Jean-Éric Pin

Finite automata

Keywords: Finite automata, deterministic automata, regular languages, recognizable languages, rational languages, Kleene theorem

Basic algebraic structures

A semigroup is a pair consisting of a set S and an associative binary operation on S, usually denoted multiplicatively. In this case, xy is called the product of x and y. Sometimes, the additive notation is preferred, and x + y denotes the sum of x and y.

A monoid is a triple consisting of a set M , an associative binary operation on M and an identity for this operation. This identity is denoted by 1 in the multiplicative notation and by 0 in the additive notation.

A semiring consists of a set k, two binary operations on k, denoted additively and multiplicatively, and two elements 0 and 1, satisfying the following conditions:

(1) k is a commutative monoid for addition with identity 0, (2) k is a monoid for multiplication with identity 1, (3) Multiplication is distributive over addition: for all s, t 1 , t 2 ∈ k, we have s(t 1 + t 2) = st 1 + st 2 and (t 1 + t 2)s = t 1 s + t 2 s, (4) for all s ∈ k, we have 0s = s0 = 0. A ring is a semiring in which the monoid (k, +, 0) is a group. A semiring is commutative if its multiplication is commutative.

The simplest example of a semiring which is not a ring is the Boolean semiring B = {0, 1} whose operations are defined by the following tables

+ 0 1 0 0 1 1 1 1 × 0 1 0 0 0 1 0 1
2 Words, languages and automata

Words and languages

Let A be a set called an alphabet, whose elements are called letters. A finite sequence of elements of A is called a finite word on A, or just a word. We denote by mere juxtaposition

a 1 • • • a n
the sequence (a 1 , . . . , a n). The set of words is endowed with the operation of concatenation product also called product, which associates the word xy = a 1 • • • a p b 1 • • • b q with two words x = a 1 • • • a p and y = b 1 • • • b q . This operation is associative. It has an identity, the empty word, denoted by 1 or ε, which is the empty sequence.

We let A * denote the set of words on A and A + the set of nonempty words. The set A * [A +], equipped with the concatenation product is thus a monoid with identity 1 [a semigroup]. The set A * is called the free monoid on A and A + the free semigroup on A.

Let u = a 1 • • • a n be a word in A * and let a be a letter of A. A nonnegative integer i is said to be an occurrence of the letter a in u if a i = a. We denote by |u| a the number of occurrences of a in u. Thus, if A = {a, b} and u = abaab, one has A language is a set of words. The empty language is denoted by 0 and each singleton {u} is simply denoted u. Several operations can be defined on languages:

(1) Boolean operations, which comprise union (which we often denote by +), intersection and complement (denoted by L → L c).

(2) Quotients: given a language L and a word u of A * , u -1 L = {v | uv ∈ L} and Lu -1 = {v | vu ∈ L}.

(3) Star and Plus: if L is a language, L * [L +] is the submonoid (subsemigroup) of A * generated by L.

Thus L * = {u 1 u 2 • • • u n | n 0, u 1 , . . . , u n ∈ L} and L * = L + + 1.
(4) Product: the product of two languages L 1 and L 2 is the language

L 1 L 2 = {u 1 u 2 | u 1 ∈ L 1 , u 2 ∈ L 2 }.
(5) Morphisms. Let A and B be two alphabets, and let ϕ be a function from A into B * . Then ϕ extends in a unique way to a monoid morphism from A * into B * . If L is a language of A * , then ϕ(L) = {ϕ(u) | u ∈ L} is a language of B * .

(6) Inverses of morphisms. If ϕ : A * → B * is a monoid morphism and L is a language of B * , then ϕ -1 (L) = {u ∈ A * | ϕ(u) ∈ L} is a language of A * .

The set of rational (or regular) languages on A * , denoted by Rat(A *), form the smallest set of languages containing the languages 0, 1 and a for each letter a ∈ A, and closed under finite union, product and star. That is, if L and L ′ are rational languages, then the languages L + L ′ , LL ′ and L * are also rational. For instance, if A = {a, b}, the language (a + ab + ba) * is a rational language. The set A * uA * of all words containing a given factor u is rational. The set of words of odd length is rational and can be written as (A 2) * A.

We conclude this section by a standard result: rational languages are closed under morphisms. An extension of this result will be given in Proposition 6.1.

Proposition 2.1. Let ϕ : A * → B * be a morphism. If L is a rational language of A * , then ϕ(L) is a rational language of B * .

Finite automata and recognizable languages

A finite automaton is a 5-tuple A = (Q, A, E, I, F), where Q is a finite set called the set of states, A is an alphabet, E is a subset of Q × A × Q, called the set of transitions, and I and F are subsets of Q, called respectively the set of initial states and the set of final states.

It is convenient to represent an automaton by a labelled graph whose vertices are the states of the automaton and the edges represent the transitions. The initial [final] states are pictured by incoming [outgoing] arrows. Two transitions (p, a, q) and (p ′ , a ′ , q ′) are consecutive if q = p ′ . A path in the automaton A is a finite sequence of consecutive transitions c = (q 0 , a 1 , q 1), (q 1 , a 2 , q 2), . . . , (q n-1 , a n , q n) also denoted by

c : q 0 a1 -→ q 1 • • • q n-1 an -→ q n or q 0 a1•••an -----→ q n .
The state q 0 is its origin, the state q n its end, the word a 1 • • • a n is its label and the integer n is its length. Is is also convenient to consider that for each state q ∈ Q, there is an empty path q 1 -→ q from q to q labelled by the empty word. A path in A is called initial if its origin is an initial state and final if its end is a final state. It is successful (or accepting) if it is initial and final.

A state q is accessible if there is an initial path ending in q and it is coaccessible if there is a final path starting in q.

Example 2.2. Consider the automaton represented in Figure 1. The path

c : 1 a -→ 1 a -→ 2 b -→ 2 b -→ 1 a -→ 2 b -→ 2
is successful, since its end is a final state. However the path

c : 1 a -→ 1 a -→ 2 b -→ 2 b -→ 1 a -→ 2 b -→ 1
has the same label, but is not successful, since its end is 1, a nonfinal state.

A word is accepted by the automaton A if it is the label of at least one successful path (beware that it can be simultaneously the label of a nonsuccessful path). The language recognized (or accepted) by the automaton A is the set, denoted by L(A), of all the words accepted by A. Two automata are equivalent if they recognize the same language.

A language L ⊆ A * is recognizable if it is recognized by a finite automaton, that is, if there is a finite automaton A such that L = L(A). We let the reader verify that the language accepted by A is aA * , the set of all words whose first letter is a.

Example 2.3 is elementary but it already raises some difficulties. In general, deciding whether a given word is accepted or not might be laborious, since a word might be the label of several paths. The notion of deterministic automaton introduced in Section 2.3 permits one to avoid these problems.

A standard property of recognizable languages is known as the pumping lemma. Although it is formally true for any recognizable language, it is only interesting for the infinite ones. Proposition 2.2 (Pumping lemma). Let L be a recognizable language. Then there is an integer n > 0 such that every word u of L of length greater than or equal to n can be factorized as u = xyz with x, y, z ∈ A * , |xy| n, y = 1 and, for all k 0, xy k z ∈ L.

Proof. Let A = (Q, A, E, I, F) be an n-state automaton recognizing L and let u = a 1 • • • a r be a word of L of length r n. Let q 0 a1 -→ q 1 • • • q r-1 ar -→ q r be a successful path labelled by u. As r n, there are two integers i and j, with i < j n, such that q i = q j . Therefore, the word a i+1 . . . a j is the label of a loop around q i , represented in Figure 3. The pumping lemma permits one to show that a language like {a n b n | n 0} is not recognizable. However, it does not characterize the recognizable languages. For instance, if A = {a, b, c}, the nonrecognizable language {(ab) n c n | n > 0} ∪ A * bbA * ∪ A * aaA * satisfies the pumping lemma.

Deterministic automata

An automaton A = (Q, A, E, I, F) is deterministic if I contains exactly one initial state and if, for every state q ∈ Q and for every letter a ∈ A, there exists at most one state q ′ such that q a -→ q ′ is a transition of E. If q -is the unique initial state, we adopt the notation (Q, A, E, q -, F) instead of (Q, A, E, {q -}, F).

Example 2.4. The automaton represented in Figure 4 is deterministic. The following result is one of the cornerstones of automata theory. Its proof is based on the so-called subset construction. We claim that D(A) is equivalent to A.

If u = a 1 • • • a n is accepted by A, there is a successful path c : q 0 a1 -→ q 1 • • • q n-1 an -→ q n .
The word u also defines a path

I = P 0 a1 -→ P 1 • • • P n-1 an -→ P n (2.1) in D(A).
Let us show by induction on i that, for 0 i n, q i ∈ P i . Since c is a successful path, one has q 0 ∈ I = P 0 . Suppose that q i-1 ∈ P i-1 . Then since q i-1 ai -→ q i is a transition, one gets q i ∈ P i-1 • a i = P i . For i = n, we get q n ∈ P n and since c is a successful path, q n ∈ F . It follows that P n meets F and hence P n ∈ F. Therefore u is accepted by D(A).

