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Abstract: One of the challenges encountered in the industrialization of new single-11 

crystal superalloys parts (like high-pressure turbine blades and vanes for aircraft 12 

engines) is to limit the mechanical stresses during the solidification and cooling of the 13 

metal. In order to accurately predict the viscoplastic flow as well as the thermo-14 

mechanical behaviour of Ni-based superalloy during its cooling, in this study a 15 

thermodynamically-consistent thermo-elasto-viscoplastic model was developed. This 16 

model takes into account the solid-liquid transition occurring in the material during 17 

the cooling phase. This is done by introducing a compressible-type viscoplastic yield 18 

function based on appropriate equivalent stress depending on volume fraction of the 19 

solid phase formed by the propagation of dendrites inside the liquid phase of the 20 

material. This model was implemented in Abaqus/Standard© F.E. code and applied to 21 

the identification of material parameters of Ni-based superalloy using isothermal 22 

tensile-relaxation tests driven for different strain rates and temperatures. First, 23 

anisothermal tensile-compression test was simulated on a single integration point. A 24 

comparison of the experimental and numerical stress-strain response partially validate 25 

the model. Second, a benchmark test involving casting of a rectangular Ni-based 26 

superalloy bar in a sand mold was simulated and analyzed. 27 
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-Second-rank tensor:
ijx , 1 

-Fourth-rank tensor:
ijklx , 2 

-Second-rank identity tensor : 
ijδ  , 3 

-Hydrostatic  part of second-rank tensor 4 

H
ijx  5 

-Deviatoric part of  second-rank tensor: 
D
ijx , 6 

-Inverse of second-rank tensor: ijx −1
, 7 

Time derivative of second-rank tensor :
ijx& , 8 
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1. Introduction 

Single-crystal superalloys are creep-resistant materials particularly appropriate for making 

high pressure turbine blades and vanes for aircraft engines. (Pollock and Tin, 2006) give an 

extensive overview of the exceptional properties of such materials that make them particularly 

appropriate for such applications. They are processed by investment casting with a directional 

solidification, for an optimal control of the microstructure growth that is required for the 

fabrication of optimized single-crystal parts. 

One of the challenges encountered in the industrialization of a new part is to limit the 

mechanical stresses during the solidification and cooling of the metal. As an example, 

excessive stresses at a high temperature are at the origin of recrystallized grains appearing 

during the post-processing heat-treatment and therefore leads to rejecting the parts. The origin 

of thermal stresses lies both in the thermal gradients and in the difference of thermal 

expansion coefficients between the metal and the ceramic mold (shell) and core. In particular, 

in high-pressure turbine blades, the ceramic core used to produce the internal cooling circuit 

induces additional stresses. This feature is supported by the work of (Li et al., 2015) who 

developed a thermomechanical model and used it to perform numerical analysis in order to 

identify the causes of plasticity during investment casting. The influence of the ceramic core 

in particular turned out to be more significant than the shell. Therefore, the metal after casting 

is plastically deformed and contains a high density of dislocations.  

Consequently, modeling the solidification phenomenon is important because the latter can 

generate an undesirable state of stress in the component. (Pokorny et al., 2010) have proposed 

a compressible viscoplastic constitutive model of the mushy zone to simulate the stress state 

during a solidification. Initially, (Cocks, 1989) has proposed a criterion to model the 

behaviour of porous material based on homogenous RVE containing a spherical void. (Marin 

and McDowell, 1997) extended this work into a numerical framework to solve mechanical 

structure equilibrium problem with damage effects. (Galles and Beckermann, 2016) then had 

the idea to extend this work and adapted it to the cases of casting materials. The state of the 

casting part evolves continuously during its cooling. An effective stress based on solid metal 

volume fraction evolution is used to model the state evolution from the full liquid state to the 

full solid state throughout the semi-solid state. Instead, (Bellet et al ,2005; Zhang et al., 2019) 

proposed to model directly the interactions between the different phases (liquid/mush/solid) 

using a numerical method based on frontier definition. In this work, the constitutive model 

used for the solid phase was inspired from the work of (Martin et al, 1997). A set of 

macroscopic viscoplastic constitutive equations are preferred to simulate the behaviour of the 

solid phase because its calculation cost remains acceptable. In some cases, it is interesting to 

use microstructural models for the behaviour of single crystal (Fedelich, 2002). (Keshavarz 

and Gosh, 2013) also developed an activation energy-based crystal plasticity model for Ni-

based single-crystal superalloys for simulating polycrystalline aggregates, while (Song and 

McDowell, 2012) proposed a crystal viscoplasticity model considering material’s slip systems 

in order to capture its anisotropic response applied to Ni-base disk superalloy ME3 for 

temperatures around 700-800°C. The same type of approach has been used by (Cruzado et al., 
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2015) and (Cruzado et al. 2017) for studying polycrystalline materials (such as Inconel 718 or 

Rene 65) used for manufacturing structural gas turbine components (disks, rings, etc.). 

Nevertheless, the associated industrial process is forging and these materials are strengthened 

with �′ and �" precipitates, which largely differs from single-crystal superalloys such as AM1 

used for casting (��precipitates only). 

Therefore, plastic strain and residual stresses should be limited, by adjusting the parameters of 

the Bridgman directional solidification process or by modifying the shape of the parts. As this 

experimental step can be expensive and time consuming, numerical simulation of the process 

is useful to reduce the number of iterations until getting the optimized “virtual” process before 

its physical realization. An accurate numerical tool to simulate casting processes generally 

includes: (i) the thermal history resulting from conductive and radiative heat transfers over a 

large range of temperature (from approximately 700°C to 1500°C) , (ii) the mechanical 

properties of the mold and core, (iii) the contact condition between the mold and the metal 

part, an accurate mechanical model for the metal behavior from room temperature to melting 

temperature, (iv) and dedicated post-processing such as a recrystallization criterion based on 

the thermal and mechanical histories. 

When coming to the simulation of the latter casting process, current numerical tools and 

constitutive models used by SAFRAN have shown severe limitations especially during the 

relaxation phase. The initial plastic strain phase is quite well predicted in terms of stress level, 

even though some deviation is observed at intermediate temperature when recrystallization is 

likely to occurs. As previously mentioned, both thermal and mechanical entire histories are 

important for the simulation of casting processes and structural default prediction e.g. the 

appearance of recrystallized grains during the solidification of a single-crystal. 

The present work aims at developing a modified behaviour model adapted from the classical 

Voce isotropic hardening model with an additional modified Norton-Hoff potential. One 

interesting feature of this model is the possibility to take into account liquid-mushy-solid 

transitions that are often neglected in solidification simulations. Its numerical implementation 

in the Abaqus/Standard© environment is then presented. Elementary validation of the present 

methodology is then conducted on both isothermal and anisothermal tests of simple 

specimens from room temperature to 1200°C for two typical strain rates. A FEM cooling 

model of a rectangular Ni-based superalloy bar in a sand mold is simulated and analyzed. 

Particular care has been given to the well description of casting process conditions in terms of 

temperature and strain rate fields.  

