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Abstract—Sparse Bayesian Learning (SBL), initially proposed
in the Machine Learning (ML) literature, is an efficient and
well-studied framework for sparse signal recovery. SBL uses
hierarchical Bayes with a decorrelated Gaussian prior in which
the variance profile is also to be estimated. This is more sparsity
inducing than e.g. a Laplacian prior. However, SBL does not scale
with problem dimensions due to the computational complexity
associated with the matrix inversion in Linear Mimimum Mean
Squared Error (LMMSE) estimation. To address this issue, var-
ious low complexity approximate Bayesian inference techniques
have been introduced for the LMMSE component, including Vari-
ational Bayesian (VB) inference, Space Alternating Variational
Estimation (SAVE) or Message Passing (MP) algorithms such
as Belief Propagation (BP) or Expectation Propagation (EP) or
Approximate MP (AMP). These algorithms may converge to the
correct LMMSE estimate. However, in ML we are often also
interested in having posterior variance information. We observed
that SBL via SAVE provides (largely) underestimated variance
estimates. AMP style algorithms may provide more accurate
variance information (per component) as we have shown recently.
However, one practical issue associated with most AMP versions
is that they may diverge even if for a slight deviation from i.i.d
Gaussian or right orthogonally invariant measurement matrices.
To this end we extend here the more robust Swept AMP (SwAMP)
algorithm to Generalized SwAMP (GSwAMP), which handles
independent but non-i.i.d. priors and to the case of dynamic SBL.
The simulations illustrate the desirable convergence behavior of
the proposed GSwAMP-SBL under different scenarios on the
measurement matrix.

I. INTRODUCTION

Sparse signal processing has received tremendous attention
during the last decade in many fields including massive
multi-input multi-output (MIMO) wireless channel estimation,
MIMO radar and image or video processing. The signal model
for the recovery of a sparse signal vector x can be formulated
as, y = Ax + v, where y are the observations or data, A
is called the measurement or the sensing matrix which is
known and is of dimension M ×N with M < N . The signal
(which can be modeled static or dynamic) x contains only K
non-zero (or significant) entries, with K << N . In Bayesian
inference, the Sparse Bayesian Learning (SBL) algorithm first
proposed by [1], [2] is shown to very good reconstruction
performance compared to the deterministic schemes including
LASSO or FOCUSS. SBL is based on a two or three layer
hierarchical prior on the sparse coefficients x. The priors
for the hyperparameters (precision parameters) should be
judiciously chosen such that the marginal prior for x induces

sparsity (for e.g. a student-t prior), allowing the majority of
the coefficients to tend towards zero. It is worth mentioning
that [3] provides a detailed overview of the various sparse
signal recovery algorithms which fall under l1 or l2 norm
minimization approaches such as Basis Pursuit, LASSO etc
and SBL methods. The authors justify the superior recovery
performance of SBL compared to the above mentioned con-
ventional methods. Nevertheless, the matrix inversion involved
in the Linear Minimum Mean Squared Error (LMMSE) step
in SBL at each iteration makes it computationally complex
even for moderately large data sets. This complexity is the
motivation behind approximate inference methods.
Belief Propagation (BP) based SBL algorithms [4] are com-
putationally more efficient. Due to space limitations we refer
the reader to a more detailed discussion on the various
approximate inference methods for SBL in [5]. However, due
to the computational demands associated with the message
passing (MP), several approximate message passing methods
are proposed in the recent literature, see for e.g. [6]–[8].
It is of great importance to analyze the convergence conditions
of approximate message passing based algorithms. State evo-
lution (SE) analysis done on the class of i.i.d matrices ( [6],
[9]) show that the mean square error converges to the Bayes
optimal value in the large system limit. Unfortunately, while
AMP performs well for zero-mean i.i.d. projections, perfor-
mance tends to drastically decline if the measurement matrix
deviates even slightly from this case. The authors in [10] have
shown even for i.i.d non-zero mean measurement matrix, the
AMP algorithm tends to diverge. Hence to overcome these
issues several techniques have been proposed in the literature
including adaptive damping, mean removal [11] and sequential
AMP (called Swept AMP) [12]. However, issues with damping
is that it may further slow down the convergence rate, thus
making the algorithm highly complex. Also, it is not yet sure
how to determine an optimal damping factor.

