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Schrödinger equation in the case of Dirichlet
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Abstract

We consider the 1D nonlinear Schrödinger equation with bilinear control.
In the case of Neumann boundary conditions, local exact controllability of
this equation near the ground state has been proved by Beauchard and
Laurent [BL10]. In this paper, we study the case of Dirichlet boundary
conditions. To establish the controllability of the linearised equation, we use
a bilinear control acting through four directions: three Fourier modes and
one generic direction. The Fourier modes are appropriately chosen so
that they satisfy a saturation property. These modes allow to control
approximately the linearised Schrödinger equation. We show that the
reachable set for the linearised equation is closed. This is achieved by
representing the resolving operator as a sum of two linear continuous
mappings: one is surjective (here the control in generic direction is used)
and the other is compact. A mapping with dense and closed image is
surjective, so the linearised Schrödinger equation is exactly controllable.
Then local exact controllability of the nonlinear equation is derived using
the inverse mapping theorem.
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0 Introduction

We study the controllability of the one-dimensional nonlinear Schrödinger (NLS)
equation with bilinear control and Dirichlet boundary conditions. To simplify the
presentation, we consider in this introduction the case of the cubic NLS equation

i∂tψ = −∂2xxψ + κ|ψ|2ψ + 〈u(t), Q(x)〉ψ, x ∈ I = (0, 1), (0.1)

ψ(t, 0) = ψ(t, 1) = 0, (0.2)

where Q : I → Rq is a given external field and κ is a real number. We fix
any T > 0 and consider the amplitude u : [0, T ]→ Rq as a control term and the
solution at time T , i.e., ψ(T ), as a state.

To formulate the main result of this paper, let us introduce some notation.
We consider L2(I;C) as a real Hilbert space endowed with the scalar product

〈f, g〉L2 = Re

∫ 1

0

f(x)g(x)dx

and the corresponding norm ‖ · ‖L2 . Let A be the Dirichlet Laplacian operator

A = −∂2xx, D(A) = H2 ∩H1
0 (I;C),

and let φk(x) =
√

2 sin(kπx), k ≥ 1 be its eigenfunctions associated with the
eigenvalues λk = k2π2. We use the spaces Hs

(0) = D(A
s
2 ), s ≥ 0 endowed with

the scalar products 〈f, g〉(s) = 〈A s
2 f,A

s
2 g〉L2 and the corresponding norms ‖·‖(s).

The system (0.1), (0.2) is supplemented with the initial condition

ψ(0, x) = ψ0(x), (0.3)
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which is assumed to belong to the unit sphere S in L2(I;C). The following is
the main result of this paper.

Main Theorem. Assume that Q = (Q1, . . . , Qq) is a smooth field such that the
vector space

Q = spanR{Qk : k = 1, . . . , q} (0.4)

contains the functions 1, cos(πx), cos(2πx), and a function µ verifying the
inequality

|〈µφ1, φk〉L2 | ≥ c

k3
, k ≥ 1 (0.5)

for some number c > 0. Then there is an at most countable set K ⊂ (−∞, 0)
such that, for any κ ∈ R \ K, the NLS equation is locally exactly controllable
near the ground state φ1. More precisely, for any T > 0, there is a number δ > 0
such that, for any ψ0, ψ1 ∈ H3

(0)(I;C) ∩ S with

‖ψj − φ1‖(3) < δ, j = 0, 1,

there is a control u ∈ L2([0, T ];Rq) and a solution ψ ∈ C([0, T ];H3
(0)(I;C)) of

the problem (0.1)-(0.3) satisfying ψ(T ) = ψ1.

A more general version of this theorem is stated in Section 2 (see Theorem 2.2).
In that version, the nonlinear term has the form |ψ|2pψ with any integer p ≥ 1,
and the conditions on the field Q and the number κ are formulated in terms of a
general saturation property.

The controllability of the Schrödinger equation (0.1) has been extensively
studied in the literature in the case κ = 0. Note that in that case, even if
the equation is linear in ψ, the associated control problem is still nonlinear.
Ball, Marsden, and Slemrod [BMS82] proved that the reachable set for this equa-
tion from any initial condition in H2

(0)(I;C) ∩ S with controls in L2 has empty

interior in H2
(0)(I;C)∩S. In particular, this means that the problem is not locally

exactly controllable in that phase space. Beauchard [Bea05] obtained the first
positive controllability result: in the case Q(x) = x, she proved local exact con-
trollability in some H7

(0)-neighborhood of any eigenstate by using a Nash–Moser

theorem. Beauchard and Coron [BC06] obtained exact controllability between
neighborhoods of different eigenstates. Later, in the paper [BL10], Beauchard and
Laurent found a way to use the classical inverse mapping theorem to prove local
exact controllability of the Schrödinger equation; more precisely, they proved
exact controllability in some H3

(0)-neighborhood of any eigenstate in the case

when Q = µ satisfies condition (0.5). The methods of [BL10] have been further
developed by Morancey and the authors of this paper in [Mor14, MN15, Duc20]
to study simultaneous exact controllability of several Schrödinger equations.

All the above papers deal with the one-dimensional Schrödinger equation.
In the multidimensional case, exact controllability remains an open problem.
In that situation, approximate controllability property has been studied by many
authors; for the first results we refer the reader to the works by Boscain et
al. [CMSB09, BCCS12], Mirrahimi [Mir09], and the second author [Ner10].
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In the case of the NLS equation (0.1) with κ 6= 0 and Neumann boundary
conditions, local exact controllability is established by Beauchard and Lau-
rent [BL10]. They use the inverse mapping theorem and exact controllability of
the linearised equation. The latter is proved by using a convenient change of
the unknown that reduces the original problem to another linear system with
explicit spectrum. The controllability of the reduced system is proved by using
a moment problem approach and the Ingham inequality. In the case of Dirichlet
boundary conditions, it is not clear whether such reduction is possible, so we
proceed in a different way.