 

2. Thermo-elasto-visco-plastic constitutive model 

Theoretical aspects 

A semi-solid viscoplastic behavior model is developed based on a well-known isotropic 

model with only isotropic hardening. Based on the work of (Galles and Beckermann, 2016), 

the semi-solid state created during solidification is modeled as a compressible porous material 

where the stress tensor depends on the pressure as follows: 
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(1 )s

ij s ij s l ij
g g pσ σ δ= + −%   (1) 

where gs is the solid state volume fraction varying between 1 and 0, i.e. 
s

ij ij
σ σ=% is the stress 

tensor inside the full solid state ( gs =1) and ij lpσ =%  (hydrostatic pressure) inside the full 

liquid state.  

An additive decomposition of the total strain rate tensor into elastic, viscoplastic and thermal 

parts is considered: 

 
( )

= + +

= −

& & & &e vp th

ij ij ij ij

th

ij T th ij
T T

ε ε ε ε

ε α δ
 (2) 

where T
α

 is the thermal expansion coefficient which is temperature-dependent function and 

th
T  is the reference temperature. 

In the present work, the following assumptions are adopted: 

• Reversible (elastic) strains are negligible compared to irreversible inelastic (plastic or 

viscoplastic) strain. In this case, we can rigorously consider the additive 

decomposition of the total strain rate tensor. 

• The strain-hardening is introduced phenomenologically and limited to the isotropic 

hardening. 

• A unified formulation is adopted to deal with an elastoplastic (time-independent) and 

elasto-viscoplastic (time-dependent) behaviour models. 

• Despite the single crystal aspect of the material, fully isotropic behaviour is assumed 

(Elastic and plastic anisotropies are neglected). 

• The recovery phenomenon is not considered. 

• The dynamic recrystallization phenomenon is not directly modeled, but its softening 

effect on the stress-strain response is introduced by the possibility of accepting 

negative isotropic strain-hardening. 

• The updated Lagrangian formalism is used.  

 

The yield function f  is chosen to describe the viscoplastic behaviour of the Ni-based 

superalloy, in the stress space. The equivalent stress norm is composed on both first and 

second stress invariants:  

 3( ) 0
eq s s

f h gσ σ= − ≤  (3) 

where 

2 2

1 2( ) ( )eq s s s sh g q h g pσ = +  is a quadratic equivalent stress 
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( )2 3

2

D D

s ij ij ij
q σ σ σ=% % %  is the second invariant of the effective stress with 

D

ij
σ%  is the deviatoric part 

of the Cauchy stress tensor,  

( ) ( ) / 3 / 3= =% % %
s ij ij iip trσ σ σ  is the first invariant of the effective stress, 

sσ   is the isotropic hardening stress, 

 { }( ) 1,2,3
i s

h g i = are functions of the metal solid volume fraction.   

Several authors as (Cocks, 1989; Marin and McDowell, 1997; Michel and Suquet, 1992) 

initially used this form of criterion to model the behaviour of porous continua to account for 

the porosity generated by cavitation during ductile damage.  

When the part is completely solidified the volume fraction converge to gs=1, and classical von 

Mises stress norm is recovered when  functions h1, h2 and h3 take the following values: 

 ( ) ( ) ( )1 2 31 1, 1 0, 1 1h h h= = =  (4) 

The formulation of the proposed behaviour model is formulated on the framework of 

viscoplasticity known as "viscoplastic potential" based on the work of (Perzyna, 1966; 

Lemaitre and Chaboche, 1985; Saanouni, 2013; Badreddine et al.; 2016) have then analyzed 

the contribution of a “viscoplastic potential” to viscoplasticity with damage in the framework 

of classical thermodynamics of irreversible processes with state variables. For example, (Issa 

et al., 2012; Meng et al., 2014) specifically used this way to introduce viscous behaviour for 

the simulation of a machining operation and forging processes.  

The proposed viscoplastic potential is a modification of the Norton-Hoff potential: 

( ) ( ) ( )
( )

1
1

0

3

, , ,
, ,

( ) ,1
1

T
vp vp n

v eq ij eqvp

ij eq vp

s v eq

T

K T f T
T

h g K T

n

ε σ ε
σ ε ε

ε

+
 
 Ω =
  
 + 

 

%
&%  (5) 

where nT and ( ),eq

vK Tε& are classical viscosity parameters of Norton-Hoff type with v
K  is 

positive function of the equivalent viscoplastic strain rate defined by ( )(2 / 3) :vp vp vp

eq ij ijε ε ε=& & &  and 

the absolute temperature T. finally, 0ε&  is a  reference strain rate independent of the 

temperature. 

 

In this viscoplasticity framework, the viscoplastic strain rate tensor is calculated by deriving 

the flow potential with respect to the effective stress tensor: 

vp

ij vp ij

ij ij

f
n

f
ε λ

σ σ
∂Ω ∂Ω ∂= = =
∂ ∂ ∂

&&
% %

  (6) 
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where /
ij ij

n f σ= ∂ ∂ %  is the normal to the viscoplastic yield surface defining the direction of 

the viscoplastic flow, and the the scalar vp
λ&  acts as a viscoplastic “multiplier” defining the 

amount of viscoplastic strain rate where
( )

( )

1

0

3

, ,

( ) ,

T
vp n

ij eqvp

vp eq vp

s v eq

f T

f h g K T

σ ε
λ ε ε

ε

 ∂Ω
 = = =
 ∂
 

%
& & & . In the 

previous equation, we can draw f  as a function of 
vpλ&  or 

vp

eq
ε&  

( ) ( )2 2

1 2 3 3

0

( ) ( ) ( ) , ( ) ,

Tn
vp

eqvp vp

s s s s s s eq s v eq
f h g q h g p h g T h g K T

ε
σ ε ε

ε
 

= + − =   
 

&

&
 (7) 

This equation expresses the viscoplastic yield surface according to Perzyna’s work: 

( ) ( ) ( )3, , , , , , , 0vp vp vp vp vp

vp ij eq eq ij eq vp eq eqf T f T h Tσ ε ε σ ε σ ε ε= − =& &% %  (8) 

wherein vpσ is the viscous stress defined by  

( ) ( )
0

, , ,

Tn
vp

eqvp vp vp

vp eq eq v eq
T K T

ε
σ ε ε ε

ε
 

=   
 

&
&

&
  (9) 

The isotropic hardening stress s
σ and the Kv module are nonlinear functions of Voce type 

given by: 

( )
( )

( , ) 1

( , ) 1

vp
T eq

vp
vT eq

bvp e

s eq T T

bvp

v eq vT

T A e

K T K e

ε

ε

σ ε σ

ε

−

−

= + −

= −
  (10) 

where 
e

Tσ is the initial yield stress, T
A  is the isotropic hardening modulus, bT is the 

nonlinearity coefficient of the isotropic hardening, KvT is the viscosity modulus, and bvT is the 

nonlinearity coefficient of the viscous hardening. All these parameters are function of the 

absolute temperature T. 