Conversely, let u = a 1 • • • a n be a word accepted by D(A) and let (2.1) be the successful path defined by u. Since P n is a final state, one can choose an element q n in P n ∩ F . We can now select, for i = n, n-1, . . . , 1, an element q i-1 of P i-1 such that q i-1 ai -→ q i is a transition of A. Since q 0 ∈ I and q n ∈ F , the path q 0 a1 -→ q 1 • • • q n-1 an -→ q n is successful, and thus u is accepted by A. This proves the claim and the proposition.

The subset construction converts a nondeterministic n-state automaton into a deterministic automaton with at most 2 n states. One can show that this bound is tight.

Complete, accessible, coaccessible and trim automata

An automaton A = (Q, A, • , q -, F) is complete if, for each state q ∈ Q and for each letter a ∈ A, there is at least one state q ′ such that q a -→ q ′ is a transition.

Example 2.5. The automaton represented in Figure 5 is neither complete, nor deterministic. It is not deterministic, since the transitions (1, a, 1) and (1, a, 2) have the same label and the same origin. It is not complete, since there is no transition of the form 2 a -→ q. On the other hand, the automaton represented in Figure 6 is complete and deterministic. A finite automaton is accessible if all its states are accessible. Similarly, it is coaccessible if all its states are coaccessible. Finally, an automaton is trim if it is simultaneously accessible and coaccessible. It is not difficult to see that every deterministic automaton is equivalent to a trim one.

Example 2.6. Let A = {a, b}. Starting from the nondeterministic automaton A represented in Figure 7, we get the deterministic automaton D(A) drawn in Figure 8. In practice, it suffices to compute the accessible states of D(A), which gives the deterministic automaton shown in Figure 9.

Standard automata

The construction described in this section might look somewhat artificial, but it will be used in the study of the product and of the star operation.

A deterministic automaton is standard if there is no transition ending in the initial state.

Proposition 2.4. Every deterministic automaton is equivalent to a deterministic standard automaton.

Proof. Let A = (Q, A, E, q -, F) be a deterministic automaton. If A is not standard, let p be a new state and A ′ = (Q ∪ {p}, A, E ′ , p, F ′) be the standard automaton defined by

E ′ = E ∪ {(p, a, q) | (i, a, q) ∈ E} and F ′ = F if i / ∈ F , F ∪ {p} if i ∈ F . Then the path q - a0 -→ q 1 a1 -→ q 2 • • • q n-1 an-1 -→ q n is successful in A if and only if the path p a0 -→ q 1 a1 -→ q 2 • • • q n-1 an-1
-→ q n is successful in A ′ . Consequently, A and A ′ are equivalent.

Example 2.7. Standardization is illustrated in Figure 10.

Operations on recognizable languages

We review in this section some classical results on finite automaton. We give explicit constructions for the following operations: Boolean operations, product, star, quotients and inverses of morphisms.

Boolean operations

We give in this section the well known constructions for union, intersection and complement. Complementation is trivial, but requires a deterministic automaton.

Proposition 3.1. The union of two recognizable languages is recognizable.

Proof. Let L [L ′] be a recognizable language of A * recognized by the automaton

A = (Q, A, E, I, F) [A ′ = (Q ′ , A, E ′ , I ′ , F ′)].
We suppose that Q and Q ′ are disjoint sets and thus one can identify E and E ′ with subsets of 11, then L + L ′ is recognized by the automaton represented in Figure 12. Corollary 3.2. Every finite language is recognizable.

(Q ∪ Q ′) × A × (Q ∪ Q ′). Then L + L ′ is recognized by the automaton (Q ∪ Q ′ , A, E ∪ E ′ , I ∪ I ′ , F ∪ F ′). Example 3.1. If L [L ′] is recognized by the automaton A [A ′] represented in Figure
Proof. Since recognizable languages are closed under union, it suffices to verify that the singletons are recognizable. But it is clear that the language a 1 a 2 • • • a n is recognized by the automaton represented in Figure 13. Proof. Let L [L ′] be a recognizable language of A * recognized by the automaton

A = (Q, A, E, I, F) [A ′ = (Q ′ , A, E ′ , I ′ , F ′)]. Consider the automaton B = (Q×Q ′ , A, T, I× I ′ , F × F ′) where T = (q 1 , q ′ 1), a, (q 2 , q ′ 2) | (q 1 , a, q 2) ∈ E and (q ′ 1 , a, q ′ 2) ∈ E ′ . A word u = a 1 a 2 • • • a n is the label of a successful path in B (q 0 , q ′ 0) a1 -→ (q 1 , q ′ 1) a2 -→ (q 2 , q ′ 2) • • • (q n-1 , q ′ n-1) an -→ (q n , q ′ n) if and only if the paths q 0 a1 -→ q 1 a2 -→ q 2 • • • q n-1 an -→ q n and q ′ 0 a1 -→ q ′ 1 a2 -→ q ′ 2 • • • q ′ n-1 an -→ q n
are successful paths in A and A ′ respectively. Therefore, B recognizes L ∩ L ′ .

In practice, one just computes the trim part of B. 11, then L ∩ L ′ is recognized by the trim automaton represented in Figure 14. Proposition 3.4. The complement of a recognizable language is recognizable.

Example 3.2. If L [L ′] is recognized by the automaton A [A ′] represented in Figure
Proof. Let L be a recognizable language of A * and let A = (Q, A, • , q -, F) be a complete deterministic automaton recognizing L. Then the automaton

A ′ = (Q, A, • , q -, Q \ F) recognizes L c
. Indeed, since A and A ′ are both deterministic and complete, every word u of A * is the label of exactly one path starting in q -. Let q be the end of this path.

Then u belongs to L if and only if q belongs to F and u belongs to L c if and only if q belongs to Q \ F .

Example 3.3. The language (ab) * is recognized by the complete deterministic automaton A, and its complement is recognized by the automaton A ′ represented in Figure 15.

Product

Proposition 3.5. The product of two recognizable languages is recognizable.

Proof. Let L 1 and L 2 be two recognizable languages of A * , recognized by the automata

A 1 = (Q 1 , A, E 1 , I 1 , F 1) and A 2 = (Q 2 , A, E 2 , I 2 , F 2)
, respectively. One may assume, by Propositions 2.3 and 2.4, that A 2 is a standard deterministic automaton and thus in particular that I 2 = {i}. One can also suppose that Q 1 and Q 2 are disjoint. Let now A = (Q, A, E, I, F), where

Q = (Q 1 ∪ Q 2) \ {i}, E = E 1 ∪ {(q, a, q ′) ∈ E 2 | q = i} ∪ {(q 1 , a, q ′) | q 1 ∈ F 1 and (i, a, q ′) ∈ E 2 }, I = I 1 , and
F = F 2 if i / ∈ F 2 , F 1 ∪ (F 2 \ {i}) if i ∈ F 2 (i.e., if 1 ∈ L 2). We claim that A recognizes L 1 L 2 . If u is a word of L 1 L 2 , then u = u 1 u 2 for some u 1 ∈ L 1 and u 2 ∈ L 2 . Therefore, there is a successful path c 1 : i 1 u1 -→ q 1 in A 1 (with i 1 ∈ I 1 and q 1 ∈ F 1) and a successful path c 2 : i u2 -→ q 2 in A 2 , with q 2 ∈ F 2 . If u 2 = 1, then L 2 contains
the empty word, the path c 1 is a successful path in A and u is accepted by A. If u 2 is not the empty word, let a be the first letter of u 2 and let i a -→ q be the first transition of c 2 . Since

q 1 ∈ F 1 , q 1 a -→ q is by definition a transition of E. Furthermore, if q ′ b
-→ q ′′ is a transition of c 2 different from the first transition, then q ′ is the end of a transition of A 2 . Since A 2 is standard, this implies q ′ = i and it follows from the definition of E that the transition q ′ b -→ q ′′ is also a transition of A. Let c ′ 2 be the path of A obtained by replacing in c 2 the first transition i a -→ q by q 1 a -→ q. The resulting path c 1 c ′ 2 is a successful path in A of label u and hence u is accepted by A. Conversely, let u be a word accepted by A. Then u is the label of a successful path c : i 1 u -→ f of A. Since the initial states of A are contained in Q 1 , and since there is no transition of A starting in Q 2 and ending in Q 1 , c visits first some states of Q 1 and then possibly some states of Q 2 . If all the states visited by c are in Q 1 , one has in particular f ∈ Q 1 . But this is only possible if 1 ∈ L 2 , and in this case, c is also a successful path of A 1 , and hence u ∈ L 1 ⊆ L 1 L 2 . If c visits some states of Q 2 , then c contains a unique transition of the form e = (q 1 , a, q 2) with q 1 ∈ F 1 and

q 2 ∈ Q 2 . Therefore c = c 1 ec 2 , where c 1 is a path in A 1 and c 2 is a path in A 2 . Denoting by u 1 [u 2] the label of c 1 [c 2], we get u = u 1 au 2 . Since c 1 is a successful path in A 1 , one has u 1 ∈ L 1 . Moreover, by definition of E, e ′ = (i, a, q 2) is a transition of A 2 . Therefore the path e ′ c 2 is a successful path in A 2 of label au 2 . It follows that au 2 ∈ L 2 and thus u ∈ L 1 L 2 ,
proving the claim and the proposition. 16, then L 1 L 2 is recognized by the automaton represented in Figure 17.

