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Gérald Munoz,† Alain Dequidt,∗,‡ Nicolas Martzel,∗,† Ronald Blaak,‡ Armel
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Figure 1: The effect of particle crossing on the shape of the chain/segment length probability
density function Q(n). Dashed lines represent target distributions, C) not entangled net-
work, sim∗) entangled network before mechanical relaxation, sim) entangled network after
mechanical equilibration. Low n values are less likely to occur, because having over-extended
chains is forbidden.

Table 1: Detailed simulation parameters

a× b× c (nm) Number of crosslinks Number of entanglements
60× 60× 60 7776 20304

Connectivity Number of segments a(t)−a(t0)
t−t0 (cm s−1)

4 15552 0.04
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Mooney-Rivlin representation of the stress

It is possible to find a simple expression for (λ− 1/λ2), resulting in the reduced stress found

in the Mooney-Rivlin equation.1,2 This derivation is well known, but since we make explicit

use of it in Fig.3, it is included here for completeness.

Suppose we have a strain energy function W that is expressed as a function of the three

strain tensor invariants I1,I2,I3. These invariants are defined as:

I1 = λ21 + λ22 + λ23 ,

I2 = λ21 λ
2
2 + λ22 λ

2
3 + λ21 λ

2
3 ,

I3 = λ21 λ
2
2 λ

2
3 ,

(1)

with λi the deformation ratio of the i axis. These three expressions are independent of the

choice of reference frame. The case of an incompressible material corresponds to I3 = 1.

If we choose to stretch our material along the i axis, we can express the stress as the

partial derivative of energy with respect to the deformation along this axis:

σii =
∂W

∂λi
λi (2)

To calculate the nominal stress σ0 in the case of a uni-axial traction along axis 1, we have

to evaluate (σ11 − σ22)/λ. This results in:

σ11 − σ22 =
∂W

∂λ1
λ1 −

∂W

∂λ2
λ2 (3)
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In order to change variables from λi to Ii, we need

∂I1
∂λ1

= 2λ1 ,

∂I2
∂λ1

= 2λ1 λ
2
2 + 2λ1 λ

2
3

(4)

and by using the chain rule, we find

σ11 − σ22 = 2
(
λ21 − λ22

) ∂W
∂I1

+ 2
(
λ21 − λ22

)
λ23
∂W

∂I2
(5)

σ11 − σ22 = 2
(
λ21 − λ22

)(∂W
∂I1

+ λ23
∂W

∂I2

)
(6)

In the case of uniaxial stress along axis 1 and by using the incompressibility approxima-

tion, we can write:

λ1 = λ ,

λ1 λ2 λ3 = 1 ,

λ2 = λ3 =
1√
λ

(7)

and we find for the nominal stress:

σ0 =
σ11 − σ22

λ
= 2

(
λ− 1

λ2

)[
∂W

∂I1
+

1

λ

∂W

∂I2

]
,

σ0
λ− 1/λ2

= 2

[
∂W

∂I1
+

1

λ

∂W

∂I2

] (8)

which is the expression of the reduced stress as defined by Mooney and Rivlin. If we assume

a simple expression for W , such as ∂W
∂I1

and ∂W
∂I2

being constants, we obtain

σ0
λ− 1/λ2

= 2C1 + 2C2
1

λ
(9)
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which is the reason for plotting
σ0

λ− 1/λ2
as a function of 1

λ
.
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