Only in the case of Norton Hoff viscoplastic potential, (Cocks, 1989) propose the weighting 

functions hi, used to build the specific stress norm for the yield surface f . (Michel and 

Suquet, 1992) then generalized this work and proposed several weight functions related to 

different viscoplastic potential. These functions are based on the definition of a model relying 

on closed-form solutions for a hydrostatic tensile loading path applied to the outer surface of a 

hollow sphere in the case of viscous and incompressible matrix of the porous material.  

*2
1 3

*

2 *

1/(1 )*

3

( ) 1 (1 )

11 1
( )

2 2 1

( )
+

 = + −

  −=  − + 
 =

coh

Tcoh

s s

s
s

s T

n

s s

h g g

g
h g

g n

h g g

  (11) 
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with ( ) ( )* /coh coal coh

s s s s sg g g g g= − −  where 
coh

s
g  corresponds to the solid metal volume 

fraction at the coherence temperature Tcoh and 
coal

s
g  corresponds to the solid volume fraction 

at the coalescence temperature Tcoal. In practice, the values of these parameters are 

approximately 0.9coal

s
g =  and 0.5coh

s
g = . The variable 

cohTn is the last value identified at the 

highest temperature used in the material characterization tests. Figure 1 gives an example of 

the evolution of these functions drawn for 0.26
cohTn = .  

 

Figure 1: Evolution of the function ( ) ( ) ( )1 2 3,s s sh g h g et h g  for 0.26
cohTn =  

We have chosen this form of the threshold function associated to the yield function 

( ), , ,vp vp vp

ij eq eqf Tσ ε ε&%   for three reasons: 

-It is easier to isolate the viscous stress ( ), ,vp vp

vp eq eq Tσ ε ε&  and identify its parameters with the 

relaxation test. 

-this form seems better to predict the stress-strain response as well as the evolution of the 

stress vs time during the relaxation phase. 

-The viscoplastic potential is taken from the work of (Cocks, 1989 and Michel and Suquet, 

1992). This viscoplastic potential is coherent with the Norton-Hoff form when we introduce 

solid fraction functions h1, h2 and h3.  

During the cooling phase, when the part temperature changes from Tcoh to Tcoal, the state 

relationship between the stress tensor and the elastic strain tensor changes as follows: 

( ,T)

3
2 ( , T) ( )e sK geD e

ij e s ij kl ij
g trσ µ ε ε δ= +%   (12) 
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where  
( , T)

( )
2(1 ( ))

s

e s

s

E g
g

g
µ

ν
=

+
 is the shear effective modulus and 

( ,T)
( , T)

(1 2 ( ))

s

e s

s

E g
K g

gν
=

−
 is the 

effective hydrostatic compression modulus. ( ,T)
s

E g  and ( )sgν  being respectively the effective 

Young's and Poisson’s ratio of the pasty material as a function of temperature and solid metal 

volume fraction. The expressions of theses elasticity parameters are defined based on work of 

(Galles and Beckerman, 2016): 

, 1
( ,T) (1 ) ( )

, 0.51

coh
s ss s

s s l s cohcoh

l s ss

E gg g
E g g E E T

E g gg

=  −= − + =   ≤ ≈−  
 (13) 

0 0

0

0.3, 1
( ) ( )

1 0.14, 0.5

coh
s ss s

s scoh coh

s s s

gg g
g

g g g

ν
ν ν ν ν

ν
= =− = + − = − = = ≈

 (14) 

l
E  and ( )

s
E T  are respectively the Young’s moduli in liquid metal phase and the solid metal 

phase. The module l
E  is chosen low enough to have almost no stress in the liquid phase. The 

Poisson’s ratios coefficients 0
ν  and s

ν  characterize the liquid metal and solid metal phases 

respectively. 

Identification of the different material parameters 

SAFRAN's laboratories have performed tensile/relaxation tests on cylindrical specimens 

under various controlled total strain rates eq
ε& and temperatures T. Only the solid metal 

behaviour is characterized. The maximum temperature is then lower than the solidus 

temperature. 

Figure 2 shows the evolution of uniaxial stress vs the time during a typical tensile/relaxation 

test. The path A to B corresponds to an isothermal homogeneous tensile test. The path B to C 

state corresponds to the relaxation test for which the recovery of the reversible viscous stress 

vpσ  for more or less long time is clearly shown.  
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Figure 2: Uniaxial stress vs time response associated to a tensile/relaxation test 

Initially, relaxation tests are used to identify only the viscous stress parameters KvT and nT for 

a given temperature T. If 
vp

eqB
ε  is the cumulative viscoplastic strain in the specimen after the 

tensile test, we try to find  parameters ( ) ,v

B vp

v eqBK K Tε=  and nT that minimize the difference 

between the experimental value of the viscous stress and the viscous stress given by the 

behaviour model for different values of total strain rate 
eq

j
ε& : 

2

min1
,

1 0

 min

T

B
v T

n
vpM
eqjB

v v
K n

j

R K
ε

σ
ε=

     = −         

∑
&

&
  (15) 

where M is the number of experimental tests for the same temperature T but whose total strain 

rate
eq

j
ε&  is varied. 

For the remaining parameters of the behaviour model, experimental stress/strain hardening 

curves expσ  at different temperatures and strain rates are used.  

( ) ( )( )

( ) ( ) ( )

2

min 2 exp
, , ,

1 1

0

1
min , , , ,

, , 1 1
1

 

e
T T T T

T

vp vp
T eq i T eq

vp
T eqN

vT

M N
vp vp vp vp

eq i eqj num eq i eqj
Q b

j i

n
vpB

b eqjvp vp e v
num eq i eqj T T

K

R T T
N

K
with T A e e

e

σ β

ε β ε

β ε

σ ε ε σ ε ε

ε
σ ε ε σ

ε

= =

− −

−

 
= − 

 

  
= + − + −     −   

∑ ∑ & &

&
&

&
1442443

 (16) 

N being the number of discretization of the cumulative plastic deformation such that 
vp

eqBvp

eqi
i

N

ε
ε =  

A Levenberg-Marquardt algorithm (Marquardt, 1963) was used to minimize the cost 

functions Rmin1 and Rmin2 and calculate the optimal parameters 

3. Numerical aspects 

The use of the proposed model needs an efficient local integration scheme in order to 

integrate the complete set of the ordinary differential equations Eq.(2) to  Eq.(10). Each 

applied loading path is discretized into several load increments typically defined as [ n
t , 

1n n
t t t+ = + ∆ ] with t∆ is the varying time step. The fully coupled thermomechanical problem 

is solved over the time interval under anisothermal condition (i.e.
1n n

T T T+ = + ∆ ) in order to 

obtain the mechanical variables at 
1n

t + . These fully coupled thermomechanical constitutive 

equations presented above have been implemented into Abaqus/Standard© using the user-

defined subroutine UMAT. During the resolution of the mechanical problem under the 
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anisothermal conditions with known homogeneous temperature distribution, the mechanical 

variables at each integration point are computed at the time 
1n

t + assuming that all the state 

variables are known at
n

t . Since the constitutive equations above have the general form of 

first-order ordinary differential equations, their numerical integration can be performed by 

combining the backward Euler purely implicit scheme. Using this scheme, we can obtain the 

following discretization of the kinematic strain variables: 

