkable

consequence of this formula is that the map f → (δkf)k⩾0 defines a bijection
between functions from N to Z and integer sequences. We call this bijection
the Newton bijection.

1.3. A noncommutative extension

Our noncommutative extension concerns functions from a free monoid A∗

to a free group F (B). Of course, if B is a one-letter alphabet, then F (B)
is isomorphic to Z and one recovers the result of [15]. If, in addition, A is a
one-letter alphabet, then A∗ is isomorphic to N, and one gets back Mahler’s
original theorem.

We equip both A∗ and F (B) with the pro-p metric, a natural exten-
sion of the p-adic metric. A noncommutative version of Newton’s forward
difference formula and of Newton’s bijection was given by the first author
in [10]. We give a simpler proof of these results in Section 3. In this non-
commutative setting, f is a function from A∗ to a group G. For each letter
a of A, the difference operator ∆a associates to each function f ∶A∗ → G

the function ∆af ∶A∗ → G defined by ∆af(u) = f(u)−1f(ua). Next we at-
tach a difference operator ∆w to each word w = a1⋯an of A∗ by setting
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∆wf = ∆a1(∆a2(⋯∆anf)⋯)). Setting δwf = ∆wf(1), where 1 is the empty
word of A∗, the Newton bijection is now the map f → (δwf)w∈A∗ . If we
just keep the elements δwf such that ∣w∣ ⩽ r and replace every other δwf by
the identity of G, the inverse of Newton’s bijection gives back a function fr,
called the r-th Newton polynomial function associated to f .

Our main result offers a noticeable analogy with Mahler’s theorem:

Theorem 1.2. Let f ∶A∗ → F (B) be a function. The following conditions
are equivalent:

(1) f is uniformly continuous for the pro-p metric,

(2) the functions ∆wf , where w ∈ A∗, tend uniformly to 1 when ∣w∣ tends
to ∞,

(3) the elements δwf , where w ∈ A∗, tend to 1 when ∣w∣ tends to ∞,

(4) f is the uniform limit of its Newton polynomial functions fr when r

tends to ∞.

In addition to this theorem, we prove several other results of interest. The
first one is a solution to the following question:

Integration problem. Given an element g of G and a family (fa)a∈A of
functions from A∗ to G, find a function f such that f(1) = g and fa = ∆af

for all a ∈ A.

We show that the integration problem has a unique solution Seq(g, (fa)a∈A),
called the sequential product at g of the family (fa)a∈A.

Let us call a function f from N to Z a Newton polynomial function if
∆kf = 0 for almost all1 k. In particular, all polynomial functions are Newton
polynomial functions, but the function n→ (n

2
) is also a Newton polynomial

function. It is natural to extend this definition as follows:

Definition. A function f ∶A∗ → G is a Newton polynomial function2 if
∆wf = 1 for almost all words w ∈ A∗. In this case, the degree of f is the
smallest d such that ∆wf = 1 for all words w of length > d.

In particular, the function fr introduced earlier is a Newton polynomial
function of degree at most r. We show (Proposition 4.2) that a function f

is a Newton polynomial function of degre ⩽ d if and only if δwf = 1 for all
words w of length d+1. We also show (Corollary 4.6) that the set of Newton
polynomial functions is the smallest set of functions containing the constant
functions and closed under sequential product.

1.4. Proof techniques and notation

Our proof techniques are a mixture of algebra, combinatorics and topology.
The combinatorial aspects occur already in Section 2.1, where the noncom-
mutative extension of binomial coefficients is introduced, and in Section 3.1,
where we define a noncommutative extension of the Magnus transformation
(see in particular Propositions 3.1 and 7.5). Algebraic arguments appear in
Proposition 6.6 and form the core of Sections 7.3 and 7.4. The topological

1Following a standard terminology, we use “almost all” to mean "all but finitely many”.
2They were called Mahler polynomial functions in [15] but Newton polynomial function

seems to be more appropriate.
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aspects are introduced in Section 6. We preferred to place ourselves within
the framework of uniform spaces for two reasons: first, it leads to more con-
cise proofs; secondly, it makes it easier to understand when it is mandatory
to use a finite alphabet. We come back to metric spaces in the last three
subsections of Section 7.

Two applications of our main result are discussed in Section 9. We first
study an interpolation problem in the spirit of Mahler’s original paper [8]
and then come back to our original motivation related to language theory.

We would like to warn the reader of a notation that could lead to con-
fusion. Indeed, starting from Section 3, we use an additive notation for a
noncommutative operation. This is not in itself a novelty and is even a stan-
dard notation for the sum of ordinals. For our part, we were inspired by
Banaschewski and Nelson [1], who use “+” in exactly the same case as we
do. Nevertheless, we have sought to replace “+” with another symbol, such
as “)”, but we have not found a substitute for − and ±. As this additive
notation leads to synthetic formulas, such as 3.2 and 3.3, we finally decided
to keep it, while frequently recalling its non-commutative character.

1.5. Structure of the paper

Our paper is organised as follows. Basic prerequisites are recalled in Sec-
tion 2. Newton’s Forward Difference Formula is introduced in Section 3 and
Newton polynomial functions in Section 4. Newton’s bijection is the topic of
Section 5. General topological aspects are covered in Section 6 and the spe-
cial case of free monoids and free groups is treated in Section 7. The proof of
our main result is given in Section 8 and applications are presented in Section
9. The article is completed by a short appendix on uniform structures.

2. Prerequisites

As usual, [n] denotes the set {1, . . . , n} and ∣E∣ the cardinality of a set E.

2.1. Words and subwords

Let A be a set called an alphabet, whose elements are called letters. A word
on A is a finite sequence of elements of letters, denoted by mere juxtaposition
a1⋯an. If u = a1⋯an is a word, then n is the length of u and is denoted by
∣u∣. The set of words of length n is denoted by An.

We let A∗ denote the set of words on A. It is a monoid for the concate-
nation product, which associates with two words u = a1⋯ap and v = b1⋯bq
the word uv = a1⋯apb1⋯bq. This product has an identity, the empty word,
denoted by 1 or by ε when 1 already denotes a letter of the alphabet, as in
Example 2.1 below. The empty word is the unique word of length 0. The
monoid A∗ is actually the free monoid on A.

A word u = a1a2⋯an is a subword of a word v if v can be written as v =
v0a1v1⋯anvn for some (possibly empty) words v0, v1, . . . , vn. For instance,
aba is a subword of caccbca.

Let u and v be words. Following Eilenberg [6] and Lothaire [7, Chapter
6], let (v

u
) denote the number of distinct ways to write u as a subword of v.
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More formally, if u = a1a2⋯an, then

(v
u
) = Card{(v0, v1, . . . , vn) ∈ (A∗)n+1 ∣ v0a1v1⋯anvn = v}

Observe that, if u = an and v = am, then (v
u
) = (n

m
) and hence the numbers

(v
u
) constitute a generalization of the classical binomial coefficients. We refer

the reader to [7, Chapter 6] for more information on these extended binomial
coefficients.

2.2. Sequential transducers

We refer the reader to the survey article [5] for more information on se-
quential transducers. However, we follow Sakarovitch’s suggestion [20, p.
651] and use the term pure sequential instead of sequential and sequential
instead of subsequential.

A sequential transducer is an 8-tuple T = (Q,A,M, q0, ⋅ ,∗,m, ρ), where
Q is the set of states, A is a finite alphabet called the input alphabet, M is
a monoid called the output monoid, q0 ∈ Q is the initial state, the functions
(q, a) ↦ q ⋅a ∈ Q and (q, a) ↦ q ∗ a ∈ M are respectively the transition
function and the output function, m ∈M is the initial prefix and ρ∶Q →M

is a function, called the terminal function. It is a pure sequential transducer
if m = 1 and ρ(q) = 1 for all q ∈ Q. The transducer is called finite when Q is
finite.

It is convenient to represent a sequential transducer by a labelled graph
whose vertices are the states of the transducer. The initial state and the
initial prefix are pictured by an incoming arrow, the terminal function by an
outcoming arrow, as follows:

1
m

q
ρ(q)

For a pure sequential tranducer, we simply give the initial state and ignore
the initial prefix and the terminal function. We also represent simultaneously
the transition q → q ⋅a and the output q ∗ a in the following form, where the
vertical bar is a separator:

q q ⋅a
a ∣ q ∗ a

The transition and the output functions can be extended to functions Q ×
A∗ → Q (resp. Q ×A∗ →M) by setting, for each u ∈ A∗ and each a ∈ A:

q ⋅1 = q q ∗ 1 = 1

q ⋅ (ua) = (q ⋅u) ⋅a
q ∗ (ua) = (q ∗ u)((q ⋅u) ∗ a)

We also fix some priority rules on the operators. The standard choice is
to give highest priority to concatenation, then to “ ⋅ ” and then to “∗”. For
instance, we write q ⋅ua for q ⋅ (ua), q∗ua for q∗(ua) and q ⋅u∗a for (q ⋅u)∗a.

The function f ∶A∗ →M realized by T is defined by

f(u) =m(q0 ∗ u)ρ(q0 ⋅u)
or, when T is a pure sequential transducer, by

f(u) = q0 ∗ u
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A sequential function is a function that can be realized by a finite sequential
transducer.

Example 2.1. For a word u ∈ {0,1,2}∗, let u denote the nonnegative integer
represented by u in base 3. Let f ∶{0,1,2}∗ → {0,1,2}∗ be the Euclidean
division by 2 in base 3, that is, the function which associates to a word
u ∈ {0,1,2}∗ representing an integer n in base 3, the unique word v of the
same length as u representing the quotient of the division of n by 2 (in base
3). For instance, f(1212) = 0221 since 1212 = 50 and 0221 = 25 = 50/2. It
can also be defined recursively as follows:

f(ε) = ε
f(u0) =

⎧⎪⎪⎨⎪⎪⎩
f(u)0 if u is even

f(u)1 if u is odd

f(u1) =
⎧⎪⎪⎨⎪⎪⎩
f(u)0 if u is even

f(u)2 if u is odd

f(u2) =
⎧⎪⎪⎨⎪⎪⎩
f(u)1 if u is even

f(u)2 if u is odd

As stated in [18], the function f is sequential. Indeed, it is realized by the
finite pure sequential transducer represented in Figure 1.

0 1

0 ∣ 0

2 ∣ 1

0 ∣ 1

2 ∣ 2

1 ∣ 0

1 ∣ 2

Figure 1. Euclidean division by 2 of integers in base 3.

For instance, on the input 1212, the output is 0221, as shown in the figure
below:

0 1 1 0 0
1 ∣ 0 2 ∣ 2 1 ∣ 2 2 ∣ 1

3. Newton’s Forward Difference Formula

Newton’s forward difference formula gives an expression of a function in
terms of the initial value of the function and the powers of the forward
difference operator. The simplest version of this formula states that for each
function f from N to Z,

f(n) = ∞∑
k=0

(n
k
)δkf, (3.1)

a formula which is also the starting point of Mahler’s article [8, Theorem 1].
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A noncommutative extension of (3.1) for the functions from A∗ to Z was
given in [15, Theorem 2.2] and a further extension for the functions from A∗

to F (B) was proposed in [10]. In this section, we give a simpler presentation
of these results for the functions from A∗ to a group G, a slightly more
general setting.

Our noncommutative version of Newton’s forward difference formula al-
lows to retrieve the function f from the family (δwf)w∈A∗ . Its precise state-
ment, as given in Theorem 3.6 below, requires some auxiliary definitions and
results, as could be expected in this non-commutative framework. To this
end, we introduce a noncommutative extension of the Magnus transforma-
tion in Section 3.1 and then study the operators ∆w in more detail in Section
3.2. Section 3.3 is devoted to the proof of Theorem 3.6.

3.1. Noncommutative Magnus transformation

Let A∗∗ denote the free monoid freely generated by A∗. An element of
A∗∗ is a finite sequence (x1, . . . , xn) of elements of A∗. However, to avoid
any confusion between the product in A∗ and the product in A∗∗, we adopt
an additive notation for A∗∗, although A∗∗ is in general noncommutative.
This means that we replace the notation (x1, . . . , xn) by x1 + ⋯ + xn. The
addition of two elements (u1+⋯+um) and (v1+⋯+vn) of A∗∗ is also denoted
additively, which is coherent, since

(u1 +⋯+ um) + (v1 +⋯+ vn) = u1 +⋯+ um + v1 +⋯+ vn.
Accordingly, the neutral element of the monoid A∗∗ is denoted 0.

For each u ∈ A∗ and x = x1 +⋯ + xn ∈ A∗∗, let us set

x ⋅u = x1u +⋯+ xnu. (3.2)

We let the reader verify that this defines a monoid right action of A∗ on
A∗∗, which means that the following formulas hold for all u, u1, u2 ∈ A∗, and
for all x, x1, x2 ∈ A∗∗,

0 ⋅u = 0

(x1 + x2) ⋅u = x1 ⋅u + x2 ⋅u
x ⋅ (u1u2) = (x ⋅u1) ⋅u2.