Example 3.4. If L 1 [L 2] is recognized by the automaton A 1 [A 2] represented in Figure

Star

Proposition 3.6. The star of a recognizable language is recognizable.

Proof. Let L be a recognizable language of A * , recognized by the deterministic standard automaton A = (Q, A, E, q -, F). Let A ′ = (Q, A, E ′ , {q -}, F ∪ {q -}) be the nondeterministic automaton defined by

E ′ = E ∪ {(q, a, q ′) | q ∈ F and (q -, a, q ′) ∈ E}.
Let us show that A ′ recognizes L * . If u is a word of L * , then either u is the empty word, which is accepted by A ′ since q -is a final state, or u = u 1 u 2 • • • u n with u 1 , . . . , u n ∈ L\1. Each u i is the label of a successful path in A, say c i : q - ui -→ q i with q i ∈ F . Let a i be the first letter of u i and let q - ai -→ p i be the first transition of c i . Let i ∈ {2, . . . , n}.

As q i-1 ∈ F , the definition of E ′ shows that q i-1 ai -→ p i is a transition of A ′ . Denote by c ′ i the path obtained by replacing in c i the first transition q - ai -→ p i by q i-1 ai -→ p i . This defines, for 2 i n, a path c ′ i : q i-1 ui -→ q i in A ′ . Therefore, the path c 1 c ′ 2 • • • c ′ n is a successful path of label u in A ′ and hence u is accepted by A ′ .
Conversely, let u be a word accepted by A ′ . If u = 1, one has u ∈ L * . Otherwise, u is the label of a nonempty successful path c of A ′ . This path can be factorized as

c = q - u0 -→ q 1 a1 -→ q ′ 1 u1 -→ q 2 a2 -→ q ′ 2 • • • q n an -→ q ′ n un -→ q n+1
where the transitions e 1 = q 1 a1 -→ q ′ 1 , e 2 = q 2 a2 -→ q ′ 2 , . . . , e n = q n un -→ q ′ n+1 are exactly the transitions of E ′ \ E occurring in c. Thus by definition of E ′ , one gets, for 1 i n, q i ∈ F and e ′ i = (q -, a i , q ′ i) ∈ E. Furthermore, q n+1 ∈ F ∪ {q -} since c is a successful path. Consequently, the paths

q - ai -→ q ′ i ui -→ q i+1
are paths of A. For 1 i n -1, these paths are successful, since q i ∈ F . Moreover, since A is standard, q n+1 is different from q -and hence q n+1 ∈ F . Consequently a i u i ∈ L for 1 i n. Since q - u0 -→ q 1 is also a successful path of A, one also has u 0 ∈ L, and hence u ∈ L * . Example 3.5. If L is recognized by the standard deterministic automaton A 2 represented in Figure 16, then L * is recognized by the nondeterministic automaton represented in Figure 18.

Quotients

We first treat the left quotient by a word and then the general case.

Proposition 3.7. Let A = (Q, A, • , q -, F) be a deterministic automaton recognizing a language L of A * . Then, for each word u of A * , the language u -1 L is recognized by the automaton A u = (Q, A, • , q -• u, F), obtained from A by changing the initial state. In particular u -1 L is recognizable.

Proof. First the following formulas hold:

u -1 L = {v ∈ A * | uv ∈ L} = {v ∈ A * | q -• (uv) ∈ F } = {v ∈ A * | (q -• u)• v ∈ F }. Therefore u -1 L is accepted by A u .
Proposition 3.8. Any quotient of a recognizable language is recognizable.

Proof. Let (Q, A, E, I, F) be an automaton recognizing a language L of A * and let K be a language of A * . We do not assume that K is recognizable. Setting

I ′ = {q ∈ Q | q
is the end of an initial path whose label belongs to K}, it is easy to see that the automaton B = (Q, A, E, I ′ , F) recognizes K -1 L. For the language LK -1 , a similar proof works by considering the automaton (Q, A, E, I, F ′), where F ′ = {q ∈ Q | q is the origin of a final path whose label belongs to K}.

Inverses of morphisms

We now show that recognizable languages are closed under inverses of morphisms.

Proposition 3.9. Let ϕ : A * → B * be a morphism. If L is a recognizable language of B * , then ϕ -1 (L) is a recognizable language of A * .

Proof. Let B = (Q, B, E, I, F) be an automaton recognizing L. Let A = (Q, A, T, I, F), where T = {(p, a, q) | there is a path labelled by ϕ(a) from p to q in B}.

We claim that A recognizes ϕ -1 (L). First, if u is accepted by A, there is a successful path of A labelled by u. Consequently, there is a successful path of B labelled by ϕ(u). Thus ϕ(u) is accepted by B and u ∈ ϕ -1 (L).

Let now u = a 1 • • • a n be a word of ϕ -1 (L). Since the word ϕ(u) is accepted by L, there is a successful path in B labelled by ϕ(u). Let us factorize this path as

q 0 ϕ(a1) --q 1 • • • q n-1 ϕ(an) --q n .
These paths define in turn a successful path in A labelled by u:

q 0 a1 -→ q 1 • • • q n-1 an -→ q n ,
which shows that u is accepted by A.

Minimal automaton and syntactic monoid 4.1 Minimal automaton

Let L be a language of A * . The Nerode automaton of L is the deterministic automaton

A(L) = (Q, A, • , L, F) where Q = {u -1 L | u ∈ A * }, F = {u -1 L | u ∈ L}
and the transition function is defined, for each a ∈ A, by the formula

(u -1 L)• a = a -1 (u -1 L) = (ua) -1 L.
Beware of this rather abstract definition. Each state of A(L) is a left quotient of L by a word, and hence is a language of A * . The initial state is the language L, and the set of final states is the set of all left quotients of L by a word of L.

Proposition 4.1. A language L is recognizable if and only if the set {u

-1 L | u ∈ A * } is finite. In this case, L is recognized by its Nerode automaton.
Proof. Let L be a recognizable language, accepted by the deterministic automaton A = (Q, A, • , q -, F). By Proposition 3.7, the language u -1 L is accepted by the automaton

A u = (Q, A, • , q -• u, F).
If n is the number of states of A, there are at most n automata of the form A u and hence at most n distinct languages of the form u -1 L.

Conversely, if the set {u -1 L | u ∈ A * } is finite, the Nerode automaton of L is finite and recognizes L. Indeed, a word u is accepted by A(L) if and only if

L• u = u -1 L is a final state, that is if u ∈ L. It follows that L is recognizable. Let A = (Q, A, E, q -, F) and A ′ = (Q ′ , A, E ′ , q ′ -, F ′) be two deterministic au- tomata. A morphism of automata from A to A ′ is a surjective function ϕ : Q → Q ′ such that ϕ(q -) = q ′ -, ϕ -1 (F ′) = F and, for every u ∈ A * and q ∈ Q, ϕ(q• u) = ϕ(q)• u. We write A A ′ if there is a morphism from A to A ′ .
Let L be a recognizable language. The next proposition shows that, amongst the accessible and complete deterministic automata recognizing L, the Nerode automaton of L is minimal for . For this reason it is called the minimal complete automaton of L. Proposition 4.2. Let A = (Q, A, • , q -, F) be a accessible and complete deterministic automaton accepting L. For each state q of Q, let L q be the language recognized by (Q, A, • , q, F). Then A(L) = ({L q | q ∈ Q}, A, • , L q-, {L q | q ∈ F }), where, for all a ∈ A and for all q ∈ Q, L q • a = L q •a . Moreover, the map q → L q defines a morphism from A onto A(L).

Proof. Let q be a state of Q. Since q is accessible, there is a word u of A * such that q -• u = q, and by Proposition 3.7, one has L q = u -1 L. Conversely, if u is a word, one has u -1 L = L q with q = q -• u. Therefore

{L q | q ∈ Q} = {u -1 L | u ∈ A * } and {L q | q ∈ F } = {u -1 L | u ∈ L},
which proves the first part of the statement.

Furthermore, for all a ∈ A, one has ϕ(q• a) = L q •a = L q • a = ϕ(q)• a which shows that the map ϕ : q → L q is a morphism from A onto A(L).