Total strain tensor : 

 1 1ijn ijn ijn ijn ij
tε ε ε ε ε+ += + ∆ = + ∆&  (17) 

Elastic strain tensor : 

 1 1

e e e e e

ijn ijn ijn ijn ij
tε ε ε ε ε+ += + ∆ = + ∆&  (18) 

Thermal strain tensor: 

 
11 1( ) ( )

++ + = + ∆ = + − − − n n

th th th th

ijn ijn ij ijn T n ref T n ref ijT T T Tε ε ε ε α α δ  (19) 

Viscoplastic strain tensor: 

 

1 1

1 3
1 1 1 1 1 1 2 1 12

1

( ( ) ( ) ( ) )

vp vp vp vp vp

ijn ijn ijn ijn ij

vp

eqnvp vp D

ij n eqn ijn sn ijn sn kl n ijeq

n

t

n h g h g tr

ε ε ε ε ε

ε
ε ε σ σ δ

σ

+ +

+
+ + + + + + +

+

= + ∆ = + ∆

∆
∆ = ∆ = +

&

% %
 (20) 

where
1

vp

eqnε +∆  denotes the increment of the accumulated viscoplastic strain .  

Decomposition of the total strain increment: 

 'e vp th th

ij ij ij ij ij ij
ε ε ε ε ε ε∆ = ∆ + ∆ + ∆ = ∆ + ∆  (21) 

where '
ij

ε∆  denotes the purely mechanical  strain increment. 

 ' th e vp

ij ij ij ij ij
ε ε ε ε ε∆ = ∆ − ∆ = ∆ + ∆  (22) 

Cauchy stress tensor: 

 1 1 1 1 1
( , ) ( , )( ' )e e e vp

ij n ij n ijkl sn n kl ij n ijkl sn n kl ij
C g T C g Tσ σ ε σ ε ε+ + + + += + ∆ = + ∆ − ∆% % %  (23) 

where 1 1
( , )e

ijkl sn n
C g T+ +  is the effective elastic forth rank operator  which is function of the solid 

volume fraction and the temperature.  

The well-known elastic prediction and viscoplastic correction scheme is used to determine all 

the mechanical fields over the time increment. In the trial elastic step, we suppose that all 

internal variables remain unchanged giving  0vp

ij
ε∆ =  leading to the following expression of 

the trial stress tensor: 
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1 1

* *

1 1 1 1 1

( , )*

1 1 1 3

( , ) ( , ) '

2 ( , ) ' ( ')e sn n

e e e

ij n ij n ijkl sn n kl ij n ijkl sn n kl

K g TD

ij n ij n e sn n ij ij ij

C g T C g T

g T tr

σ σ ε σ ε

σ σ µ ε ε δ+ +

+ + + + +

+ + +

= + ∆ = + ∆

= + ∆ + ∆

% % %

% %
 (24) 

The viscoplastic yield function Eq.(7) writes, for this trial state: 

 

1 1 1

* * *

1 1 1 1 3 1 1

1

( , ) ( ) ( , )

( , ) (1 ( ))
n n n

eq vp

n n ij n sn sn s eqn n

vp vp e

s eqn n T T eqn T

f g h g T

T A Exp b

σ σ σ ε

σ ε ε σ
+ + +

+ + + + + +

+

= −

= − − +

%
  (25) 

If *

1 0
n

f + ≤  so  the loading increment is purely elastic and the solution of the current step : 

*

1 1 1 1
,, vp vp vp vp

ij n ij nijn ij jn ij n i n
σ σ ε ε ε ε+ ++ + == =& &% % ,  

If 
1 0

n
f + >  so the loading increment is elasto-viscoplastic and a viscoplastic correction should 

be performed on trial stress based on the normal return mapping algorithm  

The expression of the stress during the step of viscoplastic correction is given by: 

 

*

1 1 1 13

1 3
1 1 1 1 1 2 12

1

1*

1 1 1 1 2 1

1

2 ( )

( ( ) )

3 ( ) )

eKvpD vp

ij n ij n e ijn ijn ij

vp

eqnvp vp D

ij n eqn ijn ijn kl n ijeq

n

vp

eqn D

ij n ij n e ijn e kl n ijeq

n

tr

n h h tr

h K h tr

σ σ µ ε ε δ

ε
ε ε σ σ δ

σ
ε

σ σ µ σ σ δ
σ

+ + + +

+
+ + + + +

+

+
+ + + +

+

 = − ∆ + ∆ 

∆
∆ = ∆ = +

∆
 = − + 

% %

% %

% % % %

 (26) 

where the term 1 13
2 ( )eKvpD vp

e ijn ijn ijtrµ ε ε δ+ +∆ + ∆  constitutes the viscoplastic correction. The stress 

state defined by Eq.(26) shall verify the  viscoplastic criterion defined by Eq(8) :  

 

1 1 1 1 3 1 1 1 1 3 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1

( , ) ( ) ( , ) ( ) ( , , ) 0

( , ) ( ) ( )(1 ( ( ) ))

( , , )

vp

eq vp vp vp

n n ij n sn sn sn eqn n sn vpn eqn eqn n

vp e eq

sn eqn n T n Tn n Tn n n

vp vp vp

n eqn eqn n v

f g h g T h g T

T T A T Exp b T

T K

σ σ σ ε σ ε ε

σ ε σ ε

σ ε ε

+ + + + + + + + + + + + +

+ + + + + + +

+ + + +

= − − =

= + − −

=

&%

&

1( )

1

1 1

0

( )(1 ( ( ) ))

T nn T
vp

eqnvp

T n vT n eqnT Exp b T
t

ε
ε

ε

+

+
+ +

 ∆
− −   ∆ &

 (27) 

Eq. (27) form a highly nonlinear system which is uniquely function of accumulated 

viscoplastic strain increment  
1

vp

eqnε +∆  since 
1nT +  is known.  The resolution is reduced to the 

resolution by the Newton-Raphson method of the equation Eq.(11) depending on the only 

variable
1

vp

eqnε +∆ .   

 

( ) ( 1)

1 1( 1) ( ) ( )

1 1 1 ( )

1 1 1

( 1) ( ) ( )

1 1 1

0
/

vp vp

vp

vp

k k

n nk vp k vp k

n eqn eqnvp k vp

eqn n eqn

vp k vp k vp k

eqn eqn eqn

f f
f

f
δ ε δ ε

ε ε

ε ε δ ε

+
+ ++

+ + +
+ + +

+
+ + +

∂
+ ∆ = ⇒ ∆ = −

∂∆ ∂ ∂∆

∆ = ∆ + ∆

 (28) 

The calculation of the term ( )

1 1/
vp

k vp

n eqnf ε+ +∂ ∂∆   is given in Appendix 1. 
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The ABAQUS® implicit solver requires the calculation of the tangent operator which plays 

an important role in the convergence of the iterative process of solving the global equilibrium 

problem. This operator must be determined consistently with the calculation of the stress at 

the end of the time step. The expression of this consistent operator is given as follows: 

 
ij ijkl klCσ ε∆ = ∆%  (29) 

The expression of the tangent operator ijklC  is given in Appendix 2. 