The noncommutative Magnus transformation is the mapping µ from A∗ into
A∗∗ defined recursively by setting µ(1) = 1 and, for all w ∈ A∗ and a ∈ A,

µ(wa) = µ(w) + µ(w) ⋅a. (3.3)

Example 3.1. Let a, b, c, d ∈ A. Then

µ(a) = 1 + a,
µ(ab) = 1 + a + b + ab,
µ(abc) = 1 + a + b + ab + c + ac + bc + abc,
µ(abcd) = 1 + a + b + ab + c + ac + bc + abc + d + ad + bd

+ abd + cd + acd + bcd + abcd,

µ(aba) = 1 + a + b + ab + a + aa + ba + aba,
µ(abab) = 1 + a + b + ab + a + aa + ba + aba + b + ab + bb
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+ abb + ab + aab + bab + abab. (3.4)

Warning. It is tempting to define directly, instead of the right action defined
by 3.2, a product on A∗∗ given, using the same notation, by the formula

(u1 +⋯+ um)(v1 +⋯+ vn) = u1v1 +⋯+ umv1 +⋯+ u1vn +⋯ + umvn (3.5)

and then simply write µ(a1a2⋯an) = (1+a1)(1+a2)⋯(1+an). This approach
using near-rings is possible and was used in [10], but it requires special care.
Indeed, not only the addition is not commutative, but multiplication only
distributes on the left over addition, and not on the right. For instance,
(1+a)(1+b) = (1+a)+(1+a)b = 1+a+b+ab is different from (1+b)+a(1+b) =
1 + b + a + ab.

The function µ is an extension of the classical Magnus transformation M ,
which is a morphism from the free monoid A∗ (and more generally the free
group F (A)) into the multiplicative monoid of the ring Z⟪A⟫ of noncom-
mutative formal power series: it maps each letter a onto 1+a. For example,
since the addition in Z⟪A⟫ is commutative, one has

M(abab) = (1 + a)(1 + b)(1 + a)(1 + b)
= 1 + 2a + 2b + aa + 3ab + ba + bb

+ aab + aba + abb + bab + abab,

a formula to be compared with (3.4).

Here is a simple algorithm to obtain µ(abcd), suggested by Mathieu Guay-
Pacquet:

(1) Write abcd backwards to get dcba.

(2) Order the subwords of dcba as in a dictionary to obtain the list

L = 1, a, b, ba, c, ca, cb, cba, d, da, db, dba, dc, dca, dcb, dcba.

(3) Write the words of L backwards to get the list

L̃ = 1, a, b, ab, c, ac, bc, abc, d, ad, bd, abd, cd, acd, bcd, abcd.

Then µ(abcd) is the ordered sum of the elements of L̃. To get µ(abab), it
now suffices to replace c by a and d by b in the expression giving µ(abcd).

This algorithm can be justified as follows. Let P = N − {0} be the set of
positive integers. Define recursively a total order on the set of finite subsets
of P as follows:

(1) for every nonempty finite subset I of P, set ∅ < I;
(2) if I, J are two nonempty subsets of P, then I < J if either max(I) <

max(J) (for the usual order of natural numbers), or if max(I) =
max(J) and I − {max(I)} < J − {max(J)}.

Example 3.2. One has {4,7} < {3,4,7} < {5,7} and, representing subsets
of P without braces,

∅ < 1 < 2 < 12 < 3 < 13 < 23 < 123 < 4 < 14

< 24 < 124 < 34 < 134 < 234 < 1234.

If w = a1⋯an and I = {i1 < ⋯ < ik} ⊆ [n], let w[I] denote the word ai1⋯aik .
Then the following result holds.
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Proposition 3.1. For each w ∈ A∗,

µ(w) = ∑
I⊆[∣w∣]

w[I], (3.6)

where the (noncommutative) sum runs, from left to right, over all subsets of
[∣w∣] increasingly ordered by <.

Proof. Recall that µ is defined recursively by µ(1) = 1 and by the func-
tional equation (3.3). Therefore, it suffices to show that the function ν(w) =
∑I⊆[∣w∣]w[I] satisfies the same equations. Since the equality ν(1) = w[∅] = 1
is immediate, it just remains to prove that, for each letter a ∈ A,

ν(wa) = ν(w) + ν(w) ⋅a. (3.7)

First observe that a subset of [∣w∣ + 1] is either a subset of [∣w∣] or contains
∣w∣ + 1, and every subset of the first category is lower (for the order <) than
every subset of the second category. Moreover, if I < J are subsets of the
second category, then, by definition of the order, I − {∣w∣+ 1} < J − {∣w∣+ 1}.
Since, for I in the second category, wa[I] = w[I − {∣w∣ + 1}]a, one gets

ν(wa) = ∑
I⊆[∣w∣+1]

wa[I] = ∑
I⊆[∣w∣]

w[I] + ( ∑
I⊆[∣w∣]

w[I]) ⋅a
which proves (3.7). �

3.2. Difference operators

Let G be a group and let f ∶A∗ → G be a function. Following [10], we
define the difference operators as follows. For each letter a of A, let ∆af

denote the function A∗ → G defined by

∆af(w) = f(w)−1f(wa)
for each word w in A∗. We obtain in this way a function a↦∆a from A into
the set M of all mappings from GA

∗
into itself. We view M as a monoid

under the composition of mappings. Since A∗ is the free monoid on A, this
function from A toM extends uniquely to a monoid morphism from A∗ into
M. Denoting w ↦∆w this extension, we get ∆1f = f and, for all words u, v
in A∗,

∆uvf =∆u∆vf. (3.8)

Example 3.3. For instance, one gets

(∆1f)(u) = f(u)
(∆af)(u) = f(u)−1f(ua)
(∆abf)(u) = f(ub)−1f(u)f(ua)−1f(uab)
(∆abcf)(u) = f(ubc)−1f(ub)f(u)−1f(uc)f(uac)−1f(ua)f(uab)−1f(uabc)
(∆abcdf)(u) = f(ubcd)−1f(ubc)f(ub)−1f(ubd)f(ud)−1f(u)f(uc)−1f(ucd)

f(uacd)−1f(uac)f(ua)−1f(uad)f(uabd)−1f(uab)f(uabc)−1
f(uabcd)

(∆ababf)(u) = f(ubab)−1f(uba)f(ub)−1f(ubb)f(ub)−1f(u)f(ua)−1f(uab)
f(uaab)−1f(uaa)f(ua)−1f(uab)f(uabb)−1f(uab)f(uaba)−1
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f(uabab) (3.9)

Let us return for a moment to the commutative case, where f is a function
from N to a commutative group (G,+). To do this, we take a one-letter
alphabet A = {a} and we use the map an → n to identify A∗ to (N,+).
Writing ∆nf for ∆anf and using an additive notation, we get

∆0f(n) = f(n)
∆1f(n) = −f(n) + f(n + 1),

and more generally,

∆kf(n) = f(n + k) − (n
1
)f(n + k − 1) + (n

2
)f(n + k − 2) −⋯

+ (−1)k(n
k
)f(n),

which is the standard expression of the k-th power of the difference operator.
The general formula to retrieve the results of Example 3.3 requires some

further development and will be presented at the end of Section 3.3.

Difference operators commute with group morphisms, in the following sense:

Proposition 3.2. Let f ∶A∗ → G be a function, let ϕ∶G → H be a group
morphism and let w be a word. Then

∆w(ϕ ○ f) = ϕ ○ (∆wf). (3.10)

Proof. We prove the result by induction on ∣w∣. The result is trivial if w is
the empty word. If w = a for some letter a, one gets

∆a(ϕ ○ f)(x) = (ϕ ○ f(x))−1(ϕ ○ f(xa)) = ϕ(f(x))−1ϕ(f(xa))
= ϕ(f(x)−1f(xa)) = ϕ(∆af(x)) = ϕ ○ (∆af)(x)

and thus ∆a(ϕ ○ f) = ϕ ○ (∆af).
If ∣w∣ ⩾ 2, then w = ua for some word u of length ∣w∣−1 and some letter a.

Then by (3.8) and by the induction hypothesis applied to u, one gets

∆w(ϕ ○ f) =∆u∆a(ϕ ○ f) =∆u(ϕ ○∆af) = ϕ ○∆u(∆af)
= ϕ ○∆uaf = ϕ ○∆wf,

which concludes the proof. �

Most of the time, it is difficult to give explicit formulas for the difference
operators of a given function. For the convenience of the reader, we present
three examples where this computation is not only tractable, but also leads
to interesting formulas.

Example 3.4. The inversion function.

We first apply the difference operators to the function mapping a word to
its inverse in the free group. An auxiliary definition is in order to state this
result. The iterated commutator [x1, x2, . . . , xn] of n elements x1, x2, . . . , xn
of a group is defined by induction by setting [x1] = x1 and for n ⩾ 2,

[x1, x2, . . . , xn] = x1[x2, x3, . . . , xn]x−11 [x2, x3, . . . , xn]−1.
In particular, since [x1, x2] = x1x2x

−1
1 x

−1
2 , one gets [x1, x2, . . . , xn] =[x1, [x2, x3, . . . , xn]].
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Proposition 3.3. Let f ∶A∗ → F (A) be the function defined by

f(x) = x−1.
Then for every n > 0 and for all a1, . . . , an ∈ A,

∆a1a2⋯anf(x) = x[a1, a2, . . . , an]−1x−1 (3.11)

Proof. For n = 1, the result follows from the formulas

∆af(x) = (f(x))−1f(xa) = (x−1)−1(xa)−1 = xa−1x−1
Let n ⩾ 2 and suppose that the result holds for n−1. Thus by (3.8), one has

(∆a1a2⋯anf)(x) = (∆a1(∆a2⋯anf))(x)
= ((∆a2⋯anf)(x))−1(∆a2⋯anf)(xa1).

Applying the induction hypothesis to ∆a2⋯anf , one gets

(∆a2⋯anf)(x) = x[a2, . . . , an]−1x−1
and hence

(∆a1a2⋯anf)(x) = (x[a2, . . . , an]−1x−1)−1(xa1[a2, . . . , an]−1(xa1)−1)
= x[a2, . . . , an]x−1xa1[a2, . . . , an]−1(xa1)−1
= x[a2, . . . , an]a1[a2, . . . , an]−1a−11 x−1
= x[a1, a2, . . . , an]−1x−1

which proves the induction step. �

Example 3.5. The Euclidean division by 2 in base 3.

We come back to the function f considered in Example 2.1. Let us compute
the functions ∆xf . First, we have ∆εf = f and

∆0f(u) =
⎧⎪⎪⎨⎪⎪⎩
0 if u is even

1 if u is odd

∆1f(u) =
⎧⎪⎪⎨⎪⎪⎩
0 if u is even

2 if u is odd

∆2f(u) =
⎧⎪⎪⎨⎪⎪⎩
1 if u is even

2 if u is odd

The other values of ∆xf can be obtained through the following result:

Proposition 3.4. Let s, t ∈ A∗ and let g∶{0,1,2}∗ → A∗ be the function
defined by

g(u) =
⎧⎪⎪⎨⎪⎪⎩
s if u is even

t if u is odd

Then ∆εg = g and, for each word x,

∆xg(u) =
⎧⎪⎪⎨⎪⎪⎩
ε if x ∉ 1∗

(s−1t)2n−1(−1)n−1+u if x = 1n for some n > 0. (3.12)
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Proof. (1) Let us first compute ∆0g, ∆1g and ∆2g. Since u, u0 and u2 have
the same parity, one has g(u) = g(u0) = g(u2), so that

∆0g(u) = g(u)−1g(u0) = ǫ (3.13)

and

∆2g(u) = g(u)−1g(u2) = ǫ. (3.14)

Similarly, ∆1g(u) = g(u)−1g(u1), but now, u and u1 have opposite parities.
If u is even, then u1 is odd, and therefore

∆1g(u) = g(u)−1g(u1) = s−1t = (s−1t)(−1)u . (3.15)

The argument is similar when u is odd, and leads to the same formula, by
noting that s−1t is the inverse of t−1s.

(2) Let us prove (3.12) by induction on n. For n = 1, the result follows
from (3.15). If (3.12) holds for some n ⩾ 1, then one has

∆1
n+1

g(u) =∆1(∆1
n

g(u)) = (∆1
n

g(u))−1∆1
n

g(u1)
= ((s−1t)2n−1(−1)n−1+u)−1(s−1t)2n−1(−1)n−1+u1
= (s−1t)2n−1(−1)n+u(s−1t)2n−1(−1)n+u = (s−1t)2n(−1)n+u ,

which concludes the induction step.

(3) Suppose now that x is nonempty and not of the form 1n. Then we
may write x = ya1k with a = 0 or 2 and k ⩾ 0. If k > 0, then (3.12) shows

that ∆1
k

g(u) can take at most two values, which depend on the parity of u.

This is also true if k = 0, because in this case, ∆1
k

g =∆εg = g.
It now follows from (3.13) and (3.14), with g replaced by ∆1

k

g, that, for all

u ∈ A∗, ∆a1kg(u) =∆a∆1
k

g(u) = ǫ and hence ∆xg(u) =∆y∆a1kg(u) = ǫ. �

We already computed ∆xf for the words x of length 0 or 1. Next we have
for each n > 0

∆1
n
0f(u) = (0−11)2n−1(−1)n−1+u

∆1
n
1f(u) = (0−12)2n−1(−1)n−1+u

∆1
n
2f(u) = (1−12)2n−1(−1)n−1+u

and, for any other word x, ∆xf is the constant function to ε.

Example 3.6. The noncommutative Magnus transformation.

