Predicting mechanical constitutive laws of elastomers with mesoscale simulations

Gérald Munoz, ${ }^{\dagger}$ Alain Dequidt, ${ }^{, \not, \ddagger}$ Nicolas Martzel, ${ }^{*, \dagger}$ Ronald Blaak, ${ }^{\ddagger}$ Armel Mbiakop-Ngassa, ${ }^{\dagger}$ Julien Devémy, ${ }^{\ddagger}$ Benoit Latour, ${ }^{\dagger}$ Sébastien Garruchet, ${ }^{\dagger}$
Florent Goujon, ${ }^{\ddagger}$ Etienne Munch, ${ }^{\dagger}$ and Patrice Malfreyt ${ }^{\ddagger}$
\dagger Manufacture Française des Pneumatiques Michelin, Site de Ladoux, 23 Place des Carmes Déchaux, France Cedex 9, 63040 Clermont-Ferrand, France
\ddagger Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, SIGMA
Clermont, F-63000 Clermont-Ferrand, France
E-mail: alain.dequidt@uca.fr; nicolas.martzel@michelin.com

Figure 1: The effect of particle crossing on the shape of the chain/segment length probability density function $Q(n)$. Dashed lines represent target distributions, C) not entangled network, sim^{*}) entangled network before mechanical relaxation, sim) entangled network after mechanical equilibration. Low n values are less likely to occur, because having over-extended chains is forbidden.

Table 1: Detailed simulation parameters

$a \times b \times c(\mathrm{~nm})$	Number of crosslinks	Number of entanglements
$60 \times 60 \times 60$	7776	20304
Connectivity	Number of segments	$\frac{a(t)-a\left(t_{0}\right)}{t-t_{0}}\left(\mathrm{~cm} \mathrm{~s}^{-1}\right)$
4	15552	0.04

Mooney-Rivlin representation of the stress

It is possible to find a simple expression for $\left(\lambda-1 / \lambda^{2}\right)$, resulting in the reduced stress found in the Mooney-Rivlin equation. ${ }^{1,2}$ This derivation is well known, but since we make explicit use of it in Fig.3, it is included here for completeness.

Suppose we have a strain energy function W that is expressed as a function of the three strain tensor invariants I_{1}, I_{2}, I_{3}. These invariants are defined as:

$$
\begin{align*}
& I_{1}=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2} \\
& I_{2}=\lambda_{1}^{2} \lambda_{2}^{2}+\lambda_{2}^{2} \lambda_{3}^{2}+\lambda_{1}^{2} \lambda_{3}^{2} \tag{1}\\
& I_{3}=\lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}^{2}
\end{align*}
$$

with λ_{i} the deformation ratio of the i axis. These three expressions are independent of the choice of reference frame. The case of an incompressible material corresponds to $I_{3}=1$.

If we choose to stretch our material along the i axis, we can express the stress as the partial derivative of energy with respect to the deformation along this axis:

$$
\begin{equation*}
\sigma_{i i}=\frac{\partial W}{\partial \lambda_{i}} \lambda_{i} \tag{2}
\end{equation*}
$$

To calculate the nominal stress σ_{0} in the case of a uni-axial traction along axis 1 , we have to evaluate $\left(\sigma_{11}-\sigma_{22}\right) / \lambda$. This results in:

$$
\begin{equation*}
\sigma_{11}-\sigma_{22}=\frac{\partial W}{\partial \lambda_{1}} \lambda_{1}-\frac{\partial W}{\partial \lambda_{2}} \lambda_{2} \tag{3}
\end{equation*}
$$

In order to change variables from λ_{i} to I_{i}, we need

$$
\begin{align*}
& \frac{\partial I_{1}}{\partial \lambda_{1}}=2 \lambda_{1} \\
& \frac{\partial I_{2}}{\partial \lambda_{1}}=2 \lambda_{1} \lambda_{2}^{2}+2 \lambda_{1} \lambda_{3}^{2} \tag{4}
\end{align*}
$$

and by using the chain rule, we find

$$
\begin{gather*}
\sigma_{11}-\sigma_{22}=2\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right) \frac{\partial W}{\partial I_{1}}+2\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right) \lambda_{3}^{2} \frac{\partial W}{\partial I_{2}} \tag{5}\\
\sigma_{11}-\sigma_{22}=2\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right)\left(\frac{\partial W}{\partial I_{1}}+\lambda_{3}^{2} \frac{\partial W}{\partial I_{2}}\right) \tag{6}
\end{gather*}
$$

In the case of uniaxial stress along axis 1 and by using the incompressibility approximation, we can write:

$$
\begin{align*}
& \lambda_{1}=\lambda, \\
& \lambda_{1} \lambda_{2} \lambda_{3}=1, \tag{7}\\
& \lambda_{2}=\lambda_{3}=\frac{1}{\sqrt{\lambda}}
\end{align*}
$$

and we find for the nominal stress:

$$
\begin{align*}
& \sigma_{0}=\frac{\sigma_{11}-\sigma_{22}}{\lambda}=2\left(\lambda-\frac{1}{\lambda^{2}}\right)\left[\frac{\partial W}{\partial I_{1}}+\frac{1}{\lambda} \frac{\partial W}{\partial I_{2}}\right], \\
& \frac{\sigma_{0}}{\lambda-1 / \lambda^{2}}=2\left[\frac{\partial W}{\partial I_{1}}+\frac{1}{\lambda} \frac{\partial W}{\partial I_{2}}\right] \tag{8}
\end{align*}
$$

which is the expression of the reduced stress as defined by Mooney and Rivlin. If we assume a simple expression for W, such as $\frac{\partial W}{\partial I_{1}}$ and $\frac{\partial W}{\partial I_{2}}$ being constants, we obtain

$$
\begin{equation*}
\frac{\sigma_{0}}{\lambda-1 / \lambda^{2}}=2 C_{1}+2 C_{2} \frac{1}{\lambda} \tag{9}
\end{equation*}
$$

which is the reason for plotting $\frac{\sigma_{0}}{\lambda-1 / \lambda^{2}}$ as a function of $\frac{1}{\lambda}$.

References

(1) Mooney, M. A theory of large elastic deformation. Journal of applied physics 1940, 11, 582-592.
(2) Rivlin, R. Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 1948, 241, 379-397.