The different steps of the integration algorithm are given in Figure 3 and explained in the 

following: 

1-For tn=0 initialization of all state variables, 

2- For each given time increment t∆ , thermal and mechanical increment ( T∆  and ijε∆ ) are 

imposed, 

3-test if 
1n n coh

T T T T+ = + ∆ >  : 

3-1.then the material is in the liquid phase and the behavior is considered as thermo-elastic 

with very small Young’s modulus and Poisson coefficient 0.5ν   (incompressible 

material), 

3-2. we pass to the following time increment n: =n+1, 

4-if not, the material is in solid-mushy phase and we calculate the elastic trial stress, 

5-Test if the trial criterion *

1 0
n

f + ≤    

5-1. then the loading increment is purely thermo-elastic, 

5-2. the stress tensor is updated 
*

1 1ijn ijn
σ σ+ +=% % , 

5-3. plastic variable remains unchanged 1 1
,, vp vp vp vp

ij n ij n ij n ij n
ε ε ε ε+ += =& & , 

5-4. we pass to the following time increment n: =n+1, 

6- if not, the loading increment is thermo-elasto-viscoplastic and viscoplastic correction will 

be done with Newton-Raphson iterative method: 

6-1. for iteration k, calculate :viscoplastic strain 
( )

1

vp k

ij n
ε + , strain rate 

( )

1

vp k

ij n
ε +& and stress 

(k)

1ijn
σ +% , 

6-2. calculate the viscoplastic criterion ��� 	
�(
)
,  

6-3. Test if the criterion ���� ���(�)
��� ���(�) � < Tol = 1. � !  then  

6-3-1.the N-R method converged to the correct solution, 

6-3-2.we pass to the following time increment n: =n+1, 

6-4. If not : 
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6-4-1. calculate the increment of accumulated viscoplastic strain, 

6-4-2. update the iteration k:=k+1, 

6-4-3. Test if the number of iteration max is not reached k<nmax=100 then go to 

step 6-2,  

6-4-4. If not, the number of iteration max is reached without convergence so the 

loading increment is canceled and the time increment is reduced and return to 

step1.   
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Figure 3. Integration algorithm of the developed thermoviscoelastoplastioc model. 
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4. Experimental characterization of the studied materials and Identification procedure 

of material parameters  

Material and experimental conditions 

The tested material is a single crystal type AM1 – the nominal composition of which is 

reported in Table 1. This crystal is a face-centered cubic Ni-based γ-matrix containing a high 

volume fraction (65-70% at room temperature) of Ni3Al-type γ‘ phase submicronic 

strengthening precipitates. The thermal material parameters of AM1 are listed in Table 2. 

Alloy Ni Co Cr Mo W Al Ti Ta 

AM1 base 7.8 6.5 2 5.7 5.2 1.1 7.9 

Table 1. Nominal composition of AM1 (wt%) 

Specific heat 

Cp (J.kg-1.°C-

1) 

Conductivity 

k (W.m-1.°C-1 

Solidus 

temperature 

Ts (°C) 

Coalescence 

temperature 

Tcoal (°C) 

Coherence 

temperature 

Tcoh (°C) 

Liquidus 

temperature 

Tl (°C) 

931. 180. 1255. 1269. 1300. 1320. 

Table 2. AM1’s thermal material parameters (courtesy of Safran Aircraft Engines) 

Figure 4 shows the evolution of solid fraction (gs) vs temperature for AM1 

(T<Ts=1255°C→gs=1; T>Tl=1320°C→gs=0 measured by differential thermal analysis (DTA, 

DSC). Ts and Tl are respectively the solidus and liquidus temperature of AM1 Ni-based 

superalloy. In this figure are given also the coherence coal
T

=1269°C and coalescence coh
T

=1300°C temperatures associated to their respective values of volume fractions 
0.9coal

s
g =

 

and 
0.5coh

s
g =

 (Galles & Beckermann, 2016) defined in the evolutions of functions

{ }( ) 1, 2,3i sh g i =
  given in Eq.(11).  

 



 

17 

 

 

Figure 4. Solid volume fraction vs temperature of AM1 (courtesy of Safran Aircraft Engines) 

 

Figure 5. Temperature evolution of Young modulus (right) and thermal expansion coefficient (left) of AM1 (courtesy of 

Safran Aircraft Engines). 

All previously presented data, together with Young modulus and thermal expansion (see 

Figure 5) coefficient evolutions with respect to temperature, are taken from an internal 

database, courtesy of Safran Aircraft Engines. 

In the following, both isothermal and anisothermal tests performed on simple specimens are 

discussed. The test conditions (namely the strain rate and temperature) are chosen to be 

applicable to a real turbine blade casting process. Loading strain rates are 10-5 s-1 and 10-3 s-1 

and temperature varies over a range from 25°C to 1200°C for isothermal tests, and 400 to 

1200°C for anisothermal tests. 
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The aim of these tests is to provide sufficient data to proceed with the identification of the 

developed model parameters. Indeed, the identification procedure is performed for the solid 

phase (considering gs=1) as isothermal tests cannot be ran higher than 1200°C due to 

technical limitations. Isothermal tests, described in details in the following, are first 

conducted. However, isothermal tests are not sufficient to represent all possible 

thermomecanical loading paths that real parts can experience during casting. Additional 

anisothermal tests and subsequent parameters identification are thus performed resulting in a 

better comparison between experimental data and numerical results. (Panisawas et al., 2013) 

is one of the very few works performing anisothermal tests. At the end of the tests, they 

analyzed the microstructure of the specimens and detected the appearance of a 

recrystallization phenomenon for specific temperature conditions and deformation rate. 

 

Isothermal tests 

Multiple tests at various temperatures and strain rates are performed. The specimens used are 

machined from plates that have been previously cast a given production conditions. Figure 6 

shows the geometry of the specimen. A tension machine equipped with an extensometer (10.0 

mm of length gauge) and an induction heating system was used. 

 

Figure 6. Geometry and sizes of the specimen in millimeters (courtesy of Safran Aircraft Engines). 

Each test consists in a simple isothermal interrupted tensile test at fixed loading strain rate 

followed by a relaxation test at identical temperature (study of the evolution of stress at given 

constant deformation). By assessing not only the changes in stress levels for a given strain, we 

are able to identify the values of the multiple parameters appearing in the elasto-viscoplastic 

model developed above. Practically, the tensile test is first performed up to a certain strain 

level ε (usually 2%) prior to switching to the relaxation test during 7200 seconds. The tests 

are performed within several temperature values (25 °C, 400°C, 600°C, 700°C, 800°C, 

900°C, 1000°C, 1100°C and 1200 °C) with a maximal strain about 2.% for a loading strain 

rate of 10-5 s-1 or 10-3 s-1. A comprehensive list of isothermal tests conditions is provided in 

Table 3.  
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Figure 7 and Figure 8 show comparisons of experimental and numerical results respectively at 

10-5 s-1 and 10-3 s-1. In both cases, a good agreement is obtained for all temperatures, except 

for 700°C at 10-5s-1 where the difference between the experimental curve and the numerically 

predicted curve is especially noticeable. We can also see that our model is able to correctly 

predict both stress/strain responses in the tensile phase and stress/time responses in the 

relaxation phase. During the cooling phase when casting a real part, a good modeling of the 

relaxation phase is crucial for evaluating the final stress state using numerical simulation. 