A. Contributions of this paper

• To handle SBL, we propose an extension of Swept Ap-
proximate Message Passing (GSwAMP), which is robust
to more general matrix ensembles for A and achieves
better convergence properties compared to the state of the
art Generalized Approximate Message Passing based SBL



(GAMP-SBL) in [13] whose convergence is possible only
with damping (slowing down the convergence further).

• We furthermore propose to extend the GSwAMP to
dynamic auto-regressive SBL (DAR-SBL) with hyper
parameter estimation integrated. Dynamic autoregressive
SBL (DAR-SBL) considered here is a case of joint
Kalman filtering (KF) with a linear time-invariant diag-
onal state-space model, and parameter estimation, which
can be considered an instance of nonlinear filering.

• Compared to our previous work using BP [5], the pro-
posed GSwAMP-SBL is robust to more general A (mea-
surement) matrices as is validated through our simula-
tions. Moreover, it provides accurate posterior variance
information compared to space alternating variational
estimation (SAVE) based SBL scheme proposed in [14].

II. STATIC SBL - SIGNAL MODEL

1 The static compressed sensing problem can be formulated
as

y = Ax+ v, (1)

where y is the observations or data, A is called the mea-
surement or the sensing matrix which is known and is of
dimension M × N with M < N , x is the N -dimensional
sparse signal and v is the additive noise. x contains only
K non-zero entries, with K << N . w is assumed to be a
white Gaussian noise, v ∼ N (v; 0, γ−1I). In Bayesian CS, the
sparse signal x (originally it can be deterministic) is assumed
to have a two-layer hierarchical prior as in [1]. The hierarchical
prior is carefully chosen such that it encourages the sparsity
property of x. Let ξ be the vector of precision values, with
ith element ξi. We write the parametrized prior for x as

px(x/Ξ) =
N∏
i=1

N (xi; 0,Ξ
−1), Ξ = Diag(ξ). (2)

We choose a Gamma prior for ξ (precision parameters),

pξ(ξ) =
N∏
i=1

fξi(ξi/a, b) =
N∏
i=1

Γ−1(a)baξa−1
i e−bξi . Here

Γ(a) =
∫∞

0
ta−1e−tdt represents the ’gamma function’. The

resulting marginal pdf of x (student-t distribution) becomes
more sparsity inducing than e.g. a Laplacian prior. The inverse
of noise variance γ is also assumed to have a Gamma prior,
pγ(γ/c, d) = Γ−1(c)dcγc−1

i e−dγ . The advantage of the two-
layer prior structure is that the whole machinery of linear
MMSE estimation can be exploited, such as e.g., the KF. But

1Notations: The operator (·)H represents the conjugate transpose or conjugate for a
matrix or a scalar respectively. In the following, the pdf of a Gaussian random variable
x with mean µ and variance σ2 is given by N (x;µ, ν). xk represents the kth

element of any vector x. KL(q||p) represents the Kullback-Leibler distance between
the two distributions q, p. An,: represents the nth row of A. blkdiag(·) represents
blockdiagonal part of a matrix. diag(X) or Diag(x) represents a vector obtained by the
diagonal elements of the matrix X or the diagonal matrix obtained with the elements
of x in the diagonal respectively. 1M represents a vector of length M with all ones as
the elements. For a matrix A, A ≥ 0 implies it is non-negative (all the elements of A
are non-negative). I or IM represents the identity matrix. tr{A} represents the trace of
A. Ai,j represents the (i, j)th element of matrix A.

this is embedded in other layers making things eventually non-
Gaussian. Now the likelihood distribution can be written as

py(y|x, γ)=(2π)−M/2γM/2e
−γ||y−Ax||2

2 . (3)

To make these priors non-informative [15], we choose them
to be small values a = c = b = d = 10−5. We denote
the unknown parameter vector θ = {x,Ξ, γ} and θi is each
scalar in θ.