We now view the noncommutative Magnus transformation defined in Sec-
tion 3.1 as a function from A∗ to F (A∗), the free group freely generated
by A∗, for which we also adopt a noncommutative additive notation. The
functions ∆wµ are easy to compute:

Proposition 3.5. The following formula holds for all u,w ∈ A∗:

∆wµ(u) = µ(u) ⋅w (3.16)
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Proof. We prove (3.16) by induction on the length of w. It is trivial if w is
the empty word. Suppose that the result holds for w and let a be a letter.
Then we have, for all w ∈ A∗ and a ∈ A,

∆awµ(u) =∆a(∆wµ)(u) = −∆wµ(u) +∆wµ(ua)
= −µ(u) ⋅w + µ(ua) ⋅w

Now, µ(ua) = µ(u) + µ(u) ⋅a by (3.3), and since ⋅ is a right action, one gets

∆awµ(u) = −µ(u) ⋅w + (µ(u) + µ(u) ⋅a) ⋅w
= −µ(u) ⋅w + µ(u) ⋅w + µ(u) ⋅aw = µ(u) ⋅aw

which proves the induction step. �

3.3. Newton’s Forward Difference Formula

For each w ∈ A∗, let us set

δwf =∆wf(1)
and let δf ∶A∗ → G be the map defined by δf(w) = δwf . This map extends
to a monoid morphism δ∗f ∶A

∗∗ → G. Thus δ∗f (w) = δwf and if w1 +⋯+wn is

an element of A∗∗, then δ∗f (w1 +⋯+wn) = δw1
f⋯δwnf .

Theorem 3.6 (Newton’s Forward Difference Formula). The equality f =
δ∗f ○ µ holds for each function f ∶A∗ → G.

Before moving on to the proof of this formula, let us illustrate it on a few
examples. Let a, b, c, d be letters of A. Then one has

f(1) = δ1f
f(a) = (δ1f)(δaf)
f(ab) = (δ1f)(δaf)(δbf)(δabf)
f(abc) = (δ1f)(δaf)(δbf)(δabf)(δcf)(δacf)(δbcf)(δabcf)
f(abcd) = (δ1f)(δaf)(δbf)(δabf)(δcf)(δacf)(δbcf)(δabcf)

(δdf)(δadf)(δbdf)(δabdf)(δcdf)(δacdf)(δbcdf)(δabcdf)
f(abab) = (δ1f)(δaf)(δbf)(δabf)(δaf)(δaaf)(δbaf)(δabaf)

(δbf)(δabf)(δbbf)(δabbf)(δabf)(δaabf)(δbabf)(δababf)
a formula deduced from (3.4) by eliminating the + signs and by replacing
each word u by δuf .

Theorem 3.6 relies on the following lemma:

Lemma 3.7. The following formula holds for every x ∈ A∗∗ and every a ∈ A:

δ∗f (x ⋅a) = δ∗∆af(x). (3.17)

Proof. Since the map x↦ x ⋅a is a monoid endomorphism of A∗∗, both sides
of (3.17), viewed as functions of x, are monoid morphisms from A∗∗ into G.
Therefore, it suffices to establish (3.17) when x is a generator of A∗∗, that
is, x = u for some word u ∈ A∗. Then x ⋅a = ua and hence one has

δ∗f (u ⋅a) = δuaf =∆uaf(1) =∆u∆af(1) = δu(∆af) = δ∗∆af(u). �
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Proof of Theorem 3.6. Let us show that, for every word w ∈ A∗,

f(w) = δ∗f ○ µ(w) (3.18)

We prove (3.18) by induction on ∣w∣. If ∣w∣ = 0, then w is the empty word,
and

f(1) =∆1f(1) = δ1f = δ∗f (1) = δ∗f ○ µ(1).
Suppose that the result holds for all words of length ⩽ n and let u be a word
of length n + 1. Let w be the prefix of length n of u and let a be its last
letter, so that u = wa. Observing that ∆af(w) = f(w)−1f(wa), one gets

f(u) = f(wa) = f(w)∆af(w). (3.19)

Moreover, the induction hypothesis yields

f(w) = δ∗f (µ(w)) (3.20)

∆af(w) = δ∗∆af ○ µ(w).
Applying now Lemma 3.7 with x = µ(w), one gets

∆af(w) = δ∗∆af ○ µ(w) = δ∗f (µ(w) ⋅a) (3.21)

Plugging (3.20) and (3.21) into (3.19) yields

f(u) = f(w)∆af(w) = δ∗f (µ(w))δ∗f (µ(w) ⋅a)
= δ∗f (µ(w) + µ(w) ⋅a)
= δ∗f (µ(wa)) = δ∗f ○ µ(u)

which proves the induction step and concludes the proof. �

Example 3.7. A direct application of Proposition 3.3 and Theorem 3.6
leads to the formula

(abc)−1 = a−1b−1[a, b]−1c−1[a, c]−1[b, c]−1[a, b, c]−1 (3.22)

or, equivalently,

abc = [a, b, c][b, c][a, c]c[a, b]ba (3.23)

Example 3.8. Let us come back to the function f considered in Examples
2.1 and 3.5. Proposition 3.4 shows that δ0f = 0, δ1f = 0, δ2f = 1, and for
each n > 0,

δ1n0f = (0−11)2n−1(−1)n−1
δ1n1f = (0−12)2n−1(−1)n−1
δ1n2f = (1−12)2n−1(−1)n−1

and δxf = ǫ in all other cases. Applying Newton’s Formula Difference For-
mula, we get for instance

f(1212) = δǫf δ1f δ2f δ12f δ1f δ11f δ21f
δ121f δ2f δ12f δ22f δ122f δ12f δ112f δ212f δ1212f

= δ1f δ2f δ12f δ1f δ11f δ2f δ12f δ12f δ112f

= 01(1−12)0(0−12)1(1−12)(1−12)(1−12)−2 = 0221,
a somewhat convoluted way to show that 50 divided by 2 equals 25.
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Example 3.9. For the noncommutative Magnus transformation, Proposi-
tion 3.5 shows that δwµ = w for all w ∈ A∗. Thus δ∗µ is the identity, in
accordance with Theorem 3.6.

Newton’s Forward Difference Formula allows one to recover f from the
elements δuf . A formula giving ∆wf in terms of f , as shown in Example
3.3, was given in [10]. Let us briefly review the steps leading to this formula.

We first consider µ as a function from A∗ to F (A∗), the free group freely
generated by A∗, for which we keep the noncommutative additive notation
already used for A∗∗. This means that every element of F (A∗) is written as

±x1 ±⋯± xn

with x1, . . . , xn ∈ A∗ and no consecutive terms of the form −x + x or +x − x
occur in this expression.

Next we extend µ, in the only possible way, to an endomorphism of F (A∗).
We show below that it is actually an automorphism, and how to construct
its inverse. We also define a right and a left action of A∗ on A∗∗ as follows.
For each element ±x1 +⋯ ± xr of F (A∗) and each u ∈ A∗, we set

(±x1 +⋯± xn) ⋅u = (±x1u ±⋯± xnu)
u ⋅ (±x1 +⋯± xn) = ±ux1 +⋯± uxn

Note that the right action extends the right action of A∗ on A∗∗ given by
(3.2).

The formula giving ∆wf is now easy to obtain. Recall that f is a function
from A∗ to some group G. Thus f uniquely extends to a group morphism
f∗∶F (A∗) → G, and the following formula, stated in [10, Proposition 4.5]
with a slightly different notation, holds for all u,w in A∗:

∆wf(u) = f∗(u ⋅µ−1(w)) (3.24)

It remains to give an explicit formula for the inverse of µ. For this purpose,
we introduce a new function π∶A∗ → F (A∗) defined recursively by setting
π(1) = 1 and, for all w ∈ A∗ and a ∈ A,

π(wa) = −π(w) + π(w) ⋅a. (3.25)

For instance, if a, b, c, d ∈ A, then we have:

π(a) = −1 + a,
π(ab) = −a + 1 − b + ab,
π(abc) = −ab + b − 1 + a − ac + c − bc + abc,
π(abcd) = −abc + bc − c + ac − a + 1 − b + ab − abd + bd − d

+ ad − acd + cd − bcd + abcd,

π(aba) = −ab + b − 1 + a − aa + a − ba + aba,
π(abab) = −aba + ba − a + aa − a + 1 − b + ab − abb + bb − b

+ ab − aab + ab − bab + abab. (3.26)

In the same way as µ, the function π uniquely extends to an endomorphism
of F (A∗), also denoted by π. This endomorphism π is not yet the inverse of
µ, but we are almost there.
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The reversal of a word u = a1⋯an is the word ũ = an⋯a1. The reversal map
is a permutation on A∗ which uniquely extends to a group automorphism
of F (A∗). According to [10, Corollary 3.4], the inverse of µ is given by the
following formula, for all x ∈ F (A∗),

µ−1(x) = π̃(˜)x (3.27)

For instance, if x = ab, then x̃ = ba, whence

π(ba) = −b + 1 − a + ba and µ−1(ab) = π̃(ba) = −b + 1 − a + ab.
For a more complicated example, we let the reader verify that applying
(3.24), (3.26) and (3.27), one recovers (3.9).

4. Polynomial functions

In this section, we extend the notion of a Newton polynomial function
from N to Z to functions from A∗ to some group G. The formal definition,
as well as a useful characterization, are given in Section 4.1. Next, in Section
4.2, we introduce a new construction, the sequential product, that we use to
solve the integration problem. In Section 4.3, we associate to each function
f from A∗ to G a sequence of Newton polynomial functions fr of degree at
most r.

4.1. Polynomial functions and their degree

Let 1 denote the constant function from A∗ to G that maps every word to
1, the identity element of G.

A function f ∶A∗ → G is called a Newton polynomial function if ∆wf = 1
for almost all words w ∈ A∗. In this case, the degree of f , denoted deg(f), is
defined by

deg(f) =min{d ∈ N ∪ {−1} ∣∆wf = 1

for all words w ∈ A∗ such that ∣w∣ > d}. (4.1)

or equivalently, using (3.8) and the fact that ∆w
1 = 1 for all words w,

deg(f) =min{d ∈ N ∪ {−1} ∣∆wf = 1

for all words w ∈ A∗ such that ∣w∣ = d + 1}. (4.2)

Observe that (3.8) and the definition of the degree imply the following in-
equality, for all words w ∈ A∗,

deg(∆wf) ⩽ deg(f) − ∣w∣. (4.3)

Proposition 4.1.

(1) The unique Newton polynomial function of degree −1 is the function
1.

(2) A Newton polynomial function has degree 0 if and only if it is a con-
stant function different from 1.

(3) For every Newton polynomial function f of nonnegative degree,

deg(f) = 1 +max{deg(∆af) ∣ a ∈ A}. (4.4)
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Proof. (1) The equality deg(1) = −1 follows from the definition, and since
∆1f = f , the degree of each function f ≠ 1 is nonnegative.

(2) Let f be a constant function and a be a letter. Then since ∆af(u) =
f(u)−1f(ua), one has ∆af = 1, and hence deg(f) ⩽ 0 by (4.2). Moreover, if
f ≠ 1, then deg(f) = 0 by (1).

Conversely, if deg(f) = 0, then f ≠ 1 by (1) and ∆af = 1 for each letter a.
Since ∆a(u) = f(u)−1f(ua), one has f(ua) = f(u), and by an easy induction,
f is a constant function.

(3) Let d = deg(f). If d = 0, then (4.4) is immediately verified. If d > 0,
then ∆wf = 1 for all words w of length > d and there exists a word w of length
d such that ∆wf ≠ 1. Setting w = uc, where c is a letter and ∣u∣ = d, one
gets ∆wf = ∆u(∆cf) by (3.8), whence ∆u(∆cf) ≠ 1 and deg(∆cf) ⩾ d − 1
by (4.2). Therefore

d ⩽ 1 + deg(∆cf) ⩽ 1 +max{deg(∆af) ∣ a ∈ A}.
Moreover, it follows from (4.3) that, for each letter a, deg(∆af) ⩽ d − 1 and
thus 1 +max{deg(∆af) ∣ a ∈ A} ⩽ d, which proves (4.4). �

The degree of a Newton polynomial function may also be defined by using
the functions δ instead of ∆.

Proposition 4.2. Let f ∶A∗ → G be a Newton polynomial function and let
d ∈ N∪{−1}. Then deg(f) ⩽ d if and only if δwf = 1 for all words w of length
> d.

Proof. Suppose that deg(f) ⩽ d and let w be a word of length > d. Then
∆wf = 1 by (4.1) and since δwf =∆wf(1), one has δwf = 1.

In the opposite direction, we now prove by induction on d that, if δwf = 1
for all words w of length > d, then deg(f) ⩽ d. If d = −1, then δwf = 1 for
each word w. It follows by Theorem 3.6 that f = 1 and thus deg(f) = −1.

Suppose now that d ⩾ 0. Since deg(f) = 1 +max{deg(∆af) ∣ a ∈ A} by
(4.4), it suffices to show that, for each letter a, deg(∆af) ⩽ d − 1. Let u be
a word of length > d − 1. Using (3.8), one gets, since ∣ua∣ > d,

δu(∆af) =∆u∆af(1) =∆uaf(1) = δuaf = 1.
It follows by the induction hypothesis that deg(∆af) ⩽ d−1, as required. �

Examples of Newton polynomial functions of degree 2 and examples of
non-polynomial functions are given at the end of Section 4.2.

4.2. Integration problem and sequential products

We now show that f and the functions ∆af , for a ∈ A, are related by a
functional equation.