 

Temperature [°C] Strain rate Testing Relaxation 

25°C 10-3 s-1 

tension up to 2% strain 7200 seconds 

400°C 10-3 s-1 

700°C 10-3 s-1 ; 10-5 s-1 

800°C 10-3 s-1 ; 10-5 s-1 

900°C 10-3 s-1 ; 10-5 s-1 

1000°C 10-3 s-1 ; 10-5 s-1 

1100°C 10-3 s-1 ; 10-5 s-1 

1200°C 10-3 s-1 ; 10-5 s-1 

Table 3. List of isothermal tests 

 

 

Figure 7. Isothermal tests stress-strain (left) and stress-time (right) diagrams at 10-5s-1 for various temperatures. 
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Figure 8. Isothermal tests stress-strain (left) and stress-time (right) diagrams at 10-3s-1 for various temperatures. 

 

 

One can notice that the elastic behaviour at 700°C at 10-5s-1 also exhibits a slight deviation 

between numerical and experimental data. In order to achieve a better fit, it is possible to 

artificially increase the values of Young modulus implemented in our database for these 

isothermal simulations. Nevertheless, this deviation can be due to multiple cause from 

measurement uncertainty to elastic anisotropy of the real material; the latter will be 

investigated in future work. 

It is important to recall that the identification procedure uses experimental results defined in a 

temperature range between T0=25°C and Tlast=1200°C. This temperature range does not 

contain the temperature corresponding to the solid-mush transition which is between Tcoal and 

Tcoh (Tcoal=1269°C and Tcoh=1300°C). To fill this lack of experimental information on the 

identified parameters of the model, we have used a strategy to define their evolution in this 

temperature domain. This strategy is obviously a first approach which is quite debatable and 

could be improved by additional experimental results: 

• The yield stress limit 
e

T
σ  and viscous modulus 

vTK  are kept constant at the 

value Tmax (if T≥Tlast → e

T
σ =

max

e

T
σ  and 

maxvT vTK K= ) 

• The isotropic hardening modulus 
TA  is linearly extrapolated with the last slope 

at solidus temperature Ts=1255°C. Between Ts and Tcoh it is defined linearly 

decreasing towards zero (Annihilation of strain-hardening for T≥Tcoh → 0TA =  

).  

• The hardening saturation parameter 
T

b  and 
vT

b  are extrapolated linearly with 

the last slope at the solidus temperature Ts and then kept constant at the value 

Ts. 

 

The identification methodology was therefore used to obtain the model parameters for 

different temperatures. Figure 9 shows the evolution of yield limit and viscosity modulus as a 
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function of temperature. It should be noted that the evolution of these two parameters are 

quite similar. We observe an increase in the yield limit over the temperature interval T∈[0°C-

700°C] as well as in the viscosity modulus for the interval T∈[0°C-900°C]. These two 

parameters then progressively decrease. We suppose that these evolutions are governed by 

metallurgical transformations that we have not tried to model in this paper. 

 

 

Figure 9. Evolution of initial yield and viscosity modulus vs temperature. 

 

Anisothermal tests 

Anisothermal simulations are performed on a single integration point. In Figure 10, strain and 

temperature imposed as boundary conditions are shown. The geometry of the specimen is 

similar to isothermal tension-relaxation test (see back Figure 6). First, the specimen is slowly 

heated to a temperature of 1200°C. In the first part 0s<t<2000s, the specimen is loading to 

compression until a strain of (-1%) and at the same time cooled at an average cooling rate of -

26°C/min. For the second part of the time 2000 s<t<5400 s, the loads are reversed, the 

specimen is loaded in tension and heated at an average heat rate of 13.2° C/min. 

The evolutions of computed stress and strain components along loading direction are 

compared to experimental results in Figure 11, while comparison in terms of stress-strain 

curves is presented in . Calculated mechanical and thermal strains are plotted vs the time in 

Figure 12a together with corresponding strain rates (Figure 11b). 
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Figure 10. Temperature and strain imposed boundary conditions during anisothermal tests. 

The stress and strain curves given in Figure 11 (a) and (b) show good fitting with 

experimental results, particularly the stress maximum value and the time at which it is reached 

are quite well predicted. Some deviation is nonetheless observed at some specific locations. 

First, stress grows faster in simulation than observed experimentally during the initial 

compression phase. Second, while experimental stress grows slower at the beginning of 

tensile phase between 2000 and 3500 seconds, the evolution of computed stress on the 

contrary seems constant. 

It is worth noting that stress remains positive and still increases after switching from 

compression to tensile loading paths occurring at time 2000 seconds; it only starts decreasing 

around 3700 seconds. This feature can be explained by the differential evolutions of thermal 

and mechanical strains induced by imposed displacement, which govern stress direction. As 

observed in Figure 12, thermal strain evolves faster than mechanical strain during 

compression phase and slower during tensile phase. In these conditions, the specimen turns 

out to be in tension during the entire test as illustrated in Figure 13. Stress finally decreases, 

because mechanical properties of the material are altered towards viscoplasticity by the raise 

of temperature, as supported by Figure 14. 
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Figure 11. (a) Time evolution of measured and computed stress and strain during anisothermal tests.(b) Anisothermal tests 

diagram of stress versus strain. 

  

(a) (b) 

Figure 12. Time evolution of (a) displacement and thermal strains, (b) corresponding strain rates.   
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Figure 13. Schematic representation of compressive and tensile phases. Displacement (blue) and thermal (red) strains are 

relatively sketched in order to show why the specimen is always in tension.   

In the latter, we first observe that from temperature 750°C to 1200°C, the identified yield 

stress (identified with previous isothermal tests) decreases, while it increases from 550 ° C to 

750 ° C. A plateau is observed between 25 °C and 600 ° C and a maximum value is reached 

between 670 ° C and 770 ° C. The same singular evolution is consistent with observations 

presented in the work by (Caron et al., 2011). Second, Figure 14(a) suggests that plasticity 

occurs during the tensile phase of the test, at t > 3700s, when stress becomes greater than the 

corresponding yield stress at a given temperature. This is consistent with the time evolution of 

calculated strains, presented in Figure 14(b). 

