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act

ion absorbers are known for their use in vibration mitigation. In particular, nonlinear vibrati
ers have been of great interest for vibratory level reduction as they do not have to be tuned to t
l frequency of their supporting structure. In order to obtain satisfactory operations of the absorb
necessary for its activation and dissipated vibratory level), it is necessary to identify the corre
ters of the absorber which are its nonlinear sti�ness and damping. However, when moving fro
cs to designing an experimental prototype, it is complicated to have the appropriate parameter valu
lly damping, because it is very di�cult (or even impossible) to adjust a precise value for a mechanic
ly. As a consequence, this bad adjustment leads to an ine�ciency of the absorber and unsatisfacto
. To avoid this lack of robustness, the addition of a multiphysical coupling, to a nonlinear absorb
ied in this paper in order to create an equivalent damping coe�cient from another nature : electr
tomechanical. This new damping generated is adapted and allows to adjust the equivalent dampi
ent of the absorber to get the best e�ciency, analytically and experimentally.

rds: Vibrations, Control, Nonlinear Dynamics, Multiphysics

roduction

uctures subjected to dynamic excitation may exhibit harmful vibrations, potentially reducing th
. Therefore, vibration mitigation has received great interest [1]. Passive linear vibration absorbe
TMDs (Tuned Mass Damper) are frequently used in industry to reduce vibration level of critic
nents. For a dynamic sollicitation close to the natural frequency of the main structure to be dampe
e e�cient for a mass ratio between the TMD and the modal mass of the structure of about 5-10
er, the natural frequency of the TMD must be tuned to the structure otherwise a loss of e�cien
s quickly.

he last decade, nonlinear vibration absorbers, usually known as Nonlinear Energy Sinks (NES), ha
e object of numerous studies in the �eld of Nonlinear Dynamics to circumvent the limits of TM
bstitution of the linear sti�ness by an essentially nonlinear one allows the NES to not have a natur
cy and to adapt itself to the supporting structure, hence initiating the energy transfer for a mass rat
t 1% only. Analytical models of the dynamical behavior of NES have shown a promising potent
ipate energy. Experimental and theorical studies have shown that the nonlinearity of the NES allo
versible transfer of energy, known as Targered Energy Transfer, from the primary system to the NE
Passive control of resonance using a NES was studied analytically [6, 7] and experimentally [8,
gations on the control of aeroelastic instabilities with a nonlinear absorber was also analyzed [10�1

responding author
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lytical models have also shown the sensitivity of a NES performance according to the values of
s and damping parameters. However, it is very di�cult to control and to identify the damping c
t of a mechanichal assembly during the design in order to have the full potential described by t
cal model. The consequences of a incorrect value of damping coe�cient, which is not adjusted,
ortant amplitude peak and even higher than that of the structure without absorber for frequenc
han the natural frequency. This phenomenon called "detached resonance" is not due to a shift of
esonance, but to a branch of solutions due to nonlinear dynamics [13]. Therefore, it is important
and to adjust experimentally the right set of parameters.

impact of an additional physics in the absorber has been studied recently with a research �eld
hysics absorbers which would involve passive electrical circuits to convert the mechanical energy fro
rations into electrical energy. Nowadays, the studies on this type of absorbers are rather orient
energy harvesting [14�18]. In the present paper, an electrical circuit is used to create an equivale
ical damping, to overcome the unpredictability of the purely mechanical damping stemming fro
embly of the absorber.

s work illustrates the concept of a new type of nonlinear absorber with an electro-magnetomechanic
g in order to demonstrate the possibility to adjust the equivalent damping of the absorber to impro
iency. In the �rst part, the protype will be introduced. Then the analytical model of the syste
nted to evaluate the performances of the potential of the electro-magnetomechanical coupling. T
exi�cation-Averaging (CX-A) technique and multi scale method [19] have been used to derive modu
uations, to compute the �xed point solutions and the slow invariant manifold. Finally, the analytic
and experimental tests with a vibration shaker will be presented and compared.