We note that when 1 and cos(2πx) belong to the vector space Q defined
by (0.4), the ground state φ1 is a stationary solution of the NLS equation (0.1)
corresponding to some constant control u. The linearisation of the equation
around the couple (φ1, u) is given by

i∂tξ = −∂2xxξ − π2ξ + 2κφ21 Re(ξ) + 〈v(t), Q(x)〉φ1. (0.6)

We prove exact controllability of this equation in two steps. First, we show that
if the number κ is in the complement of some at most countable set K, then the
directions 1 and cos(πx) are saturating. As a consequence, we obtain approximate
controllability of Eq. (0.6). The saturation argument employed here is inspired
by the papers of Agrachev, Sarychev [AS05, AS06] and Shirikyan [Shi06], which
study approximate controllability of the nonlinear Navier–Stokes and Euler
systems.

Next we show that approximate controllability of Eq. (0.6) implies its exact
controllability. To this end, we decompose the solution as follows ξ = ξ1 + ξ2,
where ξ1 and ξ2 are solutions of equations

i∂tξ1 = −∂2xxξ1 − π2ξ1 + 〈v(t), Q(x)〉φ1, (0.7)

i∂tξ2 = −∂2xxξ2 − π2ξ2 + 2κφ21 Re(ξ1 + ξ2). (0.8)

Eq. (0.7) is exactly controllable. Indeed, as in [BL10], this can be seen by
rewriting the control system as a moment problem and then by solving it with
the help of the Ingham inequality and the assumption (0.5). On the other hand,
we show that the resolving operator of Eq. (0.8) is compact. According to a
functional analysis result, in a Banach space, the sum of compact and surjective
linear continuous mappings has closed image. On the other hand, this image is
dense, by approximate controllability of Eq. (0.6). An operator with closed and
dense image is obviously surjective, so the linearised Schrödinger equation (0.6)
is exactly controllable. Applying the inverse mapping theorem, we derive local
exact controllability of the nonlinear equation.

In the case κ ∈ K, the linearised control system may possibly miss one
direction. However, we expect that using the nonlinear term one can prove
that the result of the Main Theorem still remains true. It would be natural
to study this case by applying a power series expansion in the spirit of the
paper [CC04] by Coron and Crépeau (see also [Cor07, BC06]). This question
will be considered elsewhere.
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The use of saturation property to prove approximate controllability of the
linearised Schrödinger equation and the argument allowing to derive exact
controllability from approximate controllability are among the novelties of this
paper. We believe these arguments can be employed in other useful situations.

Global controllability of the NLS equation (0.1) with κ 6= 0 is a challenging
open problem. First results in this direction have been obtained recently by
the authors [DN21] and by Coron et al. [CXZ21], who consider approximate
controllability between some particular states (in a semiclassical sense in the
second reference). From the Main Theorem and the time reversibility of the
Schrödinger equation it follows that global exact controllability will be established
if one shows approximate controllability to the ground state φ1 in the H3

(0)-norm

(see Theorem 3.2 in [Ner10] for the case κ = 0).
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Notation

In this paper, we use the following notation.

〈·, ·〉 and | · | denote the Euclidian scalar product and norm in Rq.
1 is the function identically equal to 1 on the interval I = (0, 1).

L2 = L2(I;C) and Hs = Hs(I;C), s > 0 are the usual Lebesgue and Sobolev
spaces of functions g : I → C with the norms ‖ · ‖L2 and ‖ · ‖Hs . In the case of
the spaces of real-valued functions, we write L2(I;R) and Hs(I;R).

For any V ∈ H3(I;R), we denote by AV the Schrödinger operator

AV = −∂2xx + V, D(AV ) = H2 ∩H1
0 (I;C). (0.9)

{φk,V } is an orthonormal basis in L2(I;R) formed by eigenfunctions of AV ,
and λ1,V < . . . < λk,V < . . . are the corresponding eigenvalues.

Hs
(V ) = D(A

s
2

V ), s ≥ 0. Note that

H3
(V ) = H3

(0) =
{
ψ ∈ H3(I,C) : ψ|x=0,1 = ψ′′|x=0,1 = 0

}
.

`2 =
{
{ak}k≥1 ∈ CN :

∑+∞
k=1 |ak|2 < +∞

}
, `2r =

{
{ak}k≥1 ∈ `2 : a1 ∈ R

}
.

We write JT instead of [0, T ].

Let X be a Banach space endowed with a norm ‖ · ‖.
BX(a, r) denotes the closed ball in X of radius r > 0 centred at a ∈ X.

L2(JT ;X) is the space of Borel-measurable functions g : JT → X with the norm

‖g‖L2(JT ;X) =

(∫ T

0

‖g(t)‖2Xdt

) 1
2

.
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C(JT ;X) is the space of continuous functions g : JT → X with the norm
‖g‖C(JT ;X) = maxt∈JT ‖g(t)‖X .

1 Controllability of the linearised equation

In this section, we study the controllability of the following linear Schrödinger
equation (cf. Eq. (0.6)):

i∂tξ = −∂2xxξ + V (x)ξ − λξ +W (x) Re(ξ) + 〈v(t), Q(x)〉φ(x), (1.1)

ξ(t, 0) = ξ(t, 1) = 0, (1.2)

where Q : I → Rq is a given field, V,W : I → R are given potentials, φ = φ1,V
is the ground state of the Schrödinger operator AV (see (0.9)), and λ = λ1,V is
the associated eigenvalue. The following well-posedness result is a consequence
of Proposition 3.1.