 

Figure 14. (a) Comparison between the experimentally measured stress with the numerically identified yield stress. Black 

dashed line is a fitting curve of the yield stress. The evolution of time is indicated with yellow arrows. Plasticity occurs when 

stress becomes greater than the elastic limit, for instance when t > 3700 s. (b) Decomposition of total strain (red) as elastic 

strain (blue), plastic strain (black) and thermal strain (green) at different times. Yellow dashed lines correspond to 

previously marked times. For t > 3700s, plasticity occurs, which is consistent with the calculated stress state. 
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Previous elements allow us to think that plastic phase is correctly predicted while the 

thermoelastic stage is not well described. At first sight, the observed deviation can possibly be 

due either to an arbitrary choice of reference temperature "#$�  when computing the thermal 

loading increment, or to the dispersion of the thermal expansion coefficient %&.  For instance, 

in the used experiments, "#$� can vary between 10 and 30°C, and the chosen default value is 

about 25°C in the previous simulations. In addition, a 5% deviation on the measurement of 

the thermal expansion coefficient may be accounted for. 

The influence of "#$� is first investigated. Additional simulations are carried out with "#$� = 

10, 15, 20 and 30°C. "#$� = 25°C corresponds to the original case. Considering Figure 15, it 

turns out that this parameter has very little influence. This was expected as a 20°C variation 

only represents 5% of the process temperature at most.  

 

 

 

Figure 15. Parametric study of the reference temperature "#$�. Predicted stress versus strain diagrams are plotted together 

with experimental data.  

 

Second, new simulations are performed with a scale factor '()*+ varying between 0.96 and 

1.04 applied to %.  This feature is used for preliminary sensitivity tests as the simplest way to 

account for measurement uncertainty. 

The expression of the increment of thermal displacement is hence modified as follows: 
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 Δ-./01 = 2'()*+%&���3"	
� 4 "#$�5 4 '()*+%&�("	 4 "#$�)67./ (29) 

 

 

Results of stress versus strain are shown in Figure 16 for various values of '()*+ and showed 

to be much more sensitive to the latter. Corresponding computed stress errors to experimental 

data are summed up in Table 4.  

 

Figure 16. Parametric study of the scaling factor '()*+. Stress versus strain diagrams are plotted together with experimental 

data. 

 

 Mean error (%) Max error (%) Min error (%) 

89:;< = = 14.9 94.8 0.08 

89:;< = >. ?@ 11.6 96.8 0.15 

89:;< = >. ?A 12.5 95.8 0.35 

89:;< = =. >B 18.4 93.8 0.05 

89:;< = =. >C 22.4 92.8 0.20 

Table 4. Mean, maximal and minimal error on computed stress with respect to experimental data for various values of the 

scaling factor '()*+. 

The best fitting i.e. the lowest value of mean error is obtained for '()*+ = 0.96. One could 

wisely point out that the scale factor '()*+ is here assumed constant in each simulation. 

Numerical simulations with our new model have shown good agreement with experimental 

tests, especially during the plasticity-driven part of the tensile load. In particular, the maximal 

level of stress is well predicted. Deviation is mainly observed during the thermoelastic-driven 
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phase. The sensitivity to two main parameters, namely the reference temperature and the 

thermal expansion coefficient, have been investigated. The former appeared to have little 

influence, while the latter turned to have great influence on the numerical results. This feature 

has been related to the experimental measurement dispersion. Further validation tests can be 

led, such as determining whether plastic strain is obtained. 

 

5. Finite element study of the cooling of a strained casting bar 

In order to compare the developed model with classical one, in this numerical study we have 

considered a benchmark test involving post casting and cooling of a rectangular AM1 Ni-

based superalloy bar in a sand mold. Figure 17a shows the shape and dimension of the bar. 

During the cooling phase, a uni-axial tensile force is applied to the right end of the bar (see 

Figure 17b) in order to induce mechanical strains and displacement boundary conditions are 

applied on the rest of bar faces.  

The thermo-fluidic model and the simulation of the casting operation is done using 

ProCAST© FEM software. Only the cooling phase is simulated with Abaqus/Standard© 

software. Our numerical methodology therefore consists in deliberately decoupling the 

resolution of the mechanical equilibrium of the solid from the resolution of the heat equation. 

The evolution of the thermal field over time is simulated by ProCAST©software and then 

directly imposed on the model as temperature field (thermal load condition at each element of 

the volumic mesh). Temperature field included in the simulation is previously predicted using 

ProCAST© software finite element code starting from completely liquid state at 1500°C. 

Stress simulations are then performed using the finite element code Abaqus/Standard© 

(Dassault System, 2012) within the developed user material subroutine UMAT based on 

proposed constitutive thermo-elasto-viscoplastic model account for transition solid-liquid 

occurring in the media during the cooling phase.  
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(a) benchmark test involving post casting and cooling of a rectangular AM1 Ni-based superalloy bar in 

a sand mold 

thermal boundary conditions 

 

(b) mechanical boundary conditions 

  

(c) Coarse mesh 51 000 elements (d) Fine mesh 3 140 000 elements 

Figure 17. presentation of the benchmak test a) geometry of the bar and position of the bar in the sand mold, b) introduction 

of the different thermomechanical boundaries conditions c) coarse mesh of the bar d) fine mesh of the bar. 

The different thermal boundary conditions used in the PROCAST software are shown in the 

Figure 17a. The initial temperature of the bar is 1500°C. This bar is entirely surrounded by a 

temperature sand mould which is modelled by a convection flow at 20°C. The displacement 

boundary conditions defined in abaqus®, see Figure 17b, allow only the displacement in Y 

direction. A free force is applied to the right-hand end of the bar with an amplitude of Fy=0.N 

The bar is meshed using two sizes of 3D linear tetrahedral elements (C3D4) giving a coarse 

mesh composed of 510000 elements (see Figure 17c) and Fine mesh composed of 3140000 

elements (see Figure 17d). 
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Figure 18 shows the maps of the thermal field and the solid volume fraction inside the bar for 

certain time steps (10s, 20s and 100s) after cooling. In this figure, we can observe that the 

maximum gradient of temperature is located in the center of the bar. The coldest temperatures 

are located inside the bar edges and bounds. We can observe that after 100s step time, the 

temperature in the bar varies between 806°C and 879°C for which the bar is completely 

solidified.  

Temperature [°C] Solid fraction [-] 

 
 

Time=10s 

 
 

Time=20s 

 
 

Time=100s 

Figure 18. Temperature and solid fraction maps for different times obtained with coarse mesh of the casting of strained bar. 

The evolution of the temperature and solid volume fraction versus time for material point-A 

localized in the center of the bar are plotted in Figure 19. At this point A, we can observe 

from the Figure 19a that the transition liquid-mushy-solid occurs over a fairly short time 
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interval about 25s. After 10s starts the solidification inside the bar at the point A. The 

evolution of the solid fraction increases monotonically and reaches gs=1 after 34s.The 

temperature gradually drop in the bar after 5s. After 400s, the temperature becomes 

homogeneous inside the bar and reaches about 300°C. After 700s, the temperature decreases 

homogeneously to reach 200°C. 