Proposition 4.3. Let a1⋯an be a word of A∗. Then the following formula
holds:

f(a1⋯an) = f(1) ∏
1⩽i⩽n

∆aif(a1⋯ai−1). (4.5)

where the product is evaluated from left to right.
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Proof. The result is trivial if n = 0. Moreover, if (4.5) holds for n, then, by
induction on n

f(1) ∏
1⩽i⩽n+1

∆aif(a1⋯ai−1) = f(a1⋯an)∆an+1f(a1⋯an)
= f(a1⋯an)f(a1 . . . an)−1f(a1⋯anan+1) = f(a1⋯anan+1)

which proves (4.5). �

The functional equation (4.5) gives an expression of f in terms of f(1) and
of the family (∆af)a∈A. We now address the opposite question, which is
somewhat similar to the problem of integrating a function from its derivative.

Integration problem. Given an element g of G and a family (fa)a∈A of
functions from A∗ to G, is there a function f such that f(1) = g and fa =∆af

for all a ∈ A?

To solve the integration problem, it is convenient to introduce a new defini-
tion. Given an element g of G and a family (fa)a∈A of functions from A∗ to
G, the sequential product Seq(g, (fa)a∈A) is the function f ∶A∗ → G, defined,
for each word a1⋯an ∈ A∗, by

f(a1⋯an) = g ∏
1⩽i⩽n

fai(a1⋯ai−1). (4.6)

By abuse of language, a function f ∶A∗ → G is called a sequential prod-
uct of a family (fa)a∈A of functions from A∗ to G if, for some g ∈ G,
f = Seq(g, (fa)a∈A).

This terminology stems from the fact that f can be realized by a sequen-
tial transducer with infinitely many states. Indeed, consider the sequential
transducer A = (A∗,A,G,1, ⋅ ,∗, g), where A∗ is the set of states, A the input
alphabet, G the output group, 1 the initial state, g the initial prefix. The
transition and the output functions are respectively defined by u ⋅a = ua and
u ∗ a = fa(u).

g
1 u ua

a ∣ fa(u)

A typical computation in A looks like this

g
. . .

. . .

1 a1 a1a2 a1a2a3

a1a2⋯an−1 a1a2⋯an

a1 ∣ fa1
(1) a2 ∣ fa2

(a1) a3 ∣ fa3
(a1a2)

an ∣ fan
(a1⋯an−1)

and hence A computes the sequential product f defined by (4.6).

We are now ready to solve the integration problem.

Proposition 4.4. Let g ∈ G and let (fa)a∈A be a family of functions from
A∗ to G. Then the sequential product Seq(g, (fa)a∈A) is the unique function
f such that f(1) = g and ∆af = fa for all a ∈ A.
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Proof. Let f = Seq(g, (fa)a∈A). Then f(1) = g by definition. Let u = a1 . . . an
be a word and a be a letter. Since ∆af(u) = f(u)−1f(ua), one gets by (4.5)

∆af(u) = (g ∏
1⩽i⩽n

fai(a1⋯ai−1))
−1

g( ∏
1⩽i⩽n

fai(a1⋯ai−1))fa(a1⋯an)
= fa(a1⋯an)

whence ∆af = fa.
To prove uniqueness, consider a function f such that f(1) = g and ∆af =

fa for all a ∈ A. Then for each word a1⋯an ∈ A∗, one gets by (4.5),

f(a1⋯an) = f(1) ∏
1⩽i⩽n

∆aif(a1⋯ai−1) = g ∏
1⩽i⩽n

fai(a1⋯ai−1).
and thus f = Seq(g, (fa)a∈A). �

Proposition 4.5. Let G be a group and let f ∶A∗ → G be a function. The
following conditions are equivalent:

(1) f is a Newton polynomial function of degree ⩽ d,
(2) there exists a family (fa)a∈A of polynomial functions of degree ⩽ d− 1

such that f = Seq(f(1), (fa)a∈A).
In this case, one has fa =∆af for every a ∈ A.

Proof. (1) ⇒ (2). Let f be a polynomial function of degree ⩽ d. Formula
(4.3) shows that, for each letter a, ∆af is a Newton polynomial function
of degree at most d − 1. Moreover, Proposition 4.3 shows that f(a1⋯an) =
f(1)∏1⩽i⩽n∆

aif(a1⋯ai−1), which proves (2).
(2) ⇒ (1). Suppose that (2) holds. Proposition 4.4 shows that, for each

letter a, ∆af = fa and hence ∆af is a Newton polynomial function of degree
⩽ d−1. It follows that f is a Newton polynomial function function of degree
⩽ d. �

The following characterization of the set of Newton polynomial functions
is now an immediate consequence of Proposition 4.5.

Corollary 4.6. Let G be a group. The set of Newton polynomial functions
from A∗ to G is the smallest set of functions from A∗ to G containing the
constant functions and closed under sequential product.

We now come back to the characterization of the Newton polynomial
functions of degree ⩽ 1. Let us say that a function f ∶A∗ → G is an affine
morphism if f = f(1)g for some monoid morphism g∶A∗ → G. Equivalently,
conjugating by f(1), one gets f = hf(1) for some monoid morphism h∶A∗ →
G.

Proposition 4.7. A function from A∗ to G is a Newton polynomial function
of degree ⩽ 1 if and only if it is an affine morphism.

Proof. Proposition 4.5 shows that a function from A∗ to G is a polynomial
function of degree ⩽ 1 if and only if there exists a family (fa)a∈A of New-
ton polynomial functions of degree ⩽ 0 such that f = Seq(f(1), (fa)a∈A).
Proposition 4.1 shows that these polynomial functions fa of degree ⩽ 0 are
constant functions equal to some element ga of G. It follows that f is a
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Newton polynomial function of degree ⩽ 1 if and only if there is a family
(ga)a∈A of elements of G such that, for each word w = a1⋯an,

f(w) = f(1) ∏
1⩽i⩽n

gai . (4.7)

Defining g∶A∗ → G as the unique monoid morphism such that g(a) = ga for
each letter a, (4.7) is equivalent to writing f(w) = f(1)g(w), which proves
the result. �

Example 4.1. The function f ∶A∗ → F (A) defined by

f(a1⋯an) = a1(a1a2)(a1a2a3) ⋯ (a1⋯an)
is a Newton polynomial function of degree 2. Indeed, it is equal to the se-
quential product Seq(1, (fa)a∈A) where each fa is the affine morphism defined
by fa(u) = ua.
Proposition 4.8. Any Newton polynomial function of finite image from A∗

to a free group is a constant function.

Proof. Let f ∶A∗ → F (B) be a Newton polynomial function of finite image.
Then for each a ∈ A, the image of ∆af is also finite since ∆af(u), which
is equal to f(u)−1f(ua), can only take finitely many values. It follows by
induction that, for every word w, the image of ∆wf is also finite.

Let d be the degree of f and suppose that d > 0. By (4.2), there exists a
word w of length d such that ∆wf ≠ 1. Let a be the first letter of w and
s its suffix of length d − 1. By (4.3), ∆sf is a Newton polynomial function
of degree ⩽ 1, and since ∆a(∆sf) ≠ 1, it is actually of degree 1. It follows
from Proposition 4.7 that f is an affine morphism. Consequently, there is a
monoid morphism g∶A∗ → F (B) such that ∆sf = ∆sf(1)g. But since ∆sf

has finite image, g(A∗) has to be a finite submonoid of F (B) and the unique
possibility is g = 1. But in this case, ∆sf is a constant function and hence
has degree 0, a contradiction. Thus d ⩽ 0 and f is a constant function. �

Just like difference operators, sequential products commute with group
morphisms:

Proposition 4.9. Let ϕ ∶ G→H be a group morphism and let (fa)a∈A be a
family of functions from A∗ to G. Then the following equality holds:

ϕ ○ Seq(g, (fa)a∈A) = Seq(ϕ(g), (ϕ ○ fa)a∈A). (4.8)

Proof. Since ϕ is a morphism, one has

ϕ(Seq(g, (fa)a∈A)(a1⋯an)) = ϕ(g ∏
1⩽i⩽n

fai(a1⋯ai−1))
= ϕ(g) ∏

1⩽i⩽n

ϕ(fai(a1⋯ai−1))
= Seq(ϕ(g), (ϕ ○ fa)a∈A)(a1⋯an)

which proves (4.8). �
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4.3. Newton polynomial functions associated to a function

For each r ∈ N, let Cr be the set of words of A∗ of length at most r. Let
ρr be the unique monoid endomorphism of A∗∗ which maps every element
of Cr to itself, and maps any other element of A∗ to 0. In other words, if
x = ∑1⩽i⩽s ui is an element of A∗∗, where each ui ∈ A∗ and if Er(x) = {i ∈{1, . . . s} ∣ ∣ui∣ ⩽ r}, then

ρr(x) = ∑
i∈Er(x)

ui. (4.9)

For instance ρ3(1 + ab + baba + 1 + aba + abaab + b) = 1 + ab + 1 + aba + b.
The function

µr = ρr ○ µ
from A∗ to A∗∗ is called the r-th truncated noncommutative Magnus trans-
formation.

Example 4.2. Let a, b, c, d ∈ A. Then

µ2(a) = 1 + a
µ2(ab) = 1 + a + b + ab
µ2(abc) = 1 + a + b + ab + c + ac + bc
µ2(abcd) = 1 + a + b + ab + c + ac + bc + d + ad + bd + cd
µ2(abab) = 1 + a + b + ab + a + aa + ba + b + ab + bb + ab.

Thus µ2(abab), for instance, is obtained by only keeping the words of length
⩽ 2 in µ(abab), as given in (3.4).

Formula (3.3) admits a truncated version:

Lemma 4.10. The following formula holds for all w ∈ A∗, a ∈ A and r > 0:

ρr(µ(w) ⋅a) = ρr−1(µ(w)) ⋅a, (4.10)

µr(wa) = µr(w) + µr−1(w) ⋅a. (4.11)

Proof. Formula (4.10) follows from an inspection of the words of
Er(µ(w) ⋅a): they are exactly the words of the form ua where u ∈
Er−1(µ(w)).

Let us prove (4.11). By definition, µr(wa)) = ρr ○ µ(wa)). Since ρr is a
monoid endomorphism on A∗∗, applying ρr to each side of (3.3) yields:

ρr(µ(wa)) = ρr(µ(w) + µ(w) ⋅a) = ρr(µ(w)) + ρr(µ(w) ⋅a).
Moreover, it follows from (4.10) that

ρr(µ(w) ⋅a) = ρr−1(µ(w)) ⋅a = µr−1(w) ⋅a.
and hence

ρr(µ(wa)) = ρr(µ(w)) + µr−1(w) ⋅a = µr(w) + µr−1(w) ⋅a. �

An interesting consequence of Lemma 4.10 is that µr is can be expressed as
a sequential product of the functions µr−1 ⋅a, for a ∈ A. For this to make
sense, we need to consider each µr as a function from A∗ to the free group
of base A∗, written additively like A∗∗.

Corollary 4.11. For every r > 0, µr = Seq(1, (µr−1 ⋅a)a∈A).
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Proof. On the one hand, it follows from (4.11) that for all w ∈ A∗ and a ∈ A

∆aµr(w) = −µr(w) + µr(wa) = µr−1(w) ⋅a (4.12)

On the other hand, Proposition 4.3 shows that

µr = Seq(1, (∆aµr)a∈A) (4.13)

The corollary now follows immediately from (4.12) and (4.13). �

To each function f ∶A∗ → G, we associate, for each r ⩾ 0, a function
fr ∶A∗ → G by setting fr = δ∗f ○ µr. We will see in Proposition 4.14 below
that fr is a Newton polynomial function. For this reason, we call fr the r-th
Newton polynomial function associated to f .

Lemma 4.12. The function f0 is the constant function equal to f(1).
Proof. Indeed, since ∆1f = f , one gets

f0(u) = δ∗f ○ µ0(u) = δ∗f (1) = δ1f =∆1f(1) = f(1). �

Example 4.3. Here are a few other examples, in which we write δu instead
of δuf .

f2(a) = δ∗f ○ µ2(a) = δ∗f (1 + a) = δ1δa
f2(ab) = δ∗f ○ µ2(ab) = δ∗f (1 + a + b + ab) = δ1δaδbδab,
f2(abc) = δ∗f ○ µ2(abc) = δ∗f (1 + a + b + ab + c + ac + bc)

= δ1δaδbδabδcδacδbc
f2(abcd) = δ∗f ○ µ2(abcd)

= δ∗f (1 + a + b + ab + c + ac + bc + d + ad + bd + cd)
= δ1δaδbδabδcδacδbcδdδadδbdδcd

f2(abab) = δ1δaδbδabδaδaaδbaδbδabδbbδab.
Proposition 4.13. The formula

∆a(fr) = δ∗∆af ○ µr−1 = (∆af)r−1 (4.14)

holds for all r > 0 and a ∈ A.

Proof. Since fr = δ∗f ○ µr and µr(ua) = µr(u) + µr−1(u) ⋅a by (4.11), the

formula (4.14) follows from the following sequence of equalities:

∆afr(u) = fr(u)−1fr(ua) = [δ∗f (µr(u))]−1δ∗f (µr(ua))
= [δ∗f (µr(u))]−1δ∗f (µr(u) + µr−1(u) ⋅a)
= [δ∗f (µr(u))]−1δ∗f (µr(u))δ∗f (µr−1(u) ⋅a) = δ∗f (µr−1(u) ⋅a)
= δ∗∆af(µr−1(u)) by Lemma 3.7

= (∆af)r−1(u) by the definition of (∆af)r−1. �

Proposition 4.14. For each r ⩾ 0, fr is a Newton polynomial function of
degree at most r.