Proposition 1.1. For any T > 0, Q ∈ H3(I,Rq), V,W ∈ H3(I;R), v ∈ L2(JT ;Rq),
and ξ0 ∈ H3

(0), there is a unique solution ξ ∈ C(JT ;H3
(0)) of the problem

(1.1), (1.2) satisfying ξ(0) = ξ0. Moreover, there is a constant CT > 0 such that

‖ξ‖C(JT ;H3
(0)

) ≤ CT
(
‖ξ0‖(3) + ‖v‖L2(JT ;Rq)

)
.

Let
Tφ = {ψ ∈ L2(I,C) : Re〈ψ, φ〉L2 = 0}

be the tangent space to the unit sphere S at φ. As the functions Q,V,W, and v
are real-valued, we have ξ(t) ∈ Tφ for any t ∈ JT , provided that ξ0 ∈ Tφ. Let

R : H3
(0) × L

2(JT ;Rq)→ C(JT ;H3
(0)), (ξ0, v) 7→ ξ

be the resolving operator of the problem (1.1), (1.2), and let RT be its restriction
at time T . In Section 1.1, we show that this problem is approximately controllable
under some saturation condition. Then, in Section 1.2, assuming additionally
that the vector space Q spanned by the components of Q contains a function µ
satisfying an inequality similar to (0.5), we prove exact controllability of the
problem.

1.1 Approximate controllability

Assume that the field Q and the potentials V,W are smooth. Let us define
finite-dimensional vector spaces by

H = spanR{Qjφ : j = 1, . . . , q}

and

F(H) = spanR
{
f + i(−∂2xxg + V g − λg +W Re(g)) : f, g ∈ H

}
. (1.3)
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In the spirit of the papers [AS05, AS06, Shi06], we define a non-decreasing
sequence of finite-dimensional spaces {Hj} in the following way

H0 = H, Hj = F(Hj−1) for j ≥ 1, H∞ =

∞⋃
j=0

Hj . (1.4)

Let P1 be the orthogonal projection onto the closed subspace H3
(0) ∩ Tφ in H3

(0).

Definition 1.2. We say that a field Q is saturating for the problem (1.1), (1.2)
if H∞ ⊂ H3

(0) and the projection P1H∞ is dense in H3
(0) ∩ Tφ.

Proposition 1.3. Assume that Q is saturating. Then the problem (1.1), (1.2) is
approximately controllable in the sense that the image of the linear mapping

RT (0, ·) : L2(JT ;Rq)→ H3
(0) ∩ Tφ, v 7→ ξ(T )

is dense in H3
(0) ∩ Tφ for T > 0.

Proof. Step 1. Reduction. For any 0 ≤ τ ≤ t ≤ T , let

R(t, τ) : H3
(0) → H3

(0), ξ0 7→ ξ(T )

be the resolving operator of the problem

i∂tξ = −∂2xxξ + V (x)ξ − λξ +W (x) Re(ξ),

ξ(t, 0) = ξ(t, 1) = 0,

ξ(τ, x) = ξ0.

Let the operator A : L2(JT ;H3
(0))→ H3

(0) be defined by

A(v) =

∫ T

0

R(T, τ)v(τ) dτ, v ∈ L2(JT ;H3
(0)),

and let PH be the orthogonal projection onto H in H3
(0). The proposition will be

proved if we show that the image of the operator

A1 : L2(JT , H
3
(0))→ H3

(0) ∩ Tφ, A1 = APH

is dense in H3
(0) ∩ Tφ. The latter will be achieved by showing that the kernel of

the adjoint A∗1 of A1 is trivial. Note that A∗1 is given by

A∗1 : H3
(0) ∩ Tφ → L2(JT ,H), z 7→ PHR(T, ·)∗z,

where R(T, τ)∗ : H3
(0) → H3

(0) is the H3
(0)-adjoint of R(T, τ), τ ∈ JT .

Step 2. Triviality of the kernel of A∗1. Let z be an arbitrary element of the
kernel of A∗1. Our goal is to show that z = 0. To this end, we take any g ∈ H
and note that

〈g,R(T, τ)∗z〉(3) = 0 for almost any τ ∈ JT .
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By continuity in τ of R(T, τ)g, this is equivalent to

〈R(T, τ)g, z〉(3) = 0 for any τ ∈ JT . (1.5)

Taking τ = T in this equality, we see that z is orthogonal to H in H3
(0). In what

follows, we show that z is orthogonal to Hj for any j ≥ 1. This, together with
the saturation assumption, will imply that z = 0.

Let us fix any T1 ∈ (0, T ) and rewrite (1.5) as follows:

〈R(T1, τ)g,R(T, T1)∗z〉(3) = 0 for any τ ∈ JT1 . (1.6)

Note that ζ(τ) = R(T1, τ)g is the solution of the problem

i∂τζ = −∂2xxζ + V (x)ζ − λζ +W (x) Re(ζ),

ζ(τ, 0) = ζ(τ, 1) = 0,

ζ(T1, x) = g(x).

Taking the derivative of (1.6) in τ and choosing τ = T1, we get

〈i(−∂2xxg + V g − λg +W Re(g)), R(T, T1)∗z〉(3) = 0 for any g ∈ H.

Thus
〈g,R(T, T1)∗z〉(3) = 0 for any g ∈ H1.

As T1 ∈ (0, T ) is arbitrary, we see that z is orthogonal to H1 in H3
(0). Iterating

this argument, we derive orthogonality of z to Hj for any j ≥ 1. Since P1H∞ is
dense in H3

(0) ∩ Tφ, we conclude that z = 0.