A. Fixed Points of Bethe Free Energy and GSwAMP-SBL

When the computation of the posterior distribution becomes
intractable, our aim would become to perform probabilistic
inference by minimizing the variational free energy (VFE)
over an approximate posterior q(θ). The VFE can be written
as [16]

F(q) = KLD(q(θ)||P0(θ))− < log py|θ(y|θ) >q (4)

where KLD denotes the Kullback-Leibler divergence and
<>q represents the expectation over the approximate distri-
bution q and the prior P0(θ) = px(x/Ξ)pξ(ξ)pγ(γ/c, d). We
shall further discuss here briefly the mean field VFE and Bethe
free energy (BFE). Under the mean field (MF) approximation,
where we consider that the q factorizes over the individual
scalar parameters, we can obtain the approximate distribution
as qθi(θi) ∝ exp(< log py|θ(y|θ)P0(θ) >qθī (θī)

). In [16],
the authors show that the fixed points of the GAMP MP
equations are the stationary points of the cost function termed
approximate Bethe Free Energy, which is written below. This
simplified form of the Bethe free energy is obtained using the
same approximations which lead to GAMP from BP in the
large system limit. We denote the MMSE estimate of xi as x̂i
and the posterior variance as σ2

i .

FBetheGAMP (rm, τm, wk, x̂m, σ
2
m) = −

∑
k logZk

−
∑
m
σ2
m+(x̂m−rm)2

2τm
−
∑
k

(wk−
∑
m Akmx̂m)2

2Vk

−
∑
m logZ(rm, τm) with Vk =

∑
mA

2
k,mσ

2
m,

Zk =
∫
e
− (wk−zk)2

2Vk√
2πVk

Pyk|zk(yk|zk)dzk

(5)

where z = Ax, with zk being the kth element. Z(rm, τm)
represents the normalization constant, which gets defined as

Z(rm, τm) =

∫
Pxm(xm|ξm)e−

(xm−rm)2

2τm dxm. (6)

By optimizing (5) alternatingly w.r.t rm, τm, wk, x̂m, σ2
m, we

reach the Algorithm 1, which is termed as sequential GAMP or
Swept GAMP based SBL (GSwAMP-SBL). In Algorithm 1,
the functions f1, f2 are defined as follows (which represent
MMSE estimate in the Gaussian case as in SBL)

f1(rm, τm) = rm
ξ−1
m

ξ−1
m +τm

,

f2(rm, τm) = (ξm + τ−1
m )−1.

(7)



Algorithm 1 GSwAMP-SBL
Input: y,A
Initialize: γ̂0 = c

d , ξ̂0 = a
b , σ

2
m = 1/(‖Am‖2 γ +

ξ̂m),∀m, x̂ = ATy, Vk = 0,∀k, wk = 0.
repeat

for k = 1 to M do
g

(t)
k =

yk−w(t;N+1)
k

1
γ̂+V t;N+1

k

V
(t+1;1)
k =

∑
mA

2
kmσ

2 (t)
m

w
(t+1;1)
k =

∑
mAk,mx̂

(t)
m − V (t+1;1)

k g
(t)
k

end for
S = RandomPermute([1, 2..., N ])
for n = 1 to N do
m = Sn

τ
(t+1)
m =

[∑
k

A2
km

1
γ̂+V

(t+1;k)
k

]−1

r
(t+1)
m = x̂

(t)
m + τ

(t+1)
m

∑
k Akm

yk−wk
1
γ̂+V

(t+1;k)
k

x̂
(t+1)
m = f1(r

(t+1)
m , τ

(t+1)
m )

σ
2 (t+1)
m = f2(r

(t+1)
m , τ

(t+1)
m )

end for
Hyperparameter Estimation (using MF [14, Section
3]
for m = 1 to N do
ξ̂

(t+1)
m = a+1/2

|x̂(t+1)
m |2+σ

2 (t)
m

, γ̂(t+1) = c+N/2
‖y−Ax‖2

2 +d
.