Proof. We prove the result by induction on r. For r = 0, the result follows
from Lemma 4.12.
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Applying Proposition 4.3 to fr, one gets, for every word a1⋯ak ∈ A∗,

fr(a1⋯ak) = fr(1) ∏
1⩽i⩽k

∆aifr(a1 . . . ai−1). (4.15)

Now, fr(1) = δ∗f ○ µr(1) = δ∗f (1) = f(1) and ∆afr = (∆af)r−1 by Proposi-
tion 4.13. It follows that

fr(a1 . . . ak) = f(1) ∏
1⩽i⩽k

(∆aif)r−1(a1 . . . ai−1). (4.16)

By the induction hypothesis applied to ∆af , (∆af)r−1 is a Newton poly-
nomial function of degree at most r − 1. Hence by Proposition 4.5, fr is a
Newton polynomial function of degree at most r. �

Recall that δ∗f is a monoid morphism from A∗∗ to G, but we keep the same

notation for its restriction to C∗r . Theorem 3.6 admits the following coun-
terpart.

Corollary 4.15. Let f ∶A∗ → G be a Newton polynomial function of degree
at most d. Then f = δ∗f ○ µd.

Proof. It suffices to use Theorem 3.6 and to observe that δ∗f (u) = δuf =
∆uf(1) = 1 for each word of length > d. �

5. Newton’s bijection

Recall that to each function f ∶A∗ → G is associated the map δf ∶A∗ → G

defined by δf(w) = δwf . The Newton map is the map δ∶ f → δf . We show in
this section that δ is a bijection and we explicitly find its inverse.

Let f∗∶A∗∗ → G denote the unique monoid morphism extending f and
let γ∶A∗ → G be the map defined by γ(f) = f∗ ○ µ. Thus, if u ∈ A∗ and
µ(u) = u1 +⋯+ um , then

γ(u) = f∗(u1 +⋯+ um) = f(u1)⋯f(um).
Theorem 5.1 (Newton’s bijection). The Newton map δ is a permutation
on the set of functions from A∗ to G and its inverse is the permutation γ.

Proof. Since f = δ∗f ○µ by Theorem 3.6, γ○δ is the identity function. Therefore
γ is surjective, δ is injective and it suffices to prove that γ is injective. Let
g, h∶A∗ → G be such that g∗ ○ µ = h∗ ○ µ. Let us show by induction on
∣u∣ that g(u) = h(u). If ∣u∣ = 0, then u is the empty word 1, µ(1) = 1,
g∗(1) = g(1), h∗(1) = h(1) and thus g(1) = h(1). Suppose now that ∣u∣ = r+1.
Then µ(u) = µr(u) + u and since g∗ and h∗ are monoid morphisms, one
gets g∗ ○ µ(u) = g∗(µr(u) + u) = g∗(µr(u))g(u) and similarly h∗ ○ µ(u) =
h∗(µr(u))h(u). Since µr(u) is a sum of words of length ⩽ r, the induction
hypothesis gives g∗(µr(u)) = h∗(µr(u)). Now since g∗ ○ µ(u) = h∗ ○ µ(u),
one gets g(u) = h(u), which concludes the induction step. �

Theorem 5.1 solves the following interpolation problem.

Corollary 5.2. For each function g∶A∗ → G, there exists a unique function
f ∶A∗ → G such that, for all u ∈ A∗, δuf = g(u).
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A function f ∶A∗ → G is called a G-polynomial if f(w) = 1 for almost all
words w ∈ A∗. The degree of a G-polynomial is −1 if f = 1; otherwise, it is
the smallest d such that f(w) = 1 for every word of length d + 1. One can
now enrich Theorem 5.1 as follows.

Theorem 5.3. For each degree d, the maps δ and γ define mutually inverse
bijections between the set of Newton polynomial functions of degree d and the
set of G-polynomials of degree d.

Proof. It suffices to prove that δ and γ define mutually inverse bijections
between the set of Newton polynomial functions of degree at most d and the
set of G-polynomials of degree at most d. Let f be a Newton polynomial
function of degree ⩽ d. Then by definition, δ(f) is a G-polynomial of degree
at most d. Let now f be a G-polynomial of degree at most d. Theorem 5.1
shows that f = δ○γ(f) = δγ(f). It follows that for every word w of length > d,
1 = f(w) = δγ(f)(w). Thus γ(f) is a Newton polynomial function of degree
at most d. �

6. Pro-p uniformity and pro-p metric

In order to deal with uniformly continuous function, we have chosen to
work with uniformities (also called uniform structures), following Bourbaki
[3], rather than with distances, because it is more natural and makes proofs
more fluid. The relevant definitions can be found in Appendix A.

6.1. Residually p-finite monoids

Let p be a prime number and let M be a monoid. Let us say that a finite
p-group G separates two elements of M is there exists a monoid morphism
ϕ from M onto G such that ϕ(u) ≠ ϕ(v).

A monoid M is residually a finite p-group, or residually p-finite for short,
if every pair of elements of M can be separated by a finite p-group. Equiv-
alently, a monoid is residually p-finite if it is a subdirect product (in the
category of monoids) of finite p-groups.

Since a monoid morphism from a group to another group is a group mor-
phism, this definition is compatible with the standard definition of a resid-
ually p-finite group: a group G is residually p-finite if, for each g ≠ 1 in G,
there is some finite p-group H and some morphism G→H whose kernel does
not contain g. Equivalently, a group is residually p-finite if the intersection
of all its subgroups of index a power of p is trivial.

The following proposition gathers some known facts about residually p-
finite monoids.

Proposition 6.1. The following properties hold:

(1) a product of residually p-finite monoids is again residually p-finite;

(2) a submonoid of a residually p-finite monoid is residually p-finite;

(3) every free monoid and every free group is residually p-finite;

(4) a finite monoid is residually p-finite if and only if it is a finite p-group.

6.2. Pro-p uniformity on a residually p-finite monoid

Let M be a residually p-finite monoid. The pro-p uniformity on M is the
initial uniformity with respect to all monoids morphisms from M to a finite
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p-group, equipped with the discrete uniformity. A base of this uniformity is
given by Proposition 6.2 below. For each monoid morphism ϕ from M onto
a finite p-group G, let

Uϕ = {(u, v) ∈M ×M ∣ ϕ(u) = ϕ(v)}
Since G is finite, Uϕ can be written as a finite union

Uϕ = ⋃
g∈G

(ϕ−1(g) ×ϕ−1(g)) (6.1)

Proposition 6.2. Let M be a residually p-finite monoid. The sets of the
form Uϕ, where ϕ runs over the class of all monoid morphisms from M onto
a finite p-group, form a base of the pro-p uniformity on M .

Proof. The sets of the form

Uϕ,P = (ϕ ×ϕ)−1(P ),
where P is an entourage of the discrete uniformity on G, form a subbase of
the initial uniformity. Note that Uϕ = Uϕ,D where D is the diagonal of G×G.
Since every entourage of the discrete uniformity on G contains P , every set
Uϕ,P contains Uϕ. It follows that the sets of the form Uϕ form another
subbase of the initial uniformity. To prove they do in fact form a base, it
suffices to prove that if ϕ1∶M → G1 and ϕ2∶M → G2 are two morphisms
from M onto finite p-groups G1 and G2, there exists a morphism ϕ from
M onto a finite p-group G such that Uϕ ⊆ Uϕ1

∩ Uϕ2
. Actually, if ϕ is the

morphism ϕ1 × ϕ2∶M → G1 ×G2 and G = ϕ(M), then a simple calculation
shows that Uϕ = Uϕ1

∩Uϕ2
. �

From now on, the term uniform continuity will always refer to the pro-p
uniformity. We let the reader verify the following straightforward results:

Proposition 6.3. Let M be a residually p-finite monoid. Then the product
on M is uniformly continuous.

Proposition 6.4. Let M and N be two residually p-finite monoids. Then
every monoid morphism from M to N is uniformly continuous.

The topology induced by the pro-p uniformity is called the pro-p topology
on M . It is the initial topology with respect to all monoid morphisms from
M onto a discrete finite p-group. Thus the sets of the form ϕ−1(g), where ϕ
is a monoid morphism from M onto a finite p-group G and g ∈ G, form a base
of this topology. Since M is residually p-finite, this topology is Hausdorff.
It follows from Proposition 6.3 that every residually p-finite monoid is a
Hausdorff topological monoid. Applying the standard characterization of
initial uniform structures, one gets the following result.

Proposition 6.5. Let M and N be two residually p-finite monoids. A func-
tion f ∶M → N is uniformly continuous (respectively continuous) if and only
if, for every monoid morphism ϕ from N onto a finite pro-p group, ϕ ○ f is
uniformly continuous (respectively continuous).

The next proposition gives a purely algebraic characterization of uniformly
continuous functions from a residually p-finite monoid to a finite p-group.
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Proposition 6.6. Let M be a residually p-finite monoid. A function f from
M to a finite p-group G is uniformly continuous if and only if there exists a
monoid morphism ϕ from M onto a finite p-group K and a map g∶K → G

such that f = g ○ϕ.

M G

K

ϕ

f

g

Proof. Suppose that f = g○ϕ for some map g∶K → G and some monoid mor-
phism ϕ∶M → K. Since K and G are finite p-groups, the pro-p uniformity
on these groups is the discrete uniformity and thus g is uniformly continu-
ous. Moreover, ϕ is uniformly continuous by Proposition 6.4, and thus f is
uniformly continuous.

Conversely, let f ∶M → G be a uniformly continuous function. Since the
pro-p uniformity on G is the discrete one, there exists an entourage U of M
such that for all x, y in M , the condition (x, y) ∈ U implies f(x) = f(y). It
follows that U contains an entourage of the form Uϕ, for some morphism ϕ

from M onto a finite p-group K. Consequently, the condition ϕ(x) = ϕ(y),
which is equivalent to (x, y) ∈ Uϕ, implies f(x) = f(y). It follows that f
factors through ϕ. �

6.3. Sequences and families indexed by A∗

Let X be a topological space. In this paper we use sequences of elements
of X, that is, functions from N to X, but also families of elements of X
indexed by A∗, that is, functions from A∗ to X. We say that a family
(xu)u∈A∗ converges to x when ∣u∣ tends to infinity if x is a limit point of the
map u → xu with respect to the filter {AnA∗ ∣ n ⩾ 0} on A∗. This means
that, for each neighborhood V of x, there exists N > 0 such that, if ∣u∣ ⩾ N ,
then xu ∈ V .

Let us recall that a sequence (xn)n⩾ 0 is ultimately equal to x if there
exists some r ⩾ 0 such that, for all n ⩾ r, one has xn = x.

Proposition 6.7. Let M be a residually p-finite monoid. A sequence xn
of elements of M converges to x if and only if, for every monoid morphism
ϕ from N to a finite pro-p group, the sequence ϕ(xn) is ultimately equal to
ϕ(x).

In particular, one gets the following useful consequence.

Proposition 6.8. Let M be a residually p-finite monoid. Then for all x ∈M ,
lim
n→∞

xp
n

= 1.

Proof. According to Proposition 6.7, it suffices to prove that, for each monoid
morphism ϕ from M to a finite p-group G, the sequence (ϕ(x))pn tends to
ϕ(1), that is, to 1. Since G is a finite p-group of order pk, ∣G∣ divides pn for

all n ⩾ k. It follows by Lagrange’s theorem that (ϕi(x))∣G∣ = 1 and hence
(ϕi(x))pn = 1 for all n ⩾ ∣G∣, which proves the result. �
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Let us mention a last property, related to function spaces. Let S be a set
and let M be a residually p-finite monoid. Let F(S,M) denote the set of
mappings from S to M . For each monoid morphism ϕ from M to a finite
pro-p group, let

Vϕ = {(f, g) ∣ f, g ∈ F(S,M) and ϕ ○ f = ϕ ○ g}
The sets Vϕ form the base of a uniformity on the space F(S,M), called the
uniformity of uniform convergence. For a finite p-group G, one can take ϕ
to be the identity and Vϕ is the diagonal of F(S,G)×F(S,G). Thus in this
case, the uniformity of uniform convergence on F(S,G) is the discrete one.

Let us recall a classic result; see for instance [2, Chap. X, Remark 3, p.
283].

Proposition 6.9. If S is a uniform space, then the set of uniformly contin-
uous functions from S to M is closed in F(S,M). In particular, the unifom
limit of a sequence of uniform functions is uniformly continuous.

The following result is a special case of [2, Chap. X, Proposition 4, p. 278].

Proposition 6.10. The uniformity of uniform convergence on F(S,M) is
the initial uniformity with respect to the mappings f → ϕ ○ f from F(S,M)
to F(S,G), for every monoid morphism ϕ from M onto a finite p-group G.

Now, since the uniformity of uniform convergence on F(S,G) is discrete,
one gets the following corollary, which will be used in Section 8.

Corollary 6.11. Let S be a set and let G be a residually p-finite group.

(1) A sequence of functions (fn∶S → G)n⩾0 converges uniformly to a func-
tion f ∶S → G if and only if, for each group morphism from G onto a
finite p-group H, the sequence ϕ ○ fn is ultimately equal to ϕ ○ f .

(2) A family of functions (fu∶S → G)u∈A∗ converges uniformly to the
function f ∶S → G when ∣u∣ tends to infinity if and only if, for each
group morphism from G onto a finite p-group H, there exists N such
that if ∣u∣ ⩾ N , then ϕ ○ fu = ϕ ○ f .