Let us close this section with an example of saturating field Q. This example
will be used in the proof of the Main Theorem formulated in the Introduction.
Let us introduce the operator

Aκg = −∂2xxg − π2g + 2κφ21g, D(Aκ) = H2 ∩H1
0 (I;R), (1.7)

and let λ1,κ < . . . < λk,κ < . . . be the sequence of its eigenvalues. The following
lemma is proved in Section 3.3.

Lemma 1.4. There is an at most countable set K ⊂ (−∞, 0] such that, for
any κ ∈ R \K and any k ≥ 1, we have λk,κ 6= 0.

Recall that Q denotes the vector space spanned by the components of Q
(see (0.4)). The following proposition is proved in Section 3.4.

Proposition 1.5. Let V (x) = 0 and W (x) = 2κφ21(x) for any x ∈ I, let κ ∈ R\K,
where K is the set in Lemma 1.4, and let Q be a smooth field such that 1,
cos(πx) ∈ Q. Then Q is saturating in the sense of Definition 1.2.
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1.2 Exact controllability

The aim of this section is to prove the following proposition.

Proposition 1.6. Let V and W be smooth functions such that the following
boundary conditions are verified:

W (0) = W (1) = W ′(0) = W ′(1) = 0. (1.8)

Moreover, assume that Q is saturating, and there is a function µ ∈ Q satisfying
the inequality

|〈µφ, φk,V 〉L2 | ≥ c

k3
, k ≥ 1 (1.9)

for some c > 0. Then the problem (1.1), (1.2) is exactly controllable in the sense
that the mapping RT (0, ·) : L2(JT ;Rq)→ H3

(0) ∩ Tφ is surjective for any T > 0.

Proof. To prove this proposition, we represent the solution ξ of the problem
(1.1), (1.2) as follows ξ = ξ1 + ξ2, where ξ1 and ξ2 are the solutions of problems

i∂tξ1 = −∂2xxξ1 + V (x)ξ1 − λξ1 + 〈v(t), Q(x)〉φ,
ξ1(t, 0) = ξ1(t, 1) = 0,

ξ1(0, x) = 0

and

i∂tξ2 = −∂2xxξ2 + V (x)ξ2 − λξ2 +W (x) Re(ξ1 + ξ2),

ξ2(t, 0) = ξ2(t, 1) = 0

ξ2(0, x) = 0.

Let
RjT (0, ·) : L2(JT ;Rq)→ H3

(0) ∩ Tφ, v 7→ ξj(T ), j = 1, 2

be the resolving operators of these problems.

Lemma 1.7. The mapping R1
T (0, ·) : L2(JT ;Rq) → H3

(0) ∩ Tφ is surjective for
any T > 0.

Lemma 1.8. The mapping R2
T (0, ·) : L2(JT ;Rq) → H3

(0) ∩ Tφ is compact for
any T > 0.

Taking these lemmas for granted, let us complete the proof of the proposition.
We have

RT (0, ·) = R1
T (0, ·) +R2

T (0, ·),

where the linear bounded operators R1
T (0, ·) and R2

T (0, ·) are, respectively,
surjective and compact from L2(JT ;Rq) to H3

(0) ∩ Tφ. Lemma 3.5 implies that

the image of the mapping RT (0, ·) is closed in H3
(0) ∩ Tφ. On the other hand,

by Proposition 1.3, the image of RT (0, ·) is dense in H3
(0) ∩ Tφ. We conclude

that RT (0, ·) is surjective.
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Proof of Lemma 1.7. Let us consider the problem

i∂tξ3 = −∂2xxξ3 + V (x)ξ3 − λξ3 + v(t)µ(x)φ,

ξ3(t, 0) = ξ3(t, 1) = 0,

ξ3(0, x) = 0,

and denote by R3
T (0, ·) : L2(JT ;R) → H3

(0) ∩ Tφ its resolving operator. From

the assumption that µ ∈ Q it follows that the image of R3
T (0, ·) is contained in

that of R1
T (0, ·), so it suffices to prove the surjectivity of R3

T (0, ·). The latter
is proved by rewriting the system as a moment problem which is then solved
using the Ingham inequality (see Proposition 4 in [BL10]). Indeed, ξ3 satisfies
the equality

ξ3(t) = −i
∫ t

0

e−i(AV −λ)(t−s) (v(s)µ(x)φ) ds, t ∈ JT .

We write ξ3(T ) in the form

ξ3(T ) = −i
+∞∑
k=1

e−i(λk,V −λ)T 〈µφ, φk,V 〉L2φk,V

∫ T

0

ei(λk,V −λ)sv(s)ds,

which is equivalent to∫ T

0

ei(λk,V −λ)sv(s)ds =
iei(λk,V −λ)T

〈µφ, φk,V 〉L2

∫ 1

0

ξ3(T, x)φk,V (x)dx, k ≥ 1.

In view of assumption (1.9), for any ξ̃ ∈ H3
(0) ∩ Tφ, we have{

iei(λk,V −λ)T

〈µφ, φk,V 〉L2

∫ 1

0

ξ̃(x)φk,V (x)dx

}
k≥1
∈ `2r.

By the asymptotic formula for the eigenvalues (e.g., see Theorem 4 in [PT87]),

λk,V = k2π2 +

∫ 1

0

V (x)dx+ rk, where {rk}k≥1 ∈ `2. (1.10)

Hence, λk,V − λk−1,V → +∞ as k → +∞. Applying Corollary 1 in [BL10],
we find that there is v ∈ L2(JT ;R) such that∫ T

0

eiλk,V sv(s)ds =
ieiλk,V T

〈µφ, φk,V 〉L2

∫ 1

0

ξ̃(x)φk,V (x)dx, k ≥ 1.