end for
until convergence

III. DYNAMIC AR-SBL

Time varying sparse signal xt is modeled using an AR(1)
process with a diagonal correlation coefficient matrix F , which
can be written as follows

State Update: xt = Fxt−1 +wt,
Observation: yt = A(t)xt + vt,

(8)

where xt = [x1,t, ..., xN,t]
T . Diagonal matrices F and Ξ

are defined with its elements, Fi,i = fi, fi ∈ (−1, 1) and
Ξ = diag(ξ), ξ = [ξ1, ...ξN ]. Further, wt ∼ CN (0,Λ−1),
where Λ−1 = Ξ−1(I − FFH) = diag( 1

λ1
, ..., 1

λN
) and

vt ∼ CN (0, 1
γ I). wt are the complex Gaussian mutually

uncorrelated state innovation sequences. Hence we sparsify
the prediction error variance wt also, with the same support
as x0 and henceforth enforces the same support set for xt,∀t.
vt is independent of thewt process. Although the above signal
model seems simple, there are numerous applications such
as 1) Bayesian adaptive filtering [17], 2) Wireless channel
estimation: multipath parameter estimation as in [18]. In this
case, xt = FIR filter response, and Ξ represents e.g. the power
delay profile. We also denote the unknown parameter vector
θt = {xt,Λ, γ,F } and θi represents each scalar in θ. Note
that we only estimate the reparametrized innovation sequence
precision instead of the precision variables ξi.

IV. GSWAMP-SBL FOR NONLINEAR KALMAN FILTERING

The joint distribution p(yt,θt/y1:t−1) can be written as
(Σt|t−1 represents the diagonal prediction covariance matrix)

ln p(yt,θt/y1:t−1) = N
2 ln γ − γ

2 ||yt −Atxt| |2+

−M det(Σ̂t|t−1)− 1
2

(
xt − x̂t|t−1

)T
Σ̂−1
t|t−1

(
xt − x̂t|t−1

)
+(c− 1) ln γ + c ln d− dγ + constants.

A. Diagonal AR(1) ( DAR(1) ) Prediction Stage

In the prediction stage, similar as in KF, we compute the
posterior, p(xt | y1:t−1), where y1:t−1 refers to the obser-
vations till time t− 1. For more detailed derivation, we refer
to our previous work [19] due to space limitations. This part
gets computed using MF, however, the interation between
xm,t and fm requires Gaussian projection, using expectation
propagation (EP) [19]. The resulting Gaussian distribution is
parameterized as xl,t ∼ N (xl,t; x̂l,t|t−1, σ

2
l,t|t−1).

B. Measurement Update (Filtering) Stage

For the measurement update stage, the posterior for xt is
inferred using GSwAMP-SBL in Algorithm 1. The posterior
mean and diagonal covariance matrix of the estimate computed
at xt are denoted by x̂t|t,Σt|t. We denote each entries in x̂t|t
as x̂l,t|t respectively. In the measurement stage, the prior for
xt gets replaced by the posterior estimate from the prediction
stage. We refer to our previous work [5] for detailed discus-
sions on the fitering stage. One remark here is that compared
to our previous work using BP in [5], using GSwAMP gives
a more computationally feasible implementation and accurate
posterior variances, where σ2

l,t|t incorporates the effect of all
σ2
l′,t|t, l

′ 6= l. σ2
l,t|t represents the diagonal elements of the

posterior covariance matrice Σt|t.

C. Lag-1 Smoothing Stage
We obtain the system model for the smoothing stage (by
combining the AR(1) stage in the measurement model) as
follows

yt = A(t)Fxt−1 + ṽt, where ṽt = A(t)wt−1 + vt, (9)

where ṽt ∼ CN (0, R̃t) with R̃t = A(t)Λ−1A(t)H + 1
γ I. We

show in [5, Lemma 1] that KF is not enough to adapt the
hyperparameters, instead we need at least a lag 1 smoothing
(i.e. the computation of x̂t−1|t,Σt−1|t through GSwAMP-
SBL). Here, we first do a noise whitening by multiplying yt
with R̃−1/2

t . Hence, we can rewrite the observation model as

ŷt = Â(t)xt−1 + v̂t, where v̂t = R̃
−1/2
t ṽt,

Â(t) = R̃
−1/2
t A(t)F .