The direct computation of the Nerode automaton is probably the most efficient method for a computation by hand, because it gives directly the minimal automaton. In practice, one starts with the quotient L = 1 -1 L and one maintains a table of quotients of L. For each quotient R, it suffices to compute the quotients a -1 R for each letter a. These quotients are compared to the existing list of quotients and possibly added to this list. But there is a hidden difficulty: the comparison of two rational expressions is not always easy, since a given language might be represented by two very different rational expressions.

Example 4.1. For L = (a(ab) *) * ∪ (ba) * , we get

1 -1 L = L = L 1 and a -1 L 1 = (ab) * (a(ab) *) * = L 2 b -1 L 1 = a(ba) * = L 3 a -1 L 2 = bL 2 ∪ L 2 = L 4 b -1 L 2 = ∅ a -1 L 3 = (ba) * = L 5 b -1 L 3 = ∅ a -1 L 4 = a -1 (bL 2 ∪ L 2) = L 4 b -1 L 4 = b -1 (bL 2 ∪ L 2) = L 2 a -1 L 5 = ∅ b -1 L 5 = a(ba) * = L 3
which gives the minimal automaton represented in Figure 19. There are standard algorithms for minimizing a given accessible deterministic automaton [START_REF] Hopcroft | Introduction to automata theory, languages and computation[END_REF] based on the computation of the Nerode equivalence. Let A = (Q, A, E, q -, F) be a accessible deterministic automaton. The Nerode equivalence ∼ on Q is defined by p ∼ q if and only if, for every word u ∈ A * ,

p• u ∈ F ⇐⇒ q• u ∈ F.
One can show that ∼ is actually a congruence, in the sense that F is saturated by ∼ and that p ∼ q implies p• x ∼ q• x for all x ∈ A * . It follows that there is a well-defined quotient automaton A/∼ = (Q/∼, A, E, q-, F/∼), where qis the equivalence class of q -. Proposition 4.3. Let A be an accessible and complete deterministic automaton. Then A/∼ is the minimal automaton of A.

We shall in particular use the following consequence.

Corollary 4.4. An accessible and complete deterministic automaton is minimal if and only if its Nerode equivalence is the identity.

Automata and monoids

Let A = (Q, A, • , q -, F) be a complete deterministic automaton. For each v ∈ A * , the mapping q → q• v defines a function f v : Q → Q. If we compose these functions from left to right (in effect, letting them act on Q on the right), we evidently have

f v f w = f vw for all v, w ∈ A * . Thus the set M (A) = {f v | v ∈ A * }
of these functions is a monoid, with composition as the operation, and the map

η A : v → f v is a morphism from A * onto M (A)
. We call M (A) the transition monoid of the automaton A. Since there are only finitely many maps from Q into itself when Q is a finite set, M (A) is a finite monoid.

Example 4.2. Consider the automaton A in Example 3.3, which recognizes the language (ab) * . We will represent the mapping f v by the table

f v 0 0• v 1 1• v 2 2• v
We can then tabulate the functions f v for short words v:

f 1 f a f b f ab f ba f aa 0 0 0 0 0 0 0 1 2 0 1 0 0 0 2 0 1 0 1 2 0
It is easy to check that for any of the words v for which f v is tabulated above, the maps f va = f v f a and f vb = f v f b are already in the list. For example, f aba = f a . These six elements thus constitute the entire transition monoid M (A).

Since f 1 is the identity element of M (A), we will denote it by 1. The element f aa satisfies f aa m = f aa = mf aa for all m ∈ M (A) -that is, it is a zero of the monoid -and so we will write f aa = 0. We abbreviate the remaining elements by a, b, ab, ba, and obtain the following multiplication table for M (A). Again, let A = (Q, A, • , q -, F) be a complete deterministic automaton. Then

L(A) = η -1 A (X),
where

X = {f v | q -f v ∈ F } ⊆ M (A).
We say that a monoid M recognizes a language L ⊆ A * if there is a morphism ϕ : A * → M and a set X ⊆ M such that L = ϕ -1 (X). We also say in this instance that the morphism ϕ recognizes L. Thus our observation above can be restated: for any complete deterministic automaton A, L(A) is recognized both by the monoid M (A) and by the morphism η A .

Syntactic monoid and syntactic morphism

There are two ways to introduce the syntactic monoid of a recognizable language. We first present an algorithm to compute it and then give an abstract definition. Let L ⊆ A * be a recognizable language and let A(L) be its minimal automaton. The monoid Synt(L) = M (A(L)) and the morphism η L = η A(L) are called, respectively, the syntactic monoid and the syntactic morphism of L. In other words, the syntactic monoid of L is the transition monoid of the minimal automaton of L. Example 4.5. Let A be a finite alphabet and let a ∈ A. Consider the language L = A * aA * , which consists of all words that contain an occurrence of the letter a. The minimal automaton A(L) is ({0, 1}, A, • , 1, {0}), where 1• a = 0 and q• b = q whenever either q = 1 or b = a. The syntactic monoid Synt(L) then contains two transitions: f 1 , which is the identity of the monoid, and f a , which is a zero. We can thus write this monoid as {0, 1}, with the usual multiplication.

Let M and N be monoids. We say that M divides N, and write M ≺ N , if there is a submonoid N ′ of N and a morphism ϕ : N ′ → M that maps onto M .

Informally, M ≺ N means that M is simpler than N . We would naturally consider M to be simpler than N if M is either a submonoid or a quotient of N . We would also expect 'simpler than' to be a transitive relation. It is easy to prove (and left as an exercise for the reader) that division is the least transitive relation that includes both the submonoid and quotient relation. The next proposition says that the syntactic monoid of L is the simplest monoid recognizing L. Proposition 4.5. Let L be a recognizable language and M a monoid. Then M recognizes L if and only if Synt(L) divides M .

Proof. First suppose that Synt(L) divides M . Then there is a submonoid M ′ of M and a surjective morphism ϕ : M ′ → Synt(L). Since ϕ is surjective, there exists for each a ∈ A at least one m a ∈ M ′ such that ϕ(m a) = η L (a). Set ψ(a) = m a . Then ψ extends to a unique morphism (also denoted ψ) from A * into M ′ . Observe that ϕ • ψ = η L , because ϕ(ψ(a)) = η L (a) for all a ∈ A.

Let P = ψ(L). We claim that for all words v ∈ A * , ψ(v) ∈ P if and only if v ∈ L. This will show L = ψ -1 (P), and hence M recognizes L. By definition, v ∈ L implies ψ(v) ∈ P . On the other hand, if ψ(v) ∈ P , then there is some v ′ ∈ L such that ψ(v) = ψ(v ′). We thus have

f v = η L (v) = ϕ • ψ(v) = ϕ • ψ(v ′) = η L (v ′) = f v ′ . Let A(L) = (Q, A, • , q -, F) be the minimal automaton of L. Since v ′ ∈ L, we have q -• v ′ ∈ F and, since f v = f v ′ , q -• v = q -• v ′ . So q -• v ∈ F and thus v ∈ L,
as claimed. Note that we have not used the minimality of this automaton -we have actually proved that if N recognizes L and N divides M , then M recognizes L as well.

For the converse, suppose that M recognizes L via a morphism ψ : A * → M and a subset P ⊆ M such that ψ -1 (P) = L. As before, let A(L) = (Q, A, • , q -, F) be the minimal automaton of L. We will show that if w, w ′ ∈ A * with ψ(w) = ψ(w ′), then η L (w) = η L (w ′), in other words, that the syntactic morphism η L 'factors through' ψ. This implies the existence of a morphism ϕ : Im(ψ) → Synt(L) such that ϕ • ψ = η L . Since η L maps onto Synt(L), we conclude that Synt(L) ≺ M . Suppose, contrary to what we are trying to prove, that η L (w) = η L (w ′). Thus there is some state q of A(L) such that q• w = q• w ′ . In particular, by Corollary 4.4, there is some v ∈ A * such that q• wv ∈ F and q• w ′ v / ∈ F , or vice-versa. Since every state of A(L) is accessible from the initial state, there is accordingly some u ∈ A * such that q -• u = q, and thus uwv ∈ L, uw ′ v / ∈ L. Since uwv ∈ L, we must have ψ(uwv) ∈ P . But ψ(uw ′ v) = ψ(uwv) is then also in P , so that uw ′ v ∈ L, a contradiction.

We have defined the syntactic monoid of a recognizable language as the transition monoid of its minimal automaton. One often sees a different, although equivalent, definition in terms of congruences. A congruence on a monoid M (finite or infinite) is an equivalence relation ∼ on M that is compatible with multiplication in M : in other words, if

m i ∼ m ′ i for i = 1, 2, then m 1 m 2 ∼ m ′ 1 m ′ 2 .
In this case, there is a well-defined multiplication on the quotient set M/∼ of equivalence classes of ∼ that turns M/∼ into a monoid. The map taking m ∈ M to its equivalence class [m] ∼ is then a morphism from M onto this quotient monoid, called the projection morphism.