6.4. The metric dp

Let M be a residually p-finite monoid. One can define a metric dp on M
as follows. Set, for all u, v ∈M ,

rp(u, v) =max{n ∈ N ∪ {∞} ∣ no p-group of order ⩽ pn separates u and v} .
Then, for all u, v in M , the following relations hold:

(1) rp(u, v) = rp(v, u)
(2) rp(u,w) ⩾max{rp(u, v), rp(v,w)}

Finally, we put

dp(u, v) = p−rp(u,v)
with the convention p−∞ = 0. Then dp is a metric and even an ultrametric.

For a residually p-finite group H, there is a more convenient way to define
dp. For each g ∈H, let vp(g) denote the largest n such that g belongs to the
kernel of every morphism from H to a p-group of order pn. Note that vp(g)
is always finite, except for g = 1, in which case it is infinite.
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The pro-p norm of g is ∣g∣p = p−vp(g), with the usual convention p−∞ = 0.
Note that if x, y ∈H, then dp(x, y) = ∣x−1y ∣p.

The condition dp(x, y) ⩽ p−k means that x−1y is in the kernel of each group

morphism from G into a p-group of cardinality at most pk. We leave to the
reader to verify that if G = Z, one recovers the usual p-adic valuation, norm
and metric.

Another useful example occurs when G is a finite p-group. Recall that the
discrete metric on a set E is the metric d defined, for all x, y ∈ E by

d(x, y) =
⎧⎪⎪⎨⎪⎪⎩
1 if x ≠ y,
0 if x = y.

In this case, the double inequality dp(x, y) ⩽ d(x, y) ⩽ ∣G∣dp(x, y) shows that
the pro-p metric is uniformly equivalent to the discrete metric.

The study of the connection between dp and the pro-p uniformity brings
in some surprises. On one hand, [14, Proposition 3.1] shows that the pro-p
uniformity on M is metrizable if and only if, for each finite p-group G, there
are only countably many morphisms from M onto G. On the other hand,
[14, Proposition 3.2]3 shows that the pro-p uniformity on M can be defined
by dp if and only if, for each finite p-group G, there are only finitely many
morphisms from M onto G.

7. Free monoids and free groups

7.1. Arbitrary alphabets

We already mentioned that every free group and every free monoid is
residually p-finite. We now identify A∗ to a subset of F (A).
Proposition 7.1. Let A be a set. The pro-p uniformity on A∗ is the re-
striction of the pro-p uniformity on F (A). Furthermore, A∗ is dense in
F (A).
Proof. The proof is modelled on that of [16, Proposition 7]. Let G be a finite
p-group and let ϕ∶F (A) → G be a group morphism. Then the restriction
ϕ∣A∗ of ϕ to A∗ is a monoid morphism and the equality

Uϕ ∩ (A∗ ×A∗) = Uϕ∣A∗
shows that the restriction to A∗ of the pro-p uniformity of F (A) is a subset
of the pro-p uniformity of A∗. To prove the opposite inclusion, it suffices to
observe that every monoid morphism ψ∶A∗ → G extends uniquely to a group
morphism ψ∶F (A)→ G for which

U
ψ
∩ (A∗ ×A∗) = U

ψ∣A∗

Let H be the closure of A∗ in F (A). Since the closure of a submonoid of a
topological monoid is a monoid, H is a submonoid of F (A). Furthermore,

Proposition 6.8 implies that for all x ∈H, lim
n→∞

xp
n
−1 = x−1. Since H is closed,

it follows that x−1 ∈ H. Thus H is a subgroup of F (A) containing A, and
hence it is equal to F (A). Thus A∗ is dense in F (A). �

3The definition of dp given in [14] is actually slightly different, but yields a uniformly
equivalent metric.
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Proposition 7.2. Let G be a residually p-finite group. If f ∶A∗ → G is
uniformly continuous, then so is ∆wf for every word w ∈ A∗.

Proof. By induction and by (3.8), it is enough to prove the result for w = a,
for some letter a ∈ A. In this case, ∆af ∶A∗ → G is the composition of the
following functions:

A∗ → A∗ ×A∗ A∗ ×A∗ → A∗ ×A∗ A∗ ×A∗ → G ×G

u↦ (u, u) (u, v)↦ (u, av) (u, v)↦ (f(u), f(v))
G ×G→ G ×G G ×G→ G

(g, h)↦ (g−1, h) (g, h)↦ gh

as shown by the diagram

u↦ (u, u)↦ (u, au)↦ (f(u), f(au))
↦ (f(u)−1, f(au))↦ f(u)−1f(au) =∆af(u).

Proposition 6.3 shows that the product on A∗ (respectively on G) is uni-
formly continuous. It follows that each of these functions is uniformly con-
tinuous and so is their composition. �

7.2. Finite alphabets, a combinatorial approach

We will only retain the following consequence of the results stated at the
end of Section 6.4.

Proposition 7.3. For an alphabet A, the following conditions are equivalent:

(1) A is finite,

(2) the pro-p uniformity on A∗ is defined by dp,

(3) the pro-p uniformity on F (A) is defined by dp.

When A is finite, the metric dp can be replaced by a uniformly equivalent
metric defined in a purely combinatorial way. Let us define a metric d′p by
setting, for all words u, v ∈ A∗,

r′p(u, v) =max{n ∣ for all x ∈ An, (u
x
) ≡ (v

x
)mod p}

d′p(u, v) = p−r′p(u,v)
It is shown in [9] that dp and d′p define the same uniformity. Consequently,
one has the following result.

Proposition 7.4. Let A and B be two finite alphabets. A function f ∶A∗ →
B∗ is uniformly continuous if and only if, for all n > 0, there exists an N > 0
such that, if (u

x
) ≡ (v

x
)mod p for all words x of A∗ of length ⩽ N , then

(f(u)
z
) ≡ (f(v)

z
)mod p for all words z of B∗ length ⩽ n.

Let us illustrate this combinatorial approach by proving that, when A is
finite, the truncated noncommutative Magnus transformations introduced in
Section 4.3 are uniformly continuous. The proof relies on a combinatorial
identity of independent interest, Formula (7.1) below.

We rely on the notation and results introduced at the end of Section 3.1.
In particular, recall that the number of occurrences of u as a subword of w,
denoted by (w

u
), is also the number of subsets J of [∣w∣] such that w[J] = u.
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Given k words x1, . . . , xk in A∗, let E(x1, . . . , xk) denote the set of all
(k + 1)-tuples (x, I1, . . . , Ik) such that:

(T1) x is a word in A∗ such that ∣x∣ ⩽ ∣x1∣ +⋯+ ∣xk∣;
(T2) (I1 < ⋯ < Ik) is a chain of subsets of [∣x∣] whose union is [∣x∣];
(T3) x[Ij] = xj for 1 ⩽ j ⩽ k.

Remark. The reader may compare this definition with the definition of the
infiltration product as given in [17, p. 134–135] or in [7, Chap. 6, Section
3]: the infiltration product of k words x1, . . . , xk is the sum of all x, the
summation being over the set E(x1, . . . , xk), except that the condition I1 <
⋯ < Ik is omitted.

Proposition 7.5. For all words w,x1, . . . , xk in A∗, one has

( µ(w)
x1 +⋯ + xk

) = ∑
(x,I1,...,Ik)∈E(x1,...,xk)

(w
x
). (7.1)

An example of such a relation is given, for distinct letters a, b, c, by

( µ(w)
ac + bc

) = ( w

acbc
) + ( w

abcc
) + ( w

bacc
) + ( w

abc
).

We need in the proof the operation of standardization. Let J be the union
of a k-chain (J1 < ⋯ < Jk) of finite subsets of P and let σ be the unique
increasing bijection from J to [∣J ∣]. The standardization of (J1 < ⋯ < Jk) is
the k-chain

st(J1 < ⋯ < Jk) = (σ(J1) < ⋯ < σ(Jk)).
For example, if J = {1,2,4,7}, then [∣J ∣] = {1,2,3,4}, σ(1) = 1, σ(2) = 2,
σ(4) = 3, σ(7) = 4 and hence st({1,7},{2,4,7}) = ({1,4},{2,3,4}). We let
the reader verify that the sequence (σ(J1), . . . , σ(Jk)) is indeed a chain, that
is, increasing for <, and that the following properties hold:

(P1) ∣σ(Jj)∣ = ∣Jj ∣ for 1 ⩽ j ⩽ k,

(P2) if w is a word such that all the sets Jj are subsets of [∣w∣], then
w[Jj] = (w[J])[σ(Jj)].

For instance, as a continuation of the previous example, let w = a1⋯a7,
J = {1,2,4,7}, J1 = {1,7} and J2 = {2,4,7}. Then σ(J1) = {1,4} and
σ(J2) = {2,3,4}. Setting u = w[J] = a1a2a4a7, (P2) states that w[{1,7}] =
u[{1,4}] = a1a7 and w[{2,4,7}] = u[{2,3,4}] = a2a4a7.

Finally, note that the chain (J1 < ⋯ < Jk) may be recovered from J and
st(J1 < ⋯ < Jk) using the inverse of the bijection σ.

Proof. Proposition 3.1 implies that the left-hand side of (7.1) is equal to ∣L∣,
where L is the set of k-chains (J1 < ⋯ < Jk) of [∣w∣] such that w[Jj] = xj for
1 ⩽ j ⩽ k. Similarly, the right-hand side of (7.1) is equal to ∣R∣, where R is the
set of (k+2)-tuples (x, I1, . . . , Ik, J) such that (x, I1, . . . , Ik) ∈ E(x1, . . . , xk),
J ⊆ [∣w∣] and w[J] = x. The rest of the proof consists of finding a bijection
from L to R.

Consider the function h which associates to a k-chain (J1 < ⋯ < Jk) of L
the (k + 2)-tuple (x, I1, . . . , Ik, J) of R defined by

J = J1 ∪⋯ ∪ Jk, x = w[J] and (I1 < ⋯ < Ik) = st(J1 < ⋯ < Jk).
We claim that h is well-defined and is a bijection from L to R.
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Setting h(J1, . . . , Jk) = (x, I1, . . . , Ik, J), one gets ∣Ij ∣ = ∣Jj ∣ = ∣w[Jj]∣ = ∣xj ∣
and by (P2), (w[J])[Ij] = w[Jj]. It follows that (T3) holds, since, according
to the definition of L, w[Jj] = xj . Furthermore, one has

∣x∣ = ∣J ∣ = ∣J1 ∪⋯∪ Jk∣ ⩽ ∣J1∣ +⋯+ ∣Jk∣ = ∣x1∣ +⋯+ ∣xk∣
so that (T1) is also satisfied. Moreover, (T2) is a consequence of the definition
of standardization. This shows that h is well-defined. It remains to prove
that it is bijective.

Suppose that h(J1, . . . , Jk) = (x, I1, . . . , Ik, J). Since J is known, the stan-
dardization may be reversed, and hence J1, . . . , Jk are known. Thus h is
injective.

To prove the surjectivity of h, consider a (k + 2)-tuple (x, I1, . . . , Ik, J) of
R. As previously observed, the standardisation may be reversed since J is
known. It follows from (T2) and from the definition of L that ∣J ∣ = ∣x∣ =
∣I1 ∪⋯∪ Ik∣. Thus we may find a chain (J1 < ⋯ < Jk) whose standardisation
is (I1 < ⋯ < Ik) and such that J = J1 ∪⋯ ∪ Jk. Then, for 1 ⩽ j ⩽ k,

w[Jj] = (w[J])[Ij] = x[Ij] = xj ,
so that (I1, . . . , Ik) belongs to L. Moreover, J is the union of the Jj by con-
struction and x = w[J] since (x, I1, . . . , Ik, J) ∈ R. Therefore h(J1, . . . , Jk) =(x, I1, . . . , Ik, J), which proves that h is surjective. �

Proposition 7.6. Let A be a finite alphabet. Then, for each r ⩾ 0, the
function µr ∶A∗ → C∗r is uniformly continuous.

Proof. First recall that Cr is the set of words of A∗ of length at most r.
Since A is finite, then so is Cr. We claim that the condition

(u
x
) ≡ (v

x
)mod p for all words x of A∗ of length ⩽ rn (7.2)

implies

(µr(u)
z
) ≡ (µr(v)

z
)mod p for all words z of C∗r of length ⩽ n. (7.3)

Let z = x1 +⋯+ xk, with k ⩽ n. By definition of µr, one has

(µr(u)
z
) = (µr(v)

z
) = 0 if the length of one of the xi’s is larger than r.

Suppose now that, for 1 ⩽ i ⩽ k, ∣xi∣ ⩽ r. If (x, I1, . . . , Ik) ∈ E(x1, . . . , xk),
then one has ∣x∣ ⩽ ∣x1∣ + ⋯ + ∣xk∣ ⩽ kr ⩽ nr. It follows by (7.2) that (u

x
) ≡

(v
x
)mod p. Applying (7.1), one gets

(µr(u)
z
) = ∑
(x,I1,...,Ik)∈E(x1,...,xk)

(u
x
)

≡ ∑
(x,I1,...,Ik)∈E(x1,...,xk)

(v
x
) = (µr(v)

z
)mod p

It now follows from Proposition 7.4 that µr is uniformly continuous. �
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7.3. Sequential product of uniformly continuous functions

Our goal is to prove Proposition 7.9, the last result of this section. The
difficulty is concentrated on an apparently simpler case, which we treat sep-
arately.