(10)

The joint distribution can be factorized as, p(yt,θ/y1:t−1) =
p(yt/θt)p(xt−1/y1:t−1)p(F ,Λ, γ | y1:t−1).

ln p(yt,θt−1/y1:t−1) = −1
2 ln det R̃t

−|fm|2|xm|2A(t)T
m R̃−1

t A
(t)
m

+2<(fHmx
H
mA

(t)H
m R̃−1

t (yt −A
(t)
m̄ Fm̄xm̄,t)) + cf ,

(11)

where cf being the terms independent of fm, A
(t)
m̄ ,xm̄,t

represents the matrix A(t) or the vector xt with mth column



or element removed. Note that we propose to compute R̃t

by substituting the point estimates of Λ, γ. We also define
F̂m̄|t = diag(f̂n|t, n 6= m) with mth element removed. Further
applying the MF rule, we write the mean and variance of the
resulting Gaussian distribution for fm as,

σ−2
fm|t = (|x̂m,t−1|t|2 + σ2

m,t−1|t)A
(t)T
m R̃−1

t A
(t)
m ,

f̂m|t = σ2
fm|tx̂

H
m,t−1|tA

(t)H
m R̃−1

t (yt −A
(t)
m̄ F̂m̄|tx̂m̄,t−1|t).

(12)

Algorithm 2 GSwAMP based DAR-SBL

Initialization f̂l|0, λ̂l|0 = a
b , γ̂0 = c

d , x̂l,0|0 = 0, σ2
l,0|0 = 0,∀l.

Define Σt−1|t−1 = diag(σ2
l,t|t−1).

for t = 1 : T do
Prediction Stage:

1) Compute x̂l,t|t−1, σ
2
l,t|t−1 using EP and MF

[5], x̂l,t|t−1 = f̂l|t−1x̂l,t−1|t−1, σ
2
l,t|t−1 =

|f̂l|t−1|2σ2
l,t−1|t−1 +

σ2
fl|t−1(|x̂l,t−1|t−1|2 + σ2

l,t−1|t−1) + λ̂−1
l|t−1.

Filtering Stage:
1) Compute x̂l,t|t, σ

−2
l,t|t using GSwAMP (iterated conver-

gence).
Smoothing Stage:
Initialization: Σ

(0)
t−1|t = Σt−1|t−1, x̂

(0)
t−1|t = x̂t−1|t−1. Up-

date R̃t, Â
(t).

1) Compute x̂t−1|t,Σt−1|t using GSwAMP (iterated until
convergence)

Estimation of hyperparameters (Define: x′k,t = xk,t −
fkxk,t−1, ζt = βζt−1 + (1− β) <

∥∥yt −A(t)xt
∥∥2
>) :

1) Compute f̂l|t, σ
2
fl|t

from (12), γ̂t = c+N
(ζt+d) and λl|t =

(a+1)

(<|x′k,t|2>|t+b)
.

V. SIMULATION RESULTS

To elucidate further the excellent convergence proporties of the
GSwAMP-SBL algorithm from other state of the art AMP-
SBL versions, we evaluate the normalized MSE (NMSE)
performance under different scenarios of A matrices such as
ill-conditioned, non-zero mean matrices for static SBL. We
also illustrate the performance of the BP based DAR-SBL
compared to our suboptimal methods which are based on
MF. Note that simulations are performed with dimensions of
A,M = 150, N = 250. The power delay profile (variances
of xi) for the SBL model in Section III is chosen as di−1,
with d = 0.93 and starting with index i = 1. Further we
analysis the following scenarios in the simulations. In Figure 1
and Figure 2, we also assume that the hyperparameters are
unknown and get estimated as proposed in our Algorithm 1.