Let L ⊆ A * be a recognizable language. We define an equivalence relation ∼ L on A * as follows: if u, v ∈ A * , then u ∼ L v if and only if for every x, y ∈ A * , xuy and xvy are either both in L or both outside of L. We call ∼ L the syntactic congruence of L.

To see the connection to the syntactic monoid and syntactic morphism, as we have defined them, first suppose that u ∼ L v. Let q be any state of the minimal automaton of L. If q• u = q• v, then there is some word y ∈ A * such that q• uy is an accepting state and q• vy is not, or vice-versa. Without loss of generality, we can assume that q• uy is accepting. Since every state of the minimal automaton is accessible from the initial state q -, we have q = q -• x for some x ∈ A * . Thus xuy ∈ L and xvy / ∈ L, contradicting u ∼ L v. Thus we must have q• u = q• v for every state q. This shows that η

L (u) = η L (v). Conversely, suppose η L (u) = η L (v). Then f xuy = f x f u f y = f x f v f y . Thus q -• xuy is accepting if and only if q -• xvy is. That is, xuy ∈ L if and only if xvy ∈ L, i.e., u ∼ L v.
We have shown that u ∼ L v if and only if η L (u) = η L (v), so that equivalence classes of ∼ L are in one-to-one correspondence with elements of the syntactic monoid. This implies immediately that ∼ L is a congruence, and that the correspondence η L (u) ↔ [u] ∼L is an isomorphism of monoids. We have thus proved Proposition 4.6. Let L ⊆ A * be a recognizable language. Then ∼ L is a congruence, and the quotient monoid A * /∼ L is isomorphic to the syntactic monoid Synt(L). We can compute the multiplication table of the syntactic monoid by choosing a representative word from each of the two classes whose product we seek, and finding which class the concatenation of the two words belongs to. This gives the same multiplication table we constructed earlier using the minimal automaton.

Ordered versions

A non-symmetrical variant of the definition of the syntactic congruence turns out to be very useful in studying recognizable languages. Let u, v ∈ A * : we write u L v if for every x, y ∈ A * such that xuy ∈ L, we have also xvy ∈ L. Then L is a preorder and it is immediately verified that u ∼ L v if and only if u L v and v L u. Moreover, if

u 1 L v 1 and u 2 L v 2 , then we have u 1 u 2 L v 1 v 2 .
As a result, L defines an order relation L on Synt(L) = A * /∼ L , the syntactic monoid of L, which is stable under product. This order is called the syntactic order of L and the resulting ordered monoid (Synt(L), L) is called the ordered syntactic monoid of L.

Example 4.7. We have already seen that M = {1, a, b, ab, ba, 0} is the syntactic monoid of (ab) * . The order of its ordered syntactic monoid is given by the relations ab 1, ba 1 and 0 x for all x ∈ M .

The syntactic order can also be computed from the minimal automaton of L. Let A = (Q, A, • , q -, F) be the minimal automaton of L. Define a relation on Q by setting p q if and only if, for all u ∈ A * , p• u ∈ F implies q• u ∈ F . The relation is clearly reflexive and transitive. Suppose that p q and q p. Then, for all u ∈ A * , p• u ∈ F if and only if q• u ∈ F . Since A is minimal, this implies p = q. Thus is an order. Furthermore, if p q, then for all a ∈ A, p• a q• a since, for all u ∈ A * , p• au ∈ F implies q• au ∈ F .

We know that the syntactic monoid of L is the transition monoid of its minimal automaton. The syntactic order of L can now be defined directly as follows: f u f v if and only if, for every q ∈ Q, q • u q • v.

Example 4.8. Consider the minimal complete automaton of (ab) * , represented in Figure 15. The order on the set of states is 0 < 1 and 0 < 2. Indeed, one has 0• u = 0 for all u ∈ A * and thus, the formal implication 0• u ∈ F ⇒ q• u ∈ F holds for any q ∈ Q. One can verify that there is no other relations among the states of Q. For instance, 1 and 2 are incomparable since

1• ab = 1 ∈ F but 2• ab = 0 / ∈ F and 1• b = 0 / ∈ F but 2• b = 1 ∈ F .
One also recovers the syntactic order described in Example 4.7. For instance, ab

1 since 0• ab = 0• 1, 1• ab = 1• 1 and 2• ab = 0 2 = 2• 1.

Operations on recognizable languages

The direct product M 1 × M 2 of two monoids M 1 and M 2 is just the ordinary cartesian product with the operation

(m 1 , m 2)(m ′ 1 , m ′ 2) = (m 1 m ′ 1 , m 2 m ′ 2). Proposition 4.7. Let L, L 1 , L 2 ⊆ A * be recognizable languages. Then Synt(L) = Synt(A * \ L), Synt(L 1 ∪ L 2) ≺ Synt(L 1) × Synt(L 2), Synt(L 1 ∩ L 2) ≺ Synt(L 1) × Synt(L 2).
Proof. The minimal automaton of L is identical to that of A * \ L, except for the set of accepting states. In particular, these two automata have the same transition monoid, which gives the first part of the claim. For the second, it is enough to prove that if

M 1 recognizes L 1 and M 2 recognizes L 2 , then M 1 × M 2 recognizes L 1 ∪ L 2 .
The result will then follow from Proposition 4.5. Suppose then that for i = 1, 2, M i recognizes L i through morphisms ϕ i and subsets P i . Let ϕ : A * → M 1 × M 2 be the morphism defined by ϕ(w) = (ϕ 1 (w), ϕ 2 (w)), and let

P = {(m 1 , m 2) | m 1 ∈ P 1 or m 2 ∈ P 2 }.
Then ϕ(w) ∈ P if and only if either

w ∈ L 1 or w ∈ L 2 . Thus M 1 × M 2 recognizes L 1 ∪ L 2 , as required.
The last part of the Proposition follows from the first two parts by DeMorgan's Laws.

Example 4.9. The reason for studying the syntactic monoid is that it enables us to characterize properties of a language in terms of algebraic properties of the syntactic monoid. What follows is a very simple example of this approach, which is the subject of Chapter 16. Suppose that a recognizable language L ⊆ A * is recognized by a monoid M that is both idempotent, that is m• m = m for every m ∈ M , and commutative, that is, divides a direct product of copies of the monoid {0, 1}. This monoid is idempotent and commutative, and it is straightforward to verify that both the idempotence and commutativity properties are preserved under direct products, quotients and taking submonoids. Thus Synt(L) is idempotent and commutative. We have shown that membership in L is dependent only on the set of letters in the word if and only if the syntactic monoid of L is idempotent and commutative.

m• n = n• m for all m, n ∈ M . Let ϕ : A * → M be a morphism that recognizes L. If w, w ′ ∈ A * contain

Rational versus recognizable

The aim of this section is to show that, if A is a finite alphabet, a language of A * is recognizable if and only if it is rational.

Local languages

A language L of A * is said to be local if there exist two subsets P and S of A and a subset

N of A 2 such that 1 L \ 1 = (P A * ∩ A * S) \ A * N A * .
For instance, if A = {a, b, c}, the language

(abc) * = 1 ∪ [(aA * ∩ A * c) \ A * {aa, ac, ba, bb, cb, cc}A *]
is local. The terminology can be explained as follows: in order to check whether a nonempty word belongs to L, it suffices to verify that its first letter is in P , its last letter is in S and its factors of length 2 are not in N : all these conditions are local. Conversely, if a language L is local, it is easy to recover the parameters P , S and N . Indeed, P [S] is the set of first [last] letters of the words of L, and N is the set of words of length 2 that are factors of no word of L.

It is easy to compute a deterministic automaton recognizing a local language, given the parameters P , S and N . Proposition 5.1. Let L = (P A * ∩ A * S) \ A * N A * be a local language. Then L is recognized by the automaton A in which the set of states is A ∪ {1}, the initial state is 1, the set of final states is S, and the transitions are given by the rules

1• a = a if a ∈ P and a• b = b if ab / ∈ N .
Proof. Let u = a 1 • • • a n be a word accepted by A and let

1 a1 -→ a 1 a2 -→ a 2 • • • a n-1 an -→ a n
be a successful path of label u. Then the state a n is final and hence a n ∈ S. Similarly, since 1 a1 -→ a 1 is a transition, one has necessarily a 1 ∈ P . Finally, since for

1 i n -1, a i ai+1 -→ a i+1 is a transition, the word a i a i+1 is not in N . Consequently, u belongs to L. Conversely, if u = a 1 • • • a n ∈ L, one has a 1 ∈ P , a n ∈ S and, for 1 i n, a i a i+1 / ∈ N . Thus 1 a1 -→ a 1 a2 -→ a 2 • • • a n-1 an
-→ a n is a successful path of A and A accepts u. Therefore, the language accepted by A is L.