Proposition 7.7. Let A be a finite alphabet and let G be a p-finite group.
Any sequential product of uniformly continuous functions from A∗ to G is
uniformly continuous.

Proof. Let g ∈ G, let (fa)a∈A be a family of uniformly continuous functions
from A∗ to G and let f = Seq(g, (fa)a∈A). According to Proposition 6.6, f
is uniformly continuous if and only if, for every morphism ϕ from G to a
finite p-group H, there exists a finite p-group R and a monoid morphism
ρ∶A∗ → R such that ϕ ○ f factors through ρ.

Since each fa is uniformly continuous, Proposition 6.6 shows that for each
a ∈ A, there exists by a finite p-group Ka, a monoid morphism γa∶A∗ → Ka

and a map ζa∶Ka → H such that ϕ ○ fa = ζa ○ γa. Let γ be the monoid
morphism from A∗ to ∏a∈AKa defined by γ(u) = (γa(u))a∈A and let K be
the image of γ.

Since A is finite, K is a finite p-group. For each a ∈ A, let πa∶K → Ka

denote the natural projection, so that πa ○ γ = γa. Setting ρa = ζa ○ πa, one
gets

ρa ○ γ = ζa ○ πa ○ γ = ζa ○ γa = ϕ ○ fa (7.4)

The situation is summarized in the following commutative diagram:

A∗ K

G

Ka

H

fa ϕ

γ

γa
πa

ρa

ζa

Let H ○K be the wreath product of H by K. Recall that H ○K is the group
with support HK ×K and product defined, for all (f0, u0), (f1, u1) ∈HK ×K
by

(f0, u0)(f1, u1) = (f, u0u1) where, for all k ∈K, f(k) = f0(k)f1(ku0)
Let ρ∶A→H ○K be the map defined, for each a ∈ A, by

ρ(a) = (ρa, γ(a)). (7.5)

Then ρ extends uniquely to a monoid morphism from A∗ to H ○ K, also
denoted ρ. Since H and K are finite p-groups, then so is H ○K. Now the
image F of ρ is a submonoid, and hence a subgroup4, of H ○K. Thus F is
also a finite p-group. We claim that ϕ○f factors through ρ. The proof relies
on the following lemma:

Lemma 7.8. Let u be a word of A∗ and let ρ(u) = (ρu, γ(u)). Then ρu is a
map from K to H such that ϕ(f(u)) = ϕ(g)ρu(1).

4since for each x ∈M , x−1 = x∣F ∣−1.
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Proof. Let u = a1⋯an. According to the definition of the wreath product,
and since γ(1) = 1, ρu∶K →H is given by

ρu(k) = ρa1(kγ(1))ρa2(kγ(a1))⋯ρan(kγ(a1 . . . an−1)).
It follows that

ρu(1) = ρa1(γ(1))ρa2(γ(a1))⋯ρan(γ(a1 . . . an−1))
Now, since by (7.4), ρa ○ γ = ϕ ○ fa for each a ∈ A, one gets

ρu(1) = (ϕ ○ fa1)(1)⋯(ϕ ○ fan)(a1 . . . an−1)
= ϕ(fa1(1)⋯fan(a1 . . . an−1))

Applying the definition of the sequential product, one obtains

f(u) = gfa1(1)⋯fan(a1 . . . an−1)
whence

ϕ(f(u)) = ϕ(gfa1(1)⋯fan(a1 . . . an−1)) = ϕ(g)ρu(1). �

We come back to the proof of Proposition 7.7 by proving the claim. Let u and
v be words such that ρ(u) = ρ(v). In particular, since ρ(u) = (ρu, γ(u)), one
has ρu(1) = ρv(1), whence ϕ(g)ρu(1) = ϕ(g)ρv(1). It follows by Lemma 7.8
that ϕ ○ f(u) = ϕ ○ f(v). Thus ρ(u) = ρ(v) implies ϕ ○ f(u) = ϕ ○ f(v) and
thus ϕ ○ f factors through ρ. The proposition follows.

A∗ G H

F

ρ

f ϕ

�

Proposition 7.9. Let A be a finite alphabet and let G be a residually p-finite
group. Any sequential product of uniformly continuous functions from A∗ to
G is uniformly continuous.

Proof. Let g ∈ G, let (fa)a∈A be a family of uniformly continuous functions
from A∗ to G and let f = Seq(g, (fa)a∈A). According to Proposition 6.5,
it suffices to prove that, for every morphism ϕ from G to a finite p-group
H, ϕ ○ f is uniformly continuous. Now, Proposition 4.9 shows that ϕ ○
Seq(g, (fa)a∈A) = Seq(ϕ(g), (ϕ○fa)a∈A). Thus, by Proposition 7.7, it suffices
to prove that each function ϕ ○ fa is uniformly continuous. But this is clear,
since fa is uniformly continuous by hypothesis and ϕ is uniformly continuous
by Proposition 6.4. �

7.4. Uniform continuity and Newton polynomial functions

The aim of this section is to prove the following theorem.

Theorem 7.10. Let A be a finite alphabet and let G be a finite p-group.
A function f ∶A∗ → G is uniformly continuous if and only if it is a Newton
polynomial function.

Our proof of Theorem 7.10 is splitted into two halves: one direction is ad-
dressed by Proposition 7.11 and the opposite direction by Proposition 7.12.
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Proposition 7.11. Let A be a finite alphabet and let G be a residually p-
finite group. Every Newton polynomial function f ∶A∗ → G is uniformly
continuous.

Proof. We prove the result by induction on the degree d of f . If d ⩽ 0,
then f is a constant function by Proposition 4.1 and hence f is uniformly
continuous. Otherwise, Proposition 4.5 shows that f is a sequential product
of a family (fa)a∈A of Newton polynomial functions of degree ⩽ d − 1. By
the induction hypothesis, each fa is uniformly continuous and hence f is
uniformly continuous by Proposition 7.9.

Another possible proof consists in using Corollary 4.15, which states that
if f is a Newton polynomial function of degree at most d, then f = δ∗f ○ µd.
Now µd is uniformly continuous by Proposition 7.6 and the morphism δ∗f ∶
C∗d → F (B) is uniformly continuous by Proposition 6.4. Consequently f is
uniformly continuous. �

Proposition 7.12. Let A be a finite alphabet and let G be a finite p-group. If
a function f ∶A∗ → G is uniformly continuous, then f is a Newton polynomial
function.

We need several facts about algebras over a field F (below we use the
p-element field Fp). First, if G is a monoid, let F[G] denote the vector
space over F with basis G. It is an F-algebra, called the monoid algebra of
G over F. If G is a group, then F[G] is also called the group algebra of
G over F. In the particular case where G = A∗, it is rather denoted F⟨A⟩,
the algebra of noncommutative polynomials over F. Each monoid morphism
from a monoid G1 into a monoid G2 extends uniquely, by linearity, to an
F-algebra morphism from F[G1] into F[G2]. Similarly, each function from
G to F extends uniquely, by linearity, to a linear form on F[G].

The vector space of linear forms on an F-algebra R, that is, the dual of R,
is a left R-module: the action is defined, for all elements x, y in R and each
linear form f on R by (x ⋅ f)(y) = f(yx). It is indeed a left action: first,
1 ⋅ f = f and (x1 ⋅ (x2 ⋅ f))(y) = (x2 ⋅ f)(yx1) = f(yx1x2) = ((x1x2) ⋅ f)(y), so
that x1 ⋅ (x2 ⋅ f) = (x1x2) ⋅ f .

Lemma 7.13. Let f1, f2 be linear forms on the F-algebras R1,R2 respec-
tively, and let ζ ∶R1 → R2 be an algebra morphism such that f2 ○ ζ = f1. Then
for each x in R1, one has x ⋅ f1 = (ζ(x) ⋅ f2) ○ ζ.
Proof. For every y in R1, one has

(x ⋅ f1)(y) = f1(yx) = (f2 ○ ζ)(yx) = f2(ζ(y)ζ(x))
= (ζ(x) ⋅ f2)(ζ(y)) = ((ζ(x) ⋅f2) ○ ζ)(y)

and the lemma follows. �

Proof of Proposition 7.12. Let pr be the order of G. We prove the result by
induction on r.

For r = 1, G is cyclic of order p and we switch to additive notation. Thus
we have to show that ∆wf = 0 for almost all w. As G = Z/pZ is the additive
group of the field Fp, we may consider f as a function from A∗ to Fp. Since
f is uniformly continuous, there exist by Proposition 6.6 a finite p-group H,
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a monoid morphism ζ ∶A∗ →H and a function λ∶H → Fp such that f = λ ○ ζ,
as shown in the left diagram in Figure 2.

We extend by linearity all these functions, as explained previously, and
denote these extensions by the same letters. We obtain the diagram on the
right hand side of Figure 2. Now ζ is a morphism of Fp-algebra and f , as
well as λ, are Fp-linear forms.

A∗ Fp

H

f

ζ λ

Fp⟨A⟩ Fp

Fp[H]

f

ζ λ

Figure 2. Two diagrams.

With these notations, one has ∆af = (a − 1) ⋅ f ∣A∗ , where ⋅ denotes the left
action of Fp⟨A⟩ on its dual. Indeed, for each word w in A∗, one has on one
hand ∆af(w) = −f(w) + f(wa) and on the other hand

((a − 1) ⋅ f)(w) = f(w(a − 1)) = f(wa −w) = f(wa) − f(w). (7.6)

Let w = a1⋯an, with a1, . . . , an ∈ A. Applying Equation (3.8) and the defi-
nition of a left action, one gets

∆wf =∆a1⋯anf = ((a1 − 1)⋯(an − 1)) ⋅ f ∣A∗ . (7.7)

Since f = λ○ζ and ζ((a1−1)⋯(an−1)) = (ζ(a1)−1)⋯(ζ(an)−1), Lemma 7.13
yields

((a1 − 1)⋯(an − 1)) ⋅ f = (((ζ(a1) − 1)⋯(ζ(an) − 1)) ⋅λ) ○ ζ (7.8)

Let
IH = { ∑

g∈H

agg ∣ ∑
g∈H

ag = 0 }
be the augmentation ideal of Fp[H]. It follows from [6, Proposition VIII.10.4]
that if n ⩾ ∣H ∣, then InH = 0. Since every element ζ(ai) − 1 belongs to IH ,

one gets (ζ(a1)−1)⋯(ζ(an)−1) ∈ InH and hence (ζ(a1)−1)⋯(ζ(an)−1) = 0.
Formulas (7.7) and (7.8) now show that if n ⩾ ∣H ∣, then ∆wf = 0, which
settles the case r = 1.

Suppose now that r > 1 and let f ∶A∗ → G be a uniformly continuous
function. By a standard result of group theory [19, Theorem 6.5, p. 116],
G has a normal subgroup C of order p. Now the quotient map q∶G → G/C
is uniformly continuous and so is q ○ f ∶A∗ → G/C. Since ∣G/C ∣ = pr−1, the
induction hypothesis can be applied: there exists n such that ∆v(q ○ f) = 1
for every word v in A∗ of length ⩾ n.

Since ∆v(q ○ f) = q ○ (∆vf) by Proposition 3.2, one has, for ∣v∣ ⩾ n,
q ○ (∆vf) = 1 and hence ∆vf maps A∗ into C. Note that ∆vf is uniformly
continuous by Proposition 7.2. Applying the first part of the proof to C, we
get the following conclusion: for each v of length ⩾ n, there exists nv such
that for each word u of length at least nv, one has ∆u∆vf = 1. Let N be
the maximum of all nv taken over the finitely many v of length n. Then for
each word w of length at least N +n, we may write w = uv, with ∣v∣ = n and
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∣u∣ ⩾ N ⩾ nv. Then ∆wf = ∆u∆vf = 1 and thus f is a Newton polynomial
function. �

Note that Proposition 7.11 holds for each residually p-finite group. One
may wonder whether Proposition 7.12 can also be extended to this case. As
shown Example 8.1 below, this is not the case.

8. Main result

Let us rephrase Theorem 1.2 of the introduction in a sligthly more general
setting, which is the main result of this paper.

Theorem 8.1. Let A be a finite alphabet and let f be a function from A∗ to
a residually p-finite group G. The following conditions are equivalent:

(1) f is uniformly continuous for the pro-p uniformity,

(2) the functions ∆wf , where w ∈ A∗, tend uniformly to 1 when ∣w∣ tends
to ∞,

(3) the elements δwf , where w ∈ A∗, tend to 1 when ∣w∣ tends to ∞,

(4) f is the uniform limit of the sequence (fr)r⩾0 of its Newton polynomial
functions.

Proof. (1) ⇒ (2). Let f ∶A∗ → G be a uniformly continuous function and let
ϕ be a group morphism from G onto a finite p-group H. Since ϕ is uniformly
continuous, so is ϕ ○ f . It follows by Proposition 7.12 that ϕ ○ f is a Newton
polynomial function and thus ∆w(ϕ○f) = 1 for almost all w ∈ A∗. Therefore
ϕ ○ (∆wf) = 1 by Proposition 3.2 and thus (2) holds by Corollary 6.11.

(2) ⇒ (3) is clear, since δwf =∆wf(1).
(3) ⇒ (4). First, Proposition 4.14 states that the functions fr are Newton
polynomial functions. Let ϕ be a group morphism from G onto a finite p-
group H. By hypothesis there exists N such that for each word u of length
> N , δuf ∈ Ker(ϕ). We show that for every r ⩾ N , one has ϕ ○ fr = ϕ ○ f ,
and then deduce (4) from Corollary 6.11.