This shows that R3
T (0, ·) is surjective and completes the proof of Lemma 1.7.

Proof of Lemma 1.8. The proof follows immediately from Corollary 3.3. Indeed,
the operator R2

T (0, ·) is compact since it can be represented as a composition of
the compact operator Φ in Corollary 3.3 with linear continuous mappings.
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2 Proof of the Main Theorem

Let us consider the NLS equation

i∂tψ = −∂2xxψ + V (x)ψ + κ|ψ|2pψ + 〈u(t), Q(x)〉ψ, x ∈ I, (2.1)

ψ(t, 0) = ψ(t, 1) = 0, (2.2)

where the field Q and the potential V are smooth, p ≥ 1 is an integer, and κ is
a real number. The following proposition establishes local well-posedness of this
equation. It is proved in Section 3.2.

Proposition 2.1. Assume that, for some T > 0, ψ̂0 ∈ H3
(0), and û ∈ L2(JT ;Rq),

there is a solution ψ̂ ∈ C(JT ;H3
(0)) of the problem (2.1), (2.2) satisfying the initial

condition ψ̂(0) = ψ0. Then there are positive numbers δ = δ(T,Λ) and C =
C(T,Λ), where

Λ = ‖ψ̂‖C(JT ;H3
(0)

) + ‖û‖L2(JT ;Rq), (2.3)

such that the following properties hold.

(i) For any ψ0 ∈ H3
(0) and u ∈ L2(JT ;Rq) satisfying

‖ψ0 − ψ̂0‖(3) + ‖u− û‖L2(JT ;Rq) < δ, (2.4)

the problem (2.1), (2.2) has a unique solution ψ ∈ C(JT ;H3
(0)) satisfying

the initial condition ψ(0) = ψ0.

(ii) Let ΨT be the mapping taking a couple (ψ0, u) satisfying (2.4) to ψ(T ).

Then ΨT is C1, and for any v ∈ L2(JT ;Rq), we have ∂uΨT (ψ̂0, û)v = ξ(T ),
where ξ is the solution of linearised system

i∂tξ = −∂2xxξ + V (x)ψ + (p+ 1)κ|ψ|2pξ + pκψ2|ψ|2(p−1)ξ

+〈û(t), Q(x)〉ξ + 〈v(t), Q(x)〉ψ̂, (2.5)

ξ(t, 0) = ξ(t, 1) = 0, (2.6)

ξ(0, x) = 0. (2.7)

The following theorem is a generalisation of the Main Theorem.

Theorem 2.2. Assume that the field Q is saturating in the sense of Definition 1.2
with potentials V (x) and W (x) = 2pκφ2p(x), and the vector space Q contains the
functions 1, φ2p, and a function µ verifying inequality (1.9) for some c > 0. Then,
for any T > 0, there is a number δ > 0 such that, for any ψ0, ψ1 ∈ H3

(0) ∩S with

‖ψj − φ1‖(3) < δ, j = 0, 1, (2.8)

there is a control u ∈ L2([0, T ];Rq) and a solution ψ ∈ C([0, T ];H3
(0)) of the

problem (2.1), (2.2) satisfying ψ(0) = ψ0 and ψ(T ) = ψ1.
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Proof. From the assumption that the functions 1 and φ2p belong to Q it follows
that ψ̂(t) = φ is a stationary solution of the problem (2.1), (2.2) corresponding
to some constant control û(t) such that

〈û(t), Q(x)〉 = −κφ(x)2p − λ1,V . (2.9)

Proposition 2.1 implies that the operator ΨT : (ψ0, u) 7→ ψ(T ) is well-defined and
C1-smooth in some neighbourhood of (φ, û). Furthermore, for any v ∈ L2(JT ;Rq),
we have ∂uΨT (φ, û)v = ξ(T ), where, in view of (2.9), ξ is the solution of equation

i∂tξ = −∂2xxξ + V (x)ξ − λ1,V ξ + 2pκφ2p Re(ξ) + 〈v(t), Q(x)〉φ. (2.10)

The conditions of Proposition 1.6 are satisfied for the linearised system (2.10),
(2.6), (2.7), so it is exactly controllable. Applying the inverse mapping theorem
to the mapping u 7→ ΨT (φ, u), we find that there is a number δ > 0 such that,
for any ψ0, ψ1 ∈ H3

(0)∩S verifying (2.8), there are controls u0, u1 ∈ L2([0, T ];Rq)
such that ΨT (φ1, u0) = ψ0 and ΨT (φ1, u) = ψ1. By the time-reversibility pro-
perty of the Schrödinger equation, ΨT (ψ0, w) = φ with w(t) = u0(T − t).
Setting u(t) = w(t) for t ∈ [0, T ] and u(t) = u1(t − T ) for t ∈ [T, 2T ], we
derive Ψ2T (ψ0, u) = ψ1. As the time T > 0 is arbitrary, we complete the proof
of Theorem 2.2.

Proof of the Main Theorem. Main Theorem is proved by applying Theorem 2.2
with p = 1 and V = 0. Indeed, the assumption that Q contains the functions 1
and cos(2πx) implies that φ21 is also in Q. Proposition 1.5 implies the saturation
assumption with W (x) = 2κφ21(x) and κ ∈ R \K.

When1 κ = 0, the linearised problem is still exactly controllable by Lemma 1.7,
so the conclusions of the theorem hold in that case too. Thus we proved the
Main Theorem with K = K \ {0} ⊂ (−∞, 0).