For a local language containing the empty word, the previous construction can be easily modified by taking S ∪ {1} as the set of final states. Note also that the automaton A described in Proposition 5.1 has a special property: all the transitions of label a have the same end, namely the state a. More generally, we shall say that a deterministic automaton (not necessarily complete) A = (Q, A, •) is local if, for each letter a, the set {q• a | q ∈ Q} contains at most one element. Local languages have the following characterization: Proposition 5.2. A rational language is local if and only if it is recognized by a local automaton.

Proof. One direction follows from Proposition 5.1. To prove the opposite direction, consider a local automaton A = (Q, A, • , q 0 , F) recognizing a language L and let

P = {a ∈ A | q 0 • a is defined }, S = {a ∈ A | there exists q ∈ Q such that q• a ∈ F }, N = {x ∈ A 2 | x is the label of no path in A } K = (P A * ∩ A * S) \ A * N A * . Let u = a 1 • • • a n be a nonempty word of L and let q 0 a1 -→ q 1 • • • q n-1
an -→ q n be a successful path of label u. Necessarily, a 1 ∈ P , a n ∈ S and, for 1 i n -1, a i a i+1 / ∈ N . Consequently, u ∈ K, which shows that L \ 1 is contained in K.

Let now u = a 1 • • • a n be a nonempty word of K. Then a 1 ∈ P , a n ∈ S, and, for 1 i n -1, a i a i+1 / ∈ N . Since a 1 ∈ P , the state q 1 = q 0 • a 1 is well defined. Moreover, since a 1 a 2 / ∈ N , a 1 a 2 is the label of some path p 0 a1 -→ p 1 a2 -→ p 2 in A. But since A is a local automaton, q 0 • a 1 = p 0 • a 1 . It follows that the word a 1 a 2 is also the label of the path q 0 a1 -→ p 1 a2 -→ p 2 . One can show in the same way by induction that there exists a sequence of states p i (0 i n) such that a i a i+1 is the label of a path p i-1 ai -→ p i ai+1 -→ p i+1 of A. Finally, since a n ∈ S, there is a state q such that q• a n ∈ F . But since A is a local automaton, one has q• a n = p n-1 • a n = p n , whence p n ∈ F . Therefore q 0 a1 -→ p 1 • • • p n-1 an -→ p n is a successful path in A and its label u is accepted by A. Thus K = L \ 1.

Local languages are stable under various operations: Proof. Let A be a local automaton recognizing L. The proof of Proposition 3.6 gives an automaton recognizing L * . A simple verification shows that this construction produces a local automaton when A is local.

Glushkov's algorithm

Glushkov's algorithm [START_REF] Glushkov | The abstract theory of automata[END_REF] is an efficient way to convert a rational expression into a nondeterministic automaton.

A rational expression is said to be linear if each letter has at most one occurrence in the expression. For instance, the expression) is also a local language. A similar argument applies for the language represented by ee ′ . Proposition 5.1 allows one to compute a deterministic automaton recognizing a local language. It suffices to test whether the empty word belongs to L and to compute the sets

P (L) = {a ∈ A | aA * ∩ L = ∅}, S(L) = {a ∈ A | A * a ∩ L = ∅}, F (L) = {x ∈ A 2 | A * xA * ∩ L = ∅}.
This can be done by recursion, given a linear rational expression representing the language. We first compute the procedure EmptyWord(e: linear expression): boolean; which tells whether the empty word belongs to the language represented by e. To get a deterministic automaton, it remains to apply the algorithm described in Section 2.3.

Linear equations

In this section, we give an algorithm to convert an automaton into a rational expression. The algorithm amounts to solving a system of linear equations on languages. We first consider an equation of the form

X = KX + L, (5.2)
where K and L are languages and X is the unknown. When K does not contain the empty word, the equation admits a unique solution.

Proposition 5.6. If K does not contain the empty word, then X = K * L is the unique solution of the equation X = KX + L.

Proof. Replacing X by K * L in the expression KX + L, one gets

K(K * L) + L = K + L + L = (K + + 1)L = K * L,
and hence X = K * L is a solution of (5.2). To prove uniqueness, consider two solutions X 1 and X 2 of (5.2). By symmetry, it suffices to show that each word u of X 1 also belongs to X 2 . Let us prove this result by induction on the length of u.

If |u| = 0, u is the empty word and if u ∈ X

1 = KX 1 + L, then necessarily u ∈ L since 1 / ∈ K. But in this case, u ∈ KX 2 + L = X 2 .
For the induction step, consider a word u of X 1 of length n + 1. Since X 1 = KX 1 + L, u belongs either to L or to KX 1 . If u ∈ L, then u ∈ KX 2 + L = X 2 . If u ∈ KX 1 then u = kx for some k ∈ K and x ∈ X 1 . Since k is not the empty word, one has necessarily |x| n and hence by induction x ∈ X 2 . It follows that u ∈ KX 2 and finally u ∈ X 2 . This concludes the induction and the proof of the proposition.

If K contains the empty word, uniqueness is lost. Proposition 5.7. If K contains the empty word, the solutions of (5.2) are the languages of the form K * M with L ⊆ M . Proposition 5.9. The system (5.3) admits a unique solution (R q) q∈Q , given by the formula R q = {u ∈ A * | there is a path of label u from q to F } Furthermore, the language recognized by A is q∈I R q .

Proof. Since the languages K p,q do not contain the empty word, Proposition 5.8 shows that the system (5.3) admits a unique solution. It remains to verify that the family (R q) q∈Q is solution of the system, that is, satisfies for all q ∈ Q the formula

R q = K q,1 R 1 + K q,2 R 2 + • • • + K q,n R n + L q . (5.4)
Let us denote by S q the right hand side of (5.4). If u ∈ R q , then u is by definition the label of a path from q to a final state f . If u is the empty word, one has necessarily q = f and hence L q = 1. Thus u ∈ S q in this case. Otherwise, let (q, a, q ′) be the first transition of the path. One has u = au ′ , where u ′ is the label of a path from q ′ to f . Then one has a ∈ K q,q ′ , u ′ ∈ R q ′ and finally u ∈ S q . Conversely, let u ∈ S q . If u = 1, one has necessarily u ∈ L q , whence q ∈ F and u ∈ R q . Otherwise there is a state q ′ such that u ∈ K q,q ′ R q ′ . Therefore, u = au ′ for some a ∈ K q,q ′ and u ′ ∈ R q ′ . On the one hand, (q, a, q ′) is a transition of A by definition of K q,q ′ and on the other hand u ′ is the label of a final path starting in q ′ . The composition of these paths gives a final path of label u starting in q. Therefore u ∈ R q and thus R q = S q .

For example, if A is the automaton represented in Figure 24, The system can be written Since 1 is the unique initial state, the language recognized by the automaton is X 1 .

X 1 = aX 2 + bX 3 X 2 = aX 1 + bX 3 + 1 X 3 = aX 2 + 1

Extended automata

The use of equations is not limited to deterministic automata. The same technique applies to nondeterministic automata and to more powerful automata, in which the transition labels are not letters, but rational languages. An extended automaton is a quintuple A = (Q, A, E, I, F), where Q is a set of states, A is an alphabet, E is a subset of Q × Rat(A *) × Q, called the set of transitions, I [F] is the set of initial [final] states. The label of a path c = (q 0 , L 1 , q 1), (q 1 , L 2 , q 2), . . . , (q n-1 , L n , q n) is the rational language L 1 L 2 • • • L n . The definition of a successful path is unchanged. A word is accepted by A if it belongs to the label of a successful path. In the example represented in Figure 25 Let A = (Q, A, E, I, F) be an extended automaton. For all p, q ∈ Q, we let K p,q denote the label of the transition from p to q. Notice that K p,q might possibly be the empty language. We also put

L q =
1 if there is a path labelled by 1 from q to F 0 otherwise.

(1) To test whether u ∈ L, it suffices to compute q -• u. If q -• u ∈ F , then u ∈ L; if q -• u / ∈ F , or if q -• u is undefined, then u / ∈ L. (2) Let us show that L is empty if and only if F = ∅. The condition F = ∅ is clearly sufficient. Since A is trim, every state of A is accessible. Now, if A has at least one final state q, there is a word u such that q -• u = q. Therefore u ∈ L and L is nonempty.

(3) and (4). Let us show that L is finite if and only if A does not contain any loop. If A contains a loop q u -→ q, then L is infinite: indeed, since A is trim, there exist paths i x -→ q and q y -→ f , where f is a final state and thus L contains all the words xu n y. Conversely, if L is infinite, the proof of the pumping lemma shows that A contains a loop. Now, checking whether an automaton contains a loop is easy. Consider the directed graph G obtained from A by removing all the labels. Then A is loop-free if and only if G is acyclic, a property that can be checked by standard algorithms. One can for instance compute the transitive closure G ′ of G and check whether G ′ contains an edge of the form (q, q). We leave as an exercise to the reader to prove that the inclusion problem and the equality problem are decidable for two given recognizable languages.