Let w ∈ A∗. If ∣w∣ ⩽ N , then µ(w) = µr(w), so that f(w) = fr(w) by
Theorem 3.6 and by the definition of fr, hence ϕ ○ fr(w) = ϕ ○ f(w).

If ∣w∣ ⩾ N , then µN(w) = v1 + . . . + vk for some vi ∈ CN . Moreover,
µr(w) = x0 + v1 + x1 + . . . + vk + xk, where each xi is a sum of words u of
length > N . For each such word u, one has δ∗f (u) = δuf ∈ Ker(ϕ) and

thus δ∗f (xi) ∈ Ker(ϕ). Similarly µ(w) = y0 + v1 + y1 + . . . + vn + yn, where

δ∗f (yi) ∈ Kerϕ. It follows that

ϕ ○ fr(w) = ϕ ○ δ∗f (µr(w)) = ϕ ○ δ∗f (µN(w))
= ϕ ○ δ∗f (µ(w)) = ϕ ○ f(w)

and thus ϕ ○ fr = ϕ ○ f .

(4) ⇒ (1) follows from Proposition 6.9, since Newton polynomial functions
are uniformly continuous by Proposition 7.11. �

Example 8.1. We come back once again to the function f considered in
Examples 2.1, 3.5 and 3.8, except that we now see f as a function from
{0,1,2}∗ to the free group on {0,1,2}.
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Proposition 3.4 shows that f is not a Newton polynomial function, since
δ1nf ≠ 1 for all n. However, f is uniformly continuous for d2. One way to
see this is to use the implication (3) ⇒ (1) of Theorem 8.1. Indeed, one has

δ0f = 0, δ1f = 0, δ2f = 1, δ1n0f = (0−11)2n−1(−1)n−1 , δ1n1f = (0−12)2n−1(−1)n−1 ,
δ1n2f = (1−12)2n−1(−1)n−1 and δuf = ǫ in all other cases. It now follows from
Proposition 6.8 that δwf tends to ε when ∣w∣ tends to ∞.

Another way to prove this would be to adapt the results of [18]. These
results are stated for groups instead of p-groups but can be readily adapted
to this latter case. They show that if the transition monoid of the minimal
sequential transducer realising a function is a p-group, then this function is
uniformly continuous for the metric dp. In our case, p = 2 and the transition
monoid of the transducer of f is the cyclic group of order 2. It follows that
f is uniformly continuous for the metric d2.

Example 8.2. Proposition 7.6 shows that, for each r ⩾ 0, µr is uniformly
continuous. However, the function µ is not uniformly continuous. Indeed,
consider a function f from A∗ to a residually p-finite group G. Newton’s
Forward Difference Formula shows that f = δ∗f ○ µ. Now δ∗f is a monoid
morphism, and hence is uniformly continuous by Proposition 6.4. Thus, if
µ was uniformly continuous, then any function f would also be uniformly
continuous.

Another way to prove that µ is not uniformly continuous is to use Theorem
8.1. Indeed, we have seen in Example 3.9 that δwµ = w for all w ∈ A∗. Since
these elements do not tend to 1 when ∣w∣ tends to infinity, µ is not uniformly
continuous.

9. Applications

We conclude this article by giving two consequences of our results. We
first consider an interpolation problem in Section 9.1. Section 9.2 is devoted
to applications to formal language theory, a topic that originally motivated
the authors to study pro-p uniformities [9, 12, 11, 16, 18].

9.1. An interpolation problem

It follows from Theorem 1.1 that for each sequence (cn)n⩾0 of integers,
there exists a unique function f = N→ Z such that δnf = cn. Moreover, this
function is uniformly continuous for dp if and only if limn→∞ ∣cn∣p = 0.

Similarly, if A and B are finite alphabets, for each function c∶A∗ → F (B),
there exists a unique function f ∶A∗ → F (B) such that, for all u ∈ A∗, δuf =
cu. This function is defined by f(u) = c(µ(u)) for all u ∈ A∗. Moreover, it
follows from Theorem 8.1 that this function is uniformly continuous for dp
if and only if ∣c(u)∣p tends to 1 when ∣w∣ tends to ∞.

Mahler’s original paper [8] concerned functions of a p-adic variable. His
results make it possible, to solve the following interpolation problem: is it
possible to extend a function from N to Z into a continuous function from
Zp to Zp? In our noncommutative setting, we replace N by A∗, where A is a
finite alphabet. In this case, the completion of A∗ for the pro-p uniformity
is the free pro-p group Fp(A) on A and the problem can be formulated as
follows.
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Interpolation problem. Given a function f ∶A∗ → F (B), does there exist
a continuous function Fp(A)→ Fp(B) which extends f?

Theorem 8.1 gives the answer to this question.

Proposition 9.1. Let f ∶A∗ → F (B) be a function. Then f extends to a
continuous function from Fp(A) to Fp(B) if and only if the elements δwf ,
where w ∈ A∗, tend to 1 when ∣w∣ tends to ∞. In this case, this extension is
unique.

Proof. Suppose that f admits a continuous extension f̂ from Fp(A) to

Fp(B). Since Fp(A) and Fp(B) are not only complete, but also compact, f̂
is uniformly continuous. It follows that f is uniformly continuous, and by
Theorem 8.1, the elements δwf tend to 1 when ∣w∣ tends to ∞.

Suppose now that the elements δwf tend to 1 when ∣w∣ tends to ∞. By
Theorem 8.1, f is uniformly continuous and since the embedding map from
F (B) into Fp(B) is also uniformly continuous, f can be seen as a uniformly
continuous map from A∗ to Fp(B). Since A∗ is dense in Fp(A) and since
Fp(B) is a complete uniform space, f admits a unique uniformly continuous
extension from Fp(A) to Fp(B). �

9.2. Formal languages

We come back in this section to the problem that originally motivated
this research. Let us first recall some definitions.

Let A be a finite alphabet. A subset of A∗ is usually called a language,
as it is a set of words. A language L of A∗ is recognized by a monoid
morphism ϕ∶A∗ →M if there exists a subset P of M such that L = ϕ−1(P ).
By extension, one also says that M recognizes L if there exists a monoid
morphism ϕ∶A∗ →M that recognizes L.

A language is recognizable or regular if it can be recognized by a finite
monoid. It is a p-group language if it can be recognized by a finite p-group.
It is not difficult to show that regular languages (respectively p-group lan-
guages) are closed under Boolean operations, which comprise finite inter-
section, finite union and complement. Let Gp denote the class of p-group
languages.

Examples of p-group languages include, for each word v and 0 ⩽ r < p, the
languages

L(v, r) = {w ∈ A∗ ∣ (w
v
) ≡ r mod p}.

first introduced by Eilenberg in [6, p. 239]. It is convenient to call these
languages binomial languages. Eilenberg proved the following result

Theorem 9.2 (Eilenberg). A language is a p-group language if and only if
it is a Boolean combination of binomial languages.

A function f from A∗ to B∗ is regularity-preserving if, for each regular
language L of B∗, the language f−1(L) is also regular5. More generally, if C
is a class of regular languages, f is C-preserving if, for each language L of C,

5It would probably be more appropriate to say that f−1 is regularity-preserving, but
we preferred to stick to an already well-established terminology.
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the language f−1(L) is also in C. The problem mentioned at the beginning
of this section is as follows:

Synthesis problem. Describe the class of C-preserving functions.

For instance, although several families of regularity-preserving functions have
been identified, the synthesis problem for these functions is still a major open
problem. In a series of papers [12, 13, 14], Silva and the first author addressed
this problem when C is a variety of languages, in the sense of Eilenberg [6].
In particular, one has:

Proposition 9.3. [15, Prop. 1.3 and Theorem 1.4] A function is Gp-
preserving if and only if it is uniformly continuous for dp.

In the case of sequential and rational functions, C-preserving functions
were investigated by Schützenberger and the second author [18]. Another
characterization of Gp-functions using profinite equations was obtained in
[4, Lemma 4], but it only holds for regular-preserving functions and the
next example shows that a Gp-preserving function is not necessarily regular-
preserving.

Example 9.1. Let f ∶N → N be the function defined as follows: f(0) = 0

and if n > 0, the binary representation of f(n) is obtained from that of
n by replacing the rightmost bit 1 by 0. For instance, since the binary
representation of 26 is 11010, the binary representation of f(26) is 11000,
and hence f(26) = 24. We let the reader verify that, for all n,m ∈ N,
d2(f(n), f(m)) ⩽ d2(n,m) and hence f is uniformly continuous. It follows
that f is G2-preserving. However, it is not regularity-preserving: {0} is a
regular language, but f−1(0) = {0} ∪ {2n ∣ n ⩾ 0} is not regular.

Our results are of a different nature, since they concern all Gp-preserving
functions. Indeed, Theorem 8.1 allows us to solve the synthesis problem for
Gp in the following way:

Theorem 9.4. The class of Gp-preserving functions is the smallest set of
functions containing the constant functions and which is closed under taking
sequential products and uniform limits.

Proof. It follows from Proposition 9.3 that function is Gp-preserving if and
only if it is uniformly continuous for dp. Therefore it suffices to prove that the
set of uniformly continuous functions is equal to the smallest set S of func-
tions containing the constant functions and closed under taking sequential
products and uniform limits.

Constant functions are uniformly continuous. Furthermore, Proposition
7.9 states that every sequential product of uniformly continuous functions is
uniformly continuous and Proposition 6.9 shows that the unifom limit of a
sequence of uniform functions is uniformly continuous. It follows that every
function of S is uniformly continuous.

Let now f be a uniformly continuous function. By Theorem 8.1, f is the
uniform limit of the sequence of its Newton polynomial functions. More-
over, Corollary 4.6 shows that the smallest set of functions containing the
constant functions and closed under sequential product is the set of Newton
polynomial functions. It follows that f belongs to S. �
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There is a counterpart of Proposition 9.3 for regularity preserving func-
tions: a function is regularity preserving if and only if it is uniformly contin-
uous for the profinite uniformity, which is the initial uniformity with respect
to all monoid morphisms from A∗ onto a finite monoid. However, there is
no known counterpart of Theorem 9.4 for these functions.

Appendix A. Uniform spaces

Readers are referred to [3] for an introduction to uniform spaces.
Let X be a set. The subsets of X ×X can be viewed as relations on X.

In particular, if U and V are subsets of X ×X, we use the notation UV to
denote the composition of the two relations, that is, the set

UV = {(x, y) ∈X ×X ∣ there exists z ∈X, (x, z) ∈ U and (z, y) ∈ V }.
Given a relation U , the inverse relation of U is the relation

U−1 = {(x, y) ∈X ×X ∣ (y, x) ∈ U}
A relation U is symmetrical if U−1 = U . Finally, if x ∈X and U ⊆X ×X, we
write U(x) for the set {y ∈X ∣ (x, y) ∈ U}.

A uniformity (or uniform structure) on a set X is a nonempty set U of
subsets of X ×X satisfying the following properties:

(U1) if a subset U of X ×X contains an element of U , then U ∈ U ,

(U2) the intersection of any two elements of U contains an element of U ,

(U3) each element of U contains the diagonal of X ×X,

(U4) for each U ∈ U , U−1 ∈ U ,

(U5) for each U ∈ U , there exists V ∈ U such that V V ⊆ U .

If U is a uniformity on the set X, the elements of U are called entourages.
Note that X ×X is always an entourage. The pair (X,U) (or the set X if U
is understood) is called a uniform space.

For each x ∈ X, let U(x) = {U(x) ∣ U ∈ U}. There exists a unique
topology on X, called the topology induced by U , for which U(x) is the filter
of neighborhoods of x for each x ∈ X. A uniform space (X,U) is Hausdorff
if the induced topology is Hausdorff. This is equivalent to requiring that the
intersection of all the entourages of U is equal to the diagonal of X ×X.

A base of a uniformity U is a subset B of U such that each element of U
contains an element of B. In particular, U consists of all the relations on
X containing an element of B. We say that U is generated by B. A set B
of subsets of X ×X is a base of some uniformity if and only if it satisfies
properties (U2), (U3), (U5) and (U6):

(U6) for each U ∈ B, there exists U ′ ∈ B such that U ′ ⊆ U−1.
A subbase of a uniformity U is a subset B of U such that the finite intersec-
tions of members of B form a base of U .

The product of two uniform spaces (X1,U1) and (X2,U2) is the uniform
space (X1×X2,U), where U is the uniformity generated by the base consisting
of the entourages of X1 ×X2 of the form

{((x1, x2), (y1, y2)) ∣ (x1, y1) ∈ U1, (x2, y2) ∈ U2}
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where U1 is an entourage of X1 and U2 is an entourage of X2.
If (X,U) and (Y,V) are uniform spaces, a function f ∶X → Y is said to

be uniformly continuous if, for each entourage V of V , (f × f)−1(V ) is an
entourage of U , or, equivalenty, there exists an entourage U ∈ U such that
the condition (x, y) ∈ U implies (f(x), f(y)) ∈ V .

Let X be a set, (Xi,Vi)i∈I a family of uniform spaces, and for each i ∈ I, a
function fi∶X →Xi. The initial uniformity on X with respect to the family
(fi)i∈I is the coarsest uniformity V on X such that each fi is uniformly
continuous. The sets of the form (fi × fi)−1(Vi), where Vi is an entourage of
Xi for some i ∈ I, form a subbase of V .
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