Remark 2.3. Let us emphasise that, under the conditions of the Main Theorem,
the linearised problem (1.1), (1.2) with V (x) = 0, W (x) = 2κφ21(x), and κ ∈ K
may still be exactly controllable. Indeed, in that situation we only know that the
linearised system can miss at most one direction (see Corollary 3.4). As mentioned
in the Introduction, even if the linearised system misses one direction, the
nonlinear system can still be locally exactly controllable near the ground state.

Remark 2.4. It is not difficult to construct examples of saturating fields in the
case of any integer p ≥ 1. Indeed, the results of Lemma 1.4 and Proposition 1.5
generalise without difficulties to the case when V (x) = 0, W (x) = 2pκφ2p,
and 1, cos(πx), . . . , cos(Npπx) ∈ Q with sufficiently large integer Np ≥ 1.

1Note that zero belongs to the set K in Lemma 1.4, since λ1,0 = 0.
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3 Appendix

3.1 Well-posedness of the linear Schrödinger equation

Let us consider the following linear Schrödinger equation with a source term:

i∂tξ = −∂2xxξ + V (x)ξ +W (x) Re(ξ) + f(t, x), (3.1)

ξ(t, 0) = ξ(t, 1) = 0. (3.2)

Well-posedness of this equation is essentially established in [BL10].

Proposition 3.1. For any T > 0, V,W ∈ H3(I;R), f ∈ L2(JT ;H3 ∩H1
0 (I;C)),

and ξ0 ∈ H3
(0), there is a unique solution ξ ∈ C(JT ;H3

(0)) of this problem with

the initial condition ξ(0) = ξ0 in the sense that

ξ(t) = e−iAV tξ0 − i
∫ t

0

e−iAV (t−s) (W Re(ξ(s)) + f(s)) ds, t ∈ JT .

Moreover, there is a constant CT > 0 such that

‖ξ‖C(JT ;H3
(0)

) ≤ CT
(
‖ξ0‖(3) + ‖f‖L2(JT ;H3∩H1

0 (I;C))

)
.

By Lemma 1 in [BL10], the function

Gf : t 7→
∫ t

0

e−iAV (t−s)f(s)ds belongs to C(JT ;H3
(0)) (3.3)

and satisfies the inequality 2

‖Gf‖C(JT ;H3
(0)

) ≤ CT ‖f‖L2(JT ;H3∩H1
0 (I;C)). (3.4)

Proposition 3.1 is derived from this by applying a usual fixed point argument to
the mapping L : C(JT ;H3

(0))→ C(JT ;H3
(0)) defined by

L(ξ)(t) = e−iAV tξ0 − i
∫ t

0

e−iAV (t−s) (W Re(ξ(s)) + f(s))ds,

for ξ ∈C(JT ;H3
(0)), t ∈ JT .

We shall not dwell on the details of the proof.
The next lemma follows from the Arzelà–Ascoli theorem in a standard way;

again we skip the details.

Lemma 3.2. Under the conditions of Proposition 3.1, the mapping

G· : L2(JT ;H3
(0))→ C(JT ;H3

(0)), f 7→ Gf

is compact.

2More precisely, in the paper [BL10], the case V = 0 is considered. The general case is
proved in a similar way by using the asymptotics (1.10) for the eigenvalues of AV .
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Let us consider a particular case of the problem (3.1), (3.2) given by

i∂tξ = −∂2xxξ + V (x)ξ +W (x) Re(ξ + η), (3.5)

ξ(t, 0) = ξ(t, 1) = 0, (3.6)

ξ(0, x) = 0, (3.7)

and assume that W satisfies the boundary conditions (1.8). Then the mapping
η 7→W (x) Re(η) is continuous from L2(JT ;H3

(0)) to itself, and the following is
an immediate consequence of Lemma 3.2.

Corollary 3.3. Under the conditions of Proposition 3.1, the mapping

Φ : L2(JT ;H3
(0))→ C(JT ;H3

(0)), η 7→ ξ

is compact, where ξ is the solution of the problem (3.5)-(3.7).

3.2 Local well-posedness of the NLS equation

Here we prove Proposition 2.1.
Step 1. Uniqueness. Let ψ1, ψ2 ∈ C(JT ;H3

(0)) be solutions of (2.1), (2.2) with

the same control u ∈ L2(JT ;Rq) and the same initial condition ψ1(0) = ψ2(0).
Then the difference ϕ = ψ1 − ψ2 satisfies

i∂tϕ = −∂2xxϕ+ V (x)ϕ+ κ|ψ1|2pψ1 − κ|ψ2|2pψ2 + 〈u(t), Q(x)〉ϕ,
ϕ(t, 0) = ϕ(t, 1) = 0,

ϕ(0) = 0.

From (3.4) it follows that

‖ϕ(t)‖2(3) ≤ CT
(
‖|ψ1|2pψ1 − |ψ2|2pψ2‖2L2(Jt;H3∩H1

0 (I;C))

+ ‖〈u,Q〉ϕ‖2L2(Jt;H3∩H1
0 (I;C))

)
≤ C1

∫ t

0

(1 + |u(s)|2)‖ϕ(s)‖2(3)ds, t ∈ JT ,

where C1 > 0 is a constant depending on ‖ψj‖C(JT ;H3
(0)

), j = 1, 2. Applying the

Gronwall inequality, we infer that ϕ(t) = 0 for any t ∈ JT .
Step 2. Local-in-time existence. Let us take any ψ0 ∈ H3

(0) and u ∈ L2(JT ,Rq)
satisfying (2.4), any T1 ∈ JT , any ψ ∈ BC(JT1

;H3
(0)