 

 
a) b) 
Figure 19. Evolution of temperature and solid volume fraction vs time in the center of the bar a) zoom of the time interval 

t∈[0s-50s], b) plot of the time interval t∈[0s-700s] 

In the case of coarse mesh, Figure 20 shows the isovalues of von Mises stress for different 

time and for two cases: 

• Activation of Solid-Liquid Transition (ASLT): [ ] ( ) ( ) ( )1 2 3
0 1 , ,

s s s s
g h g h g h g∀ ∈ −  

are defined in equation Eq.(11) 

• No Activation of Solid-Liquid Transition (NASLT): 

( ) ( )1 2
1 1, 0,

s s s
g and h g h g= = = ( )3

1
s

h g =
 

During the solidification phase of the bar (0<t<35s), ASLT modifies slightly the von Mises 

stress distribution. The maximum stress is located in the corners of the bar and the minimum 

is concentrated in the center of the bar (where the temperature is the highest). After 100s, the 

distribution of von Mises stress are quite similar. The minimum and maximum are 

nevertheless different, 755 MPa to 909 MPa with ASLT and 780MPa to 925 MPa with 

NASLT. After 400s, the von Mises stress is almost homogeneous in the bar, the bar is mainly 

stressed in compression along the x-axis. The maximum stress level is then saturated at an 

average of 920 MPa. The stress distribution is then identical for ASLT or NASLT because the 

stress saturation level is also identical for both models. 
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Activation of Solid-Liquid Transition (ASLT) No Activation of Solid-Liquid Transition (NASLT) 

  

Time=10s 

 
 

Time=100s 

  

Time=400s 

Figure 20. Comparison between simulations of the casting of strained bar in terms of von Mises stress [in MPa] maps for at 

different times obtained with coarse mesh. 

Figure 21 shows the spatial distribution of accumulated plastic strain for ASLT and NASLT. 

We can see that ASLT generates more viscoplastic flow. During the solidification period 

0<t<35s, the maximum strain is mainly located in the corners for NASLT. But for ASLT, the 

distribution of the plastic flow seems to be affected and the maximum is rather located along 

the axis of the bar. The maximum is then 0.0375 for ASLT and 0.035 for NASLT. As time 

passes, the difference in spatial distribution and amplitude of accumulated plastic strain 

between the two models (ASLT and NASLT) seems to increase. Based on the first numerical 

observations, we can already conclude that activation of solid-liquid transition has a 

significant influence on the plastic flow of the bar during its cooling. This difference 

necessarily generates a different plastic dissipation energy between the two models. 
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Activation of Solid-Liquid Transition (ASLT) No Activation of solid-liquid transition (NASLT) 

 
 

Time=10s 

  

Time=100s 

 
 

Time=400s 

Figure 21. Comparison between simulations of the casting of strained bar in terms of accumulated plastic strain maps for at 

different times obtained with coarse mesh. 

We will now test the sensitivity of our model to spatial discretization. Only in case ASLT, 

Figure 22 compares the distribution of the von Mises stress for two times (t=20s and t=400s) 

in the case of a coarse and fine mesh. For t=20s, we observe an identical distribution for both 

meshes. The fine mesh allows to better capture the areas of stress concentration but for a 

rather small difference (175 MPa – 173 MPa= 2 MPa). When t=400s, the two meshes give 

exactly the same stress distribution. 
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Figure 22. Comparison of von Mises stress [in MPa] repartition between coarse and fine mesh of strained bar for two time 

t=20s and t=400s. 

 

A point in the center of the bar is selected to plot the accumulated plastic strain vs time 

evolution for both meshes and for ASLT and NASLT (see Figure 23). The difference in plastic 

flow amplitude increases very rapidly between 0<t<100s for both models (ASLT and 

NASLT). The difference in evolution then seems to stabilize after t>100s. After 500s, the 

plastic flow in the bar slows down to reach respectively at t=700s -$D��
=0.06 for ASLT and 

-$D��
=0.045 for NASLT. We can also see that the two meshes converge towards the same 

accumulated plastic deformation vs time evolution for case ASLT or NASLT. 

Figure 23(b) shows a rather similar stress evolution between the two configurations ASLT 

and NASLT. However, we observe a greater difference in the cumulative plastic strain which 

is more important when the liquid-solid transition is activated. In parallel with this study, 

SAFRAN is developing a criterion based on plastic dissipation energy to predict the risk of 

recrystallization phenomena occurring during the solidification and cooling phase of the 

component (the component must keep this monocrystalline structure). We then show in this 

paper that the activation of the solid-mushy-liquid transition has an effect on of the plastic 

flow and thus on plastic dissipated energy. 
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a) b) 
 

Figure 23. Evolution of (a) accumulated plastic strain vs time for both meshes and for ASLT and NASLT in the center of the 

bar, (b Mises stress vs time for both meshes and for ASLT and NASLT in the center of the bar. 

 

5. Conclusions  

In this study a thermodynamically-consistent thermo-elasto-viscoplastic model was developed 

in order to predict the thermo-mechanical behaviour of Ni-based single crystal superalloy 

during its cooling phase after casting. This model takes into account the transition liquid-

mushy-solid occurring in the material during the cooling phase. This is done by introducing a 

compressible-type viscoplastic yield function based on appropriate equivalent stress 

depending on volume fraction of the solid phase formed by the propagation of dendrites 

inside the liquid phase of the material. This model has been implemented into 

Abaqus/Standard© finite element code through the development of UMAT user material 

subroutine. An efficient identification procedure, based on multi-objective optimization 

methodology, has been made in order to determine all the material parameters of the model. 

This methodology aims to minimize the gap between the numerical and the experimental 

results of isothermal tensile-relaxation tests driven for different strain rates and over a large 

range of temperatures. A validation on anisothermal tension/compression tests has been 

performed. Finally, a first application has been made to parallelipipedic bar subject to 

solidification and cooling.  

In the framework of parallepipedic bar cooling, the first conclusion is that the activation of 

solid-liquid modelized by a specific stress norm in the viscoplastic yield criterion increases 

plastic flow and thus generates more plastic dissipation energy. One of SAFRAN's main goals 

is to conserve a monocrystalline structure of these components during the cooling phase and 

after subsequent heat treatment. A criterion for detecting activation of the recrystallization 

phenomenon based on plastic dissipation energy is currently under study. The thermo-elasto-

viscoplastic model proposed in this paper will be then coupled to this criterion in order to 

study the influence of the liquid-mushy-solid transition on the risk of appearance of 

recrystallized/hot tearing zone in the component. 

However, some limitations of the proposed model have been observed and can be 

summarized by: 
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• For certain temperatures (around 700°C) and strain rate ranges, the Ni-based 

superalloy exhibits anomalous softening behavior that cannot be predicted by the 

proposed model and may be due to recrystallization phenomena which needs more 

advanced investigation, 

• The experimental investigations are limited, due to technical constraints at a 

temperature range up to about 1200°C. This aspect needs additional experimental 

investigation in order to understand its physical meaning and enhance the capability of 

thermomechanical model. 
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Appendix n°1 

Expression of the terms used in the newton Raphson algorithm for the calculation of the 

plastic multiplier.  

The term  ( )

1 1/
vp

k vp

n eqnf ε+ +∂ ∂∆  is determined throw : 
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Appendix n°2 

 

Expression of the tangent operator ijklC  : 
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Note that when the increment is purely elastic, the tangent operator is reduced to : 
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