Algebraic approach

The notions of rational and recognizable sets can be defined in arbitrary monoids. However, Kleene's theorem does not extend to arbitrary monoids since rational and recognizable sets form in general two incomparable classes.

Rational subsets of a monoid

Let M be a monoid. The set P(M) of subsets of M is a semiring with union as addition and product defined by the formula XY = {xy | x ∈ X and y ∈ Y }.

For this reason, we shall adopt the notation we already introduced for languages. Union is denoted by +, the empty set by 0 and the singleton {m}, for m ∈ M by m. This notation has the advantage that the identity of P(M) is denoted by 1.

The powers of a subset X of M are defined by induction by setting X 0 = 1, X 1 = X and X n = X n-1 X for all n > 1. The star operation is defined by

X * = n 0 X n = 1 + X + X 2 + X 3 + • • • .
In other words, X * is the submonoid of M generated by X. The set of rational subsets of a monoid M is the smallest set F of subsets of M satisfying the following conditions:

(1) F contains 0 and the singletons of P(M),

(2) F is closed under union, product and star (in other words, if X, Y ∈ F, then X + Y ∈ F, XY ∈ F and X * ∈ F).

For instance, in a finite monoid, all subsets are rational. The rational subsets of N k are the semilinear sets, which are finite unions of subsets of the form

{v 0 + n 1 v 1 + • • • + n r v r | n 1 , . . . , n r ∈ N},
where v 0 , v 1 , . . . , v r are vectors of N k . Rational subsets are also stable under morphisms.

Proposition 6.1. Let ϕ : M → N be a monoid morphism. If R is a rational subset of M , then ϕ(R) is a rational subset of N . Moreover, if ϕ is surjective, then for each rational subset S of N , there exists a rational subset R of M such that ϕ(R) = S.

However, the rational subsets of a monoid are not necessarily closed under intersection, as shown by the following counterexample: Let M = a * × {b, c} * . Consider the rational subsets 0}, a nonrational subset of M . It follows also that the complement of a rational subset is not necessarily rational. Otherwise, the rational subsets of a monoid would be closed under union and complement and hence under intersection. Proposition 6.2. Each rational subset of a monoid M is a rational subset of a finitely generated submonoid of M .

Recognizable subsets of a monoid

Let ϕ : M → N be a monoid morphism. A subset L of M is recognized by ϕ if there exists a subset P of N such that L = ϕ -1 (P).

If ϕ is surjective, we say that ϕ recognizes L. Note that in this case, the condition L = ϕ -1 (P) implies P = ϕ(L).

A subset of a monoid is recognizable if it is recognized by a finite monoid. We let Rec(M) denote the set of recognizable subsets of M . Proposition 6.3. For any monoid M , Rec(M) is closed under Boolean operations and left and right quotients. Moreover, if ϕ : N → M is a morphism, L ∈ Rec(M) implies ϕ -1 (L) ∈ Rec(N). Although Kleene's theorem does not extend to arbitrary monoids, a weaker property holds for finitely generated monoids. Theorem 6.4 (McKnight [START_REF] Mcknight | Kleene quotient theorems[END_REF]). Let M be a monoid. The following conditions are equivalent:

(1) M is finitely generated,

 |u| a = 3 and |u| b = 2. The sum |u| = a∈A |u| a is the length of the word u. Thus |abaab| = 5.

Example 2 . 1 .

 21 Let A = (Q, A, E, I, F) where Q = {1, 2}, I = {1, 2}, F = {2}, A = {a, b} and E = {(1, a, 1), (2, b, 1), (1, a, 2), (2, b, 2)}.This automaton is represented in Figure1.

Figure 1 .

 1 Figure 1. An automaton.

Example 2 . 3 .

 23 Consider the automaton represented in Figure2.

Figure 2 .

 2 Figure 2. The automaton A.

Figure 3 .

 3 Figure 3. Illustration of the pumping lemma.

Figure 4 .

 4 Figure 4. A deterministic automaton.

Proposition 2 . 3 .

 23 Every finite automaton is equivalent to a deterministic one. Proof. Let A = (Q, A, E, I, F) be an automaton. Consider the deterministic automaton D(A) = (P(Q), A, • , I, F) where F = {P ⊆ Q | P ∩ F = ∅} and, for each subset P of Q and for each letter a ∈ A, P • a = {q ∈ Q | there exists p ∈ P such that (p, a, q) ∈ E}.

Figure 5 .

 5 Figure 5. An incomplete, nondeterministic automaton.

Figure 6 .

 6 Figure 6. A complete and deterministic automaton.

Figure 7 .

 7 Figure 7. A nondeterministic automaton.

Figure 8 .

 8 Figure 8. After determinisation...

Figure 9 .

 9 Figure 9. . . . and trimming.

Figure 10 .

 10 Figure 10. An automaton and its standardized version.

Figure 11 .

 11 Figure 11. The automata A and A ′ .

Figure 12 .

 12 Figure 12. An automaton recognizing L + L ′ .

Figure 13 .Proposition 3 . 3 .

 1333 Figure 13. An automaton recognizing a 1 • • • a n .

Figure 14 .

 14 Figure 14. A trim automaton recognizing L ∩ L ′ .

Figure 15 .

 15 Figure 15. Complementation of a deterministic automaton.

Figure 16 .

 16 Figure 16. The automata A 1 and A 2 .

Figure 17 .

 17 Figure 17. An automaton recognizing L 1 L 2 .

Figure 18 .

 18 Figure 18. An automaton recognizing L * .

Figure 19 .

 19 Figure 19. The minimal automaton of L.

Example 4 . 3 .

 43 In Example 4.2 we have L(A) = (ab) * = η -1 A ({1, f ab }).

Example 4 . 4 .

 44 In Example 4.2 we have Synt((ab) *) = M (A), because A is the minimal automaton of (ab) * .

Example 4 . 6 .

 46 Let us use this alternative definition of the syntactic monoid to recompute Synt((ab) *), the syntactic monoid we originally computed in Example 4.2. The syntactic congruence of L identifies two words u and v if the set of pairs of words (x, y) such that xuy ∈ L is the same as the set of pairs for which xvy ∈ L. If u contains two consecutive occurrences of a or two consecutive occurrences of b, then this set of pairs is empty. Indeed, these words u are the only ones for which there is no pair (x, y) with xuy ∈ L, so one of the ∼ L -classes is A * aaA * ∪ A * bbA * . Nonempty words in which the letters a and b alternate lie in one of the sets (ab) + , (ba) + , b(ab) * , (ab) * a. For all u in, say b(ab) + , xuy ∈ L if and only if x ∈ (ab) * a and y ∈ (ab) * . So all the words in b(ab) + belong to a single congruence class. Likewise, all the words in each of the other three sets belong to a single congruence class. The only word we have not considered is the empty word 1. This is not congruent to any nonempty word: for example if u starts with a we have a• 1• b ∈ L and aub / ∈ L. We have thus determined all six congruences classes: 1, (ab) + , (ab) * a, b(ab) * , (ba) + , A * aaA * ∪ A * bbA * .

 the same set of letters, then ϕ(w) = ϕ(w ′): because of idempotence and commutativity, we can duplicate letters of a word and rearrange them without changing the image of the word under ϕ. Thus w ∈ L if and only if w ′ ∈ L; in other words, membership of a word in L is determined entirely by the set of letters of L. Conversely, if L has this property, then L can be written as a boolean combination of languages of the form A * aA * , where a ∈ A. Thus by Proposition 4.7 and Example 4.5, Synt(L)

Example 5 . 1 .Figure 20 .

 5120 Figure 20. An automaton recognizing a local language.

Proposition 5 . 3 .

 53 Let A 1 and A 2 be two disjoint subsets of the alphabet A and let L 1 ⊆ A * 1 and L 2 ⊆ A * 2 be two local languages. Then the languages L 1 + L 2 and L 1 L 2 are local languages. Proof. Let A 1 [A 2] be a local automaton recognizing L 1 [L 2]. The proofs of Propositions 3.1 and 3.5 give an automaton recognizing L 1 +L 2 and L 1 L 2 . A simple verification shows that these constructions produce a local automaton when A 1 and A 2 are local. Proposition 5.4. Let L be a local language. Then the language L * is a local language.

[a 1

 1 a 2 (a 3 a 4) * ∪ (a 5 a 6) * a 7] * (5.1) is linear. One can linearize a rational expression by replacing each occurrence of a letter by a distinct symbol. For instance, the expression (5.1) is a linearization of the expression e = [ab(ba) * ∪ (ac) * b] * . Now, given an automaton for e ′ , the linearization of e, it is easy to obtain an automaton for e, simply by replacing the letters of e ′ by the corresponding letters in e. For instance, starting from the automaton A which recognizes [(a 1 a 2) * a 3] * , one gets a nondeterministic automaton A ′ which recognizes [(ab) * a] * by replacing a 1 and a 3 by a and a 2 by b, as shown in Figure21.