)(ψ̂, 1), and define

M(ψ)(t) = e−iAV tψ0 − i
∫ t

0

e−iAV (t−s) (κ|ψ(s)|2pψ(s) + 〈u(s), Q(x)〉ψ(s)
)

ds

for t ∈ JT1
. Then (3.3) implies that M(ψ) ∈ C(JT1

;H3
(0)). Moreover, using (3.4),

we get

‖M(ψ)(t)− ψ̂(t)‖(3) ≤C2

(
‖ψ0 − ψ̂0‖(3) + ‖u− û‖L2(JT ;Rq)

+ (‖û‖L2(JT1
;Rq) + T

1
2
1 )‖ψ − ψ̂‖C(Jt;H3

(0)
)

)
, t ∈ JT1

,
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where 3 C2(T,Λ) > 0 (see (2.3)). This implies that M maps BC(JT1
;H3

(0)
)(ψ̂, 1)

into itself for sufficiently small T1 and δ. In a similar way, for any ψ1, ψ2 ∈
BC(JT1

;H3
(0)

)(ψ̂, 1) and t ∈ JT1
, we have

‖M(ψ1)(t)−M(ψ2)(t)‖(3) ≤C3

(
(‖u‖L2(JT1

;Rq) + T
1
2
1 )‖ψ1 − ψ2‖C(Jt;H3

(0)
)

)
.

Thus, M is a contraction in BC(JT1
;H3

(0)
)(ψ̂, 1) for sufficiently small T1 and δ.

Hence, there is ψ ∈ BC(JT1
;H3

(0)
)(ψ̂, 1) such that M(ψ) = ψ.

Step 3. Existence up to T . Let ψ be a maximal solution of (2.1), (2.2)
corresponding to ψ0 ∈ H3

(0) and u ∈ L2(JT ,Rq) satisfying (2.4). Then there is a

maximal time T∗ ∈ JT such that ψ is defined on [0, T∗) and

‖ψ(t)‖(3) → +∞ as t→ T∗
− when T∗ < T.

The difference ϕ = ψ − ψ̂ satisfies the inequality

‖ϕ(t)‖(3) ≤ C4δ + C4

∫ t

0

(
‖ϕ(s)‖(3) + ‖ϕ(s)‖2p+1

(3)

)
ds

+ C4

(∫ t

0

|u(s)|2‖ϕ(s)‖2(3)ds
) 1

2

, t ∈ [0, T∗). (3.8)

Let us denote
τ = inf{t ∈ JT : ‖ϕ(t)‖(3) = 1},

where the infimum over an empty set is equal to T . Let us show that, for
sufficiently small δ, we have τ = T . Arguing by contradiction, let us assume
that τ < T . From (3.8) we derive

‖ϕ(t)‖2(3) ≤ C5δ
2 + C5

∫ t

0

‖ϕ(s)‖2(3)(1 + |u(s)|2)ds, t ∈ [0, τ).

The Gronwall inequality implies

‖ϕ(t)‖2(3) ≤ C5δ
2 exp

(
C5

∫ t

0

(1 + |u(s)|2)ds

)
< 1, t ∈ [0, τ)

for small δ and any u ∈ L2(JT ,Rq) satisfying (2.4). This contradicts the definition
of τ . Thus τ = T for small δ.

Step 4. Differentiability. The proof of C1 regularity of the resolving operator
is similar to the case considered in Sections 2.2 and 3.2 in [BL10], so we do not
provide the details.

3All the constants Ci below depend on T and Λ.
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3.3 Proof of Lemma 1.4

Let us fix any k ≥ 1. Let φk,κ be the eigenfunction of the operator Aκ (see (1.7))
associated with the eigenvalue λk,κ. By Theorem 3 in Chapter 2 in [PT87],
both φk,κ and λk,κ are real-analytic functions in κ. By differentiating in κ the
identity (

−∂2xx − π2 + 2κφ21 − λk,κ
)
φk,κ = 0,

we obtain(
−∂2xx − π2 + 2κφ21 − λk,κ

) dφk,κ
dκ

+

(
2φ21 −

dλk,κ
dκ

)
φk,κ = 0.

Taking the scalar product in L2(I;R) of this identity with φk,κ, we get

dλk,κ
dκ

= 〈2φ21, φ2k,κ〉L2 > 0

for any κ ∈ R. We conclude that λk,κ is strictly increasing in κ, so it can vanish
for at most one value of κ ∈ R. Moreover, as λ1,0 = 0, strict monotonicity of λk,κ
implies that 0 < λ1,κ ≤ λk,κ for any k ≥ 1 and κ > 0. This completes the proof
of the lemma.

3.4 Saturation property

This section is devoted to the proof of Proposition 1.5. It suffices to consider the
case q = 2 and Q(x) = (1, cos(πx)). It is easy to see that

H = spanR{φ1, φ2}. (3.9)

Let us denote

F (g) = i(−∂2xxg − π2g + 2κφ21 Re(g)) for g ∈ H2(I;C).

From (1.3) and (1.4) it follows that F (g) ∈ Hj for g ∈ Hj−1 and j ≥ 1.
In particular, F (g) ∈ H∞ for g ∈ H∞. Furthermore, from (3.9) we derive

H∞ ⊂ spanC{φk : k ≥ 1} ⊂ H3
(0).

