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Figure 1: The effect of particle crossing on the shape of the chain/segment length probability
density function Q(n). Dashed lines represent target distributions, C) not entangled net-
work, sim*) entangled network before mechanical relaxation, sim) entangled network after
mechanical equilibration. Low n values are less likely to occur, because having over-extended
chains is forbidden.

Table 1: Detailed simulation parameters

a X bxc(nm) Number of crosslinks Number of entanglements

60 x 60 x 60 7776 20304
A a(t)—a(to) —
Connectivity ~ Number of segments == (ems h
4 15552 0.04




Mooney-Rivlin representation of the stress

It is possible to find a simple expression for (A — 1/\?), resulting in the reduced stress found
in the Mooney-Rivlin equation.'? This derivation is well known, but since we make explicit
use of it in Fig.3, it is included here for completeness.

Suppose we have a strain energy function W that is expressed as a function of the three

strain tensor invariants I1,l5,I3. These invariants are defined as:
L=X+A+)
L=XNAX+XA2+222 (1)
L= XA2N2

with \; the deformation ratio of the ¢ axis. These three expressions are independent of the

choice of reference frame. The case of an incompressible material corresponds to I3 = 1.

If we choose to stretch our material along the i axis, we can express the stress as the

partial derivative of energy with respect to the deformation along this axis:
Oii = A (2)

To calculate the nominal stress oy in the case of a uni-axial traction along axis 1, we have

to evaluate (017 — 022)/A. This results in:



In order to change variables from A; to I;, we need

ol
=2\
O\ b n
8]2
=2\ >\2 2\ )\2
8A1 1Ay + 20

and by using the chain rule, we find

oW oW
o1 — 020 =2 (A} = A3) ar +2 (AT = 2) A5 = oL, (5)
oW oW
ou—om=20¢-2) (G + 850 (6)

In the case of uniaxial stress along axis 1 and by using the incompressibility approxima-

tion, we can write:

A=A,

MA Az =1 (7)
1
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and we find for the nominal stress:
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which is the expression of the reduced stress as defined by Mooney and Rivlin. If we assume

a simple expression for W, such as a I and belng constants, we obtain
T o0 420, 9)
A—1/x2 7! D)



which is the reason for plotting as a function of %
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