Figure 21 .Proposition 5 . 5 .

 2155 Figure 21. Construction of an automaton recognizing [(ab) * a] * .

EmptyWord(0)Figure 23 .

 023 Figure 23. A nondeterministic automaton recognizing L.

Figure 24 .

 24 Figure 24. An automaton.

Figure 25 .

 25 Figure 25. An extended automaton.

 , the set of transitions is{(1, a * b + a, 2), (1, b * , 3), (2, a + b, 1), (2, b, 3), (3, a, 1), (3, a, 2)}.

 (a, b) * (1, c) * = {(a n , b n c m) | n, m 0} (1, b) * (a, c) * = {(a n , b m c n) | n, m 0}. Their intersection is {(a n , b n c n) | n

P stands for prefix, S for suffix and N for non-factor.

In summary, Glushkov's algorithm to convert a rational expression e into a nondeterministic automaton works as follows:

(1) Linearize e into e ′ and memorize the coding of the letters.

(2) Compute recursively the sets P (e ′), S(e ′) and F (e ′). Then compute a deterministic automaton A ′ recognizing e ′ . (3) Convert A ′ into a nondeterministic automaton A recognizing e.

Example 5.2. Consider the rational expression e = (a(ab) *) * ∪ (ba) * . We first linearize e into e ′ = (a 1 (a 2 a 3) *) * ∪ (a 4 a 5) * . Let L = L(e) and L ′ = L(e ′). To compute the sets P , S and F , one can either use the above-mentioned recursive procedures, or proceed to a direct computation (this method is usually preferred in a computation by hand...). Recall that P [S] is the set of first [last] letters of the words of L ′ . We get

Note that a 1 belongs to S since a 1 is a word of L ′ .

Next we compute the set F of all words of length 2 that are factors of some word of L ′ . We get F = {a 1 a 2 , a 1 a 1 , a 2 a 3 , a 3 a 1 , a 3 a 2 , a 4 a 5 , a 5 a 4 }. For instance, a 3 a 1 is a factor of a 1 a 2 a 3 a 1 and a 3 a 2 is a factor of a 1 a 2 a 3 a 2 a 3 . Since the empty word belongs to L ′ , the state 1 is final and we finally obtain the automaton represented in Figure 22. Since this automaton is local, there is actually no need to write the labels on the transitions. We now convert this automaton into a nondeterministic automaton recognizing L, represented in Figure 23. Proof. Since K contains the empty word, one has

Conversely, let X be a solution of (5.2). Then L ⊆ X and KX ⊆ X. Consequently, K 2 X ⊆ KX ⊆ X and by induction, K n X ⊆ X for all n. It follows that K * X = n 0 X n K ⊆ X. The language X can thus be written as K * M with L ⊆ M : it suffices to take M = X.

In particular, if K contains the empty word, then A * is the maximal solution of (5.2) and the minimal solution is K * L. Consider now a system of the form

(5.3)

We shall only consider the case when the system admits a unique solution.

Proposition 5.8. If, for 1 i, j n, the languages K i,j do not contain the empty word, the system (5.3) admits a unique solution. Moreover, if the K i,j and the L i are rational languages, then the solutions X i of (5.3) are rational languages.

Proof. The case n = 1 is handled by Proposition 5.6. Suppose that n > 1. Consider the last equation of the system (5.3), which can be written

According to Proposition 5.6, the unique solution of this equation is

Replacing X n by this expression in the n -1 first equations, we obtain a system of n -1 equations with n -1 unknowns and one can conclude by induction.

We shall now associate a system of linear equations with every finite automaton A = (Q, A, E, I, F). Let us set, for p, q ∈ Q,

The solutions of the system defined by these parameters are the languages recognized by the automata

More precisely, we get the following result:

J.-É. Pin Yet the associated system does not necessarily fulfil the condition 1 / ∈ K i,j and Proposition 5.9 needs to be modified as follows:

Proposition 5.10. The system (5.3) has a minimal solution (R q) q∈Q , given by the formula R q = {u ∈ A * | there is a path labelled by u from q to F } In particular the language recognized by A is q∈I R q .

Proof. Let us first verify that the family (R q) q∈Q is indeed a solution of (5.3), i.e., satisfies, for all q ∈ Q:

(5.5)

Denote by S q the right hand side of (5.5). If u ∈ R q , then u is by definition the label of a path from q to F . If u = 1, one has L q = 1 and thus u ∈ S q . Otherwise, let (q, u 1 , q ′) be the first transition of the path. One has u = u 1 u ′ , where u ′ is the label of a path from q ′ to F . Therefore u 1 ∈ K q,q ′ , u ′ ∈ R q ′ and finally u ∈ S q . Conversely, let u ∈ S q . If u = 1, one has necessarily u ∈ L q , whence q ∈ F and u ∈ R q . Otherwise, there is a state q ′ such that u ∈ K q,q ′ R q ′ . Thus u = u 1 u ′ for some u 1 ∈ K q,q ′ and u ′ ∈ R q ′ . On the one hand, (q, u 1 , q ′) is a transition of A by the definition of K q,q ′ and on the other hand, u ′ is the label of a path from q ′ to F . Therefore u = u 1 u ′ is the label of a path from q to F and u ∈ R q . Consequently R q = S q .

It remains to verify that if (X q) q∈Q is a solution of the system, then R q ⊆ X q for all q ∈ Q. If u ∈ R q , there exists a path labelled by u from q to F :

Let us show by induction on ri that u i+1 • • • u r belongs to X qi . By hypothesis, the X q are solutions of

In particular, since q r ∈ F , one has 1 ∈ L qr and hence 1 ∈ X qr , which gives the result for ri = 0. Moreover, if

Example 5.3. For the extended automaton represented in Figure 25, the system can be written

Replacing X 3 by aX 1 + aX 2 + 1, and observing that a + b * a = b * a, we obtain the equivalent system

We deduce from the second equation

and replacing X 2 by its value in the first equation, we obtain

Finally, the language recognized by the automaton is

since 1 is the unique initial state.

Kleene's theorem

We are now ready to state the most important result of automata theory.

Theorem 5.11 (Kleene [4]). A language is rational if and only if it is recognizable.

Proof. It follows from Proposition 5.9 that every recognizable language is rational. Corollary 3.2 states that every finite language is recognizable. Furthermore, Propositions 3.1, 3.5 and 3.6 show that recognizable languages are closed under union, product and star. Thus every rational language is recognizable.

The following corollary is now a consequence of Propositions 2.1, 3.1, 3.3, 3.4, 3.5, 3.6, 3.8 and 3.9. Corollary 5.12. Recognizable [rational] languages are closed under Boolean operations, product, star, quotients, morphisms and inverses of morphisms.

We conclude this section by proving some elementary decidability results on recognizable languages. Recall that a property is decidable if there is an algorithm to check whether this property holds or not. We shall also often use the expressions "given a recognizable language L" or "given a rational language L". As long as only decidability is concerned, it makes no difference to give a language by a nondeterministic automaton, a deterministic automaton or a regular expression, since there are algorithms to convert one of the forms into the other. However, the chosen representation is important for complexity issues, which will not be discussed here. Theorem 5.13. Given a recognizable language L, the following properties are decidable:

(1) whether a given word belongs to L, (2) whether L is empty, (3) whether L is finite, (4) whether L is infinite.

Proof. We may assume that L is given by a trim deterministic automaton A = (Q, A, • , q -, F).

(2) every recognizable subset of M is rational, (3) the set M is a rational subset of M .

We have seen that the intersection of two rational subsets is not necessarily rational. What about the intersection of a rational subset and a recognizable subset?

Proposition 6.5. The intersection of a rational subset and of a recognizable subset of a monoid is rational.

The next theorem gives a description of the recognizable subsets of a finite product of monoids. Eilenberg [START_REF] Eilenberg | Automata, languages and machines[END_REF] attributes it to Mezei. Note that this result does not extend to finite products of semigroups. Theorem 6.6. Let M 1 , . . . , M n be monoids and let M = M 1 × • • • × M n . A subset of M is recognizable if and only if it is a finite union of subsets of the form R 1 × • • • × R n , where each R i is a recognizable subset of M i .

One of the most important applications of Theorem 6.6 is the fact that the product of two recognizable relations over finitely generated free monoids is recognizable. Let A 1 , . . . , A n be finite alphabets. Then the monoid A * 1 × • • • × A * n is finitely generated, since it is generated by the finite set {(1, . . . , 1, a i , 1, . . . , 1) | a i ∈ A i , 1 i n}. Proposition 6.7. Let A 1 , . . . , A n be finite alphabets. The product of two recognizable subsets of