The proposition will be established if we show thatH∞ is dense inH3
(0). The proof

of this is divided into three steps.
Step 1. First let us show that the eigenfunctions φ2k+1, k ≥ 0 belong

to H∞. We proceed by recurrence. By (3.9), we have φ1 ∈ H ⊂ H∞. Let
us take any N ≥ 1, assume that φ2k+1 ∈ H∞ for any 0 ≤ k ≤ N − 1, and prove
that φ2N+1 ∈ H∞. We have

F (φ2N−1) = ic2N−1φ2N−1 + i2κφ21φ2N−1 ∈ H∞,

where c2N−1 = π2
(
(2N − 1)2 − 1

)
. Combining this with the identity

φ21φ2N−1 =
1

2
(2φ2N−1 − φ2N−3 − φ2N+1) ,
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we obtain

F (F (φ2N−1)) =
(
c22N−1 − c2N−1

)
φ2N−1+

1

2
(c2N−3φ2N−3 + c2N+1φ2N+1) ∈ H∞.

As φ2N−3, φ2N−1 ∈ H∞, we conclude that φ2N+1 ∈ H∞.
In a similar way, as φ2 ∈ H ⊂ H∞, one shows that φ2k ∈ H∞ for any k ≥ 1.
Step 2. Let us prove that the vector space

G = spanR{iF (φk) : k ≥ 1}

is dense in H3
(0)(I;R). Indeed, let Aκ be the operator defined by (1.7) with

κ ∈ R\K. Then λk,κ 6= 0 for any k ≥ 1, so the image of Aκ is dense in H3
(0)(I;R).

It remains to note that Aκg = −iF (g) for g ∈ H2, so G is dense in H3
(0)(I;R).

Step 3. Combining the results of steps 1 and 2, and using the fact that

spanR{φk, F (φk) : k ≥ 1} ⊂ H∞,

we see that H∞ is dense in H3
(0). This completes the proof of the proposition.

Corollary 3.4. Let K ⊂ (−∞, 0] be the set in Lemma 1.4, Q(x) = (1, cos(πx)),
V (x) = 0, and W (x) = 2κφ21(x). Then, for any κ ∈ K, the codimension of H∞
in H3

(0) is one.

Proof. As κ ∈ K, there is a unique k ≥ 1 such that λk,κ = 0. From the proof of
Proposition 1.5 it follows that the vector space spanned by iφk,κ is the orthogonal
complement of H∞ in H3

(0).

3.5 A closed image theorem

In this section, we formulate a simple functional analysis result used in the proof
of exact controllability of the linear Schrödinger equation (see Section 1.2). Being
unable to find a proper reference, we give a complete proof.

Let X and Y be Banach spaces, and let X∗ and Y ∗ be their duals.

Lemma 3.5. Assume that A : X → Y and B : X → Y are linear continuous
operators such that A is surjective and B is compact. Then the image of A+B
is closed in Y .

Proof. Let A∗ : Y ∗ → X∗ and B∗ : Y ∗ → X∗ be the adjoint operators of A
and B. By Theorem 2.19 in [Bre11], the set (A+ B)(X) is closed in Y if and
only if (A∗ + B∗)(Y ∗) is closed in X∗. We will prove that (A∗ + B∗)(Y ∗) is
closed in X∗ in three steps.

Step 1. Let us first show that the kernel of the operator A∗ + B∗ is finite-
dimensional. To this end, we prove that any bounded sequence {yn} in the kernel
of A∗ +B∗ has a convergent subsequence. Indeed, by Theorem 6.4 in [Bre11],
B∗ is compact. So there is a subsequence {ynk

} such that {B∗(ynk
)} converges.

The equality A∗(ynk
) + B∗(ynk

) = 0 implies that {A∗(ynk
)} also converges.
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As A∗ is injective and A∗(Y ∗) is closed, the open mapping theorem implies
that {ynk

} converges.
Thus the kernel of A∗ + B∗ is finite-dimensional, so it is complemented.

Without loss of generality, we can assume that A∗ +B∗ is injective.
Step 2. Let {yn} ⊂ Y ∗ be a sequence such that {(A∗ +B∗)(yn)} converges.

Let us show that {yn} is bounded. Arguing by contradiction, let us assume
that there is a subsequence such that ‖ynk

‖Y ∗ → +∞. Then, for the sequence
ỹn = ynk

/‖ynk
‖Y ∗ we have (A∗ + B∗)(ỹn) → 0 as n → +∞. By the fact

that ‖ỹn‖Y ∗ = 1 and the compactness of B∗, there is a subsequence {ỹñk
} such

that {B∗(ỹñk
)} converges. From the equality

A∗(ỹñk
) = (A∗ +B∗)(ỹñk

)−B∗(ỹñk
)

it follows that {A∗(ỹñk
)} converges too. As in step 1, this implies that {ỹñk

}
converges to some limit ỹ. Since ‖ỹñk

‖Y ∗ = 1, we have ‖ỹ‖Y ∗ = 1. By continuity,

(A∗ +B∗)(ỹñk
)→ (A∗ +B∗)(ỹ) as k → +∞. (3.10)

On the other hand, from the construction of {ỹn} it follows that

(A∗ +B∗)(ỹñ)→ 0 as n→ +∞. (3.11)

From (3.10) and (3.11) it follows that ỹ is a non-zero element of the kernel
of A∗ +B∗. This contradicts the injectivity of A∗ +B∗.

Step 3. Let {yn} ⊂ Y ∗ be a bounded sequence such that

(A∗ +B∗)(yn)→ x as n→ +∞. (3.12)

By compactness of B∗, there is a subsequence {ynk
} such that {B∗(ynk

)} con-
verges. From (3.12) it follows that {A∗(ynk

)} converges too. As above, this
implies that {ynk

} converges to some limit y. By continuity and (3.12), we
have (A∗ + B∗)(y) = x. We conclude that the set (A∗ + B∗)(Y ∗) is closed
in X∗.
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