A. ill-conditioned A case:

We construct the matrix A with condition number κ > 1.
Let A = UΣVT , where U,VT are the left and right

singular vectors of an i.i.d-Gaussian matrix. Further, we se-
lect the singular values such that Σi,i

Σi,i+1
= κ1/(M−1), for

i = 1, 2...,M − 1 and Σi,i is the ith diagonal element of
Σ. The more the condition number, the more A deviates
from the i.i.d-Gaussian case. In Figure 1, we plot the NMSE
values as a function of the condition number for different
algorithms such as original SBL (LMMSE-SBL), SAVE-SBL
[14], proposed GSwAMP-SBL and damped GAMP-SBL [13].
In fact, in the simulations we observed that GAMP-SBL does
not converge without using damping and there does not exist
any closed form solution for the optimal damping value. Hence
depending on the particular scenario being considered and also
on the dimensions, the damping value may change. However,
the proposed GSwAMP-SBL is more robust in the sense that
it does not require any damping and convergence to a local
optimum is guaranteed.
B. Non-zero mean A case:
In this case, we generate each entries of A as i.i.d Gaussian
with a non-zero mean, Ai,j ∼ N (µ, 1

M ). We plot the NMSE
performance for different algorithms in Figure 2 as a function
of the mean of A. We observe that GAMP-SBL does not con-
verge, in this case apart from damping we may require mean
removal procedure also as in noted in [11]. However, SAVE-
SBL and the proposed GSwAMP-SBL converges without
any mean removal procedure. Hence, GSwAMP-SBL would
be preferred from an implementation complexity perspective.
SAVE-SBL has the incorrect posterior variance issue which
we have observed in our previous papers.
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Fig. 1. NMSE vs Condition number of the measurement matrix A.

C. DAR-SBL
For the observation model, the parameters chosen are N =
256,M = 200. All signals are considered to be real in the
simulation. All the elements of the factor matrix A

(t)
j (time

varying) are generated i.i.d. from a Gaussian distribution with
mean 0 and variance 1. The rows of A(t) are scaled by

√
16 so

that the signal part of any scalar observation has unit variance.
Taking the SNR to be 20dB, the variance of each element of
vt (Gaussian with mean 0) is computed as 0.01.
Consider the state update, xt = Fxt−1 +wt. To generate x0,
the first 16 elements are chosen as Gaussian (mean 0 and vari-
ance 1) and then the remaining elements of the vector x0 are
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Fig. 2. NMSE vs the mean of A.

put to zero. Then the elements of x0 are randomly permuted
to distribute the 30 non-zero elements across the whole vector.
The diagonal elements of F are chosen uniformly in [0.9, 1).
Then the covariance ofwt can be computed as Ξ−1(I−FF T ).
Note that Ξ−1 contains the variances of the elements of xt
(including t = 0), where for the non-zero elements of x0

the variance is 1. Following observations can be made from
the simulations.Our proposed low complexity algorithm using
BP has similar performance as that of joint VB which has
higher complexity. In Figure 3, we evaluate the performance
of the BP-MF-EP DAR SBL and show that the parameter
estimation benefits from BP. Indeed, note that BP can also
be implemented by GSwAMP-SBL for better computational
feasibility and under i.i.d A BP and GSwAMP-SBL converge
to the same solution. “MF DAR-SBL” refers to the sub-optimal
version with no BP and only MF for filtering or smoothing
of xt. Also we show the drastic improvement in performance
with lag-1 smoothing for hyperparameter estimation compared
to just using filtering.
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Fig. 3. DAR-SBL: NMSE as a function of time.

VI. CONCLUSIONS

In this paper, we look at the robustness of the SBL algorithm
under deviations from i.i.d Gaussian assumptions of measure-
ment matrix. Towards this direction, we propose a GSwAMP-
SBL algorithm which implements the GAMP sequentially
rather than parallel as in the original GAMP version by Rangan
[7]. Among the many techniques proposed for improving the
convergence properties of AMP algorithms, GSwAMP stands

out due to the low cost per iteration, compared to the highly
complex nature of damping or mean removal based algorithms
in the literature. We also integrate hyper parameter estimation
(by MF) and an extension of the GSwAMP-SBL for a time
varying sparse signal is also proposed.
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