ctro-magnetomechanical coupling

xperimental setup

design of the absorber consists of a mass-spring system nonlinearly coupled to the structure to
d, represented as a linear oscillator (LO). The prototype in this study is presented in Figure 1.
s of an LO composed of a mass of 64 kg connected to the ground by 4 springs. The LO is connect
xcitation shaker transmitting a dynamic excitation. The mechanical components of the absorber a
ng mass of 1.4 kg positionned on the LO, it is the absorber. It translates along two slides by mea
r bearings. The restoring force of the absorber is generated by the four springs which are mount
ts on the LO and the absorber, so they only undertak traction forces. The trajectory of the spring
in Figure 2, leads to a mostly nonlinear cubic sti�ness, comprising a residual linear term due to
longation during their installation. The nonlinear restoring force is given by the following equatio

fnl(x) = k2lx+ k2cx
3 (

k2l =
2P

l
+ 2k

(
1− l

l0

)
, k2c =

kl0
l3
− P

l3
(

the sti�ness of the spring, P the preload applied to the spring and l0 its initial length.
electro-magnetomechanical coupling is achieved by a coil / magnet assembly. The 80 mm long c
d on the top of the absorber. Being integral to the absorber, it moves around its associated magne
ed to the LO (Figure 1). The magnetic bar, slightly longer than the coil with 90 mm, is made up
erimposed cylindrical magnets giving a modular magnet system. The interaction between the �eld
gnet and the coil, stemming from their relative displacement, creates an electrical current. The �e
by the coil varies according to the resistance which is applied to its terminals. It can be con�gur
circuit (in�nite resistance) or in closed circuit (almost zero resistance).

2
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Figure 1: Prototype of the absorber with the magnet-coil system

Figure 2: Springs con�guration causing nonlinear sti�ness

complete system is a 2-DOF model made up of the LO, described by a mass m1, a sti�ness k1 a
ing coe�cient c1. The LO is coupled to the absorber, described by a mass m2, a cubic sti�ness k
r sti�ness k2l and a damping coe�cient c2. The values of these di�erent parameters of the syste
sented in Table1. An excitation force Fe sin(Ωt) is applied to the LO. A diagram of this syste
nted in Figure 3. As a reminder, in the assembly, the magnet is �xed to the main structure, wh
l is �xed to the absorber (Figure 4). As a result the magnet displacement is xm = x1, x1 being t
ement of the LO, and the coil displacement is xc = x2, x2 being the displacement of the absorb
uations of movement characterizing this assembly taking into account the electro-magnetomechanic
g are





m1
d2x1

dt2 + c1
dx1

dt + k1x1 + c2(dx1

dt − dx2

dt ) + k2l(x1 − x2) + k2c(x1 − x2)3 = Fe sin(Ωt)

m2
d2x2

dt2 + c2(dx2

dt − dx1

dt ) + k2l(x2 − x1) + k2c(x1 − x2)3 − θ (y) I = 0

Lc
dI
dt + (Rc +Ri) I + θ (y) ẏ = 0

(

3
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Parameter Value Parameter Value
m1 [kg] 64 m2 [kg] 1.4

c1 [N/m.s−1] 97 c2 [N/m.s−1] 1
k1 [N.m−1] 91324 k2l [N.m

−1] 500
- - k2c [N.m

−3] 8.44.106

Table 1: Parameters of the system

Figure 3: A linear principal oscillator coupled to an NES

Figure 4: Coupled system: mechanical and electrical representations

Rc, Ri and I are respectively the coil inductance, the coil resistance, the resistance applied to
als and the current. The term θ (y) is called the electro-magnetomechanical coupling coe�cient whe
− xc the displacement between the coil and the magnet.

odelling of the electro-magnetomechanical coupling

the literature, this electro-magnetomechanical coupling term is often considered constant for t
gnet interaction. However, Sneller A.J. and al. [20] showed that the coupling term between the
nents evolves nonlinearly with respect to their relative initial position. It is therefore important
is variation into account. In this part, their model is used to �nd the con�guration where the coupli

4
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ore important for low displacements. According to Faraday's law, a voltage V is created across
oportional to the magnetic �ux variation Φ which crosses it.

V = −dΦ

dt
= −dΦ

dx

dx

dt
(

model allows to calculate the voltage and nonlinear electromagnetic coupling between a coil and
ing magnet inside. The expression for the voltage function of the displacement between the coil a
gnet y = xm − xc is

V = θ(y)ẏ (

θ(y) = −NcBrνsξ
2Ac

2∑

i,j=1

(−1)
i+j

[
ln (ri + zij)−

ri
zij

]
(

j = r2
i +

(
x

′
cj + y

)2

, x
′
c1 = −L/2 and x

′
c2 = L/2. The following example will show that the electr

tomechanical coupling strongly depends on the distance between the coil and the magnet.

Figure 5: Magnet-coil interaction and polar cross section of a coil

Parameter Value Unit
Internal coil diameter (2r1) 33 mm
External coil diameter (2r2) 41.2 mm
Coil length (L) 80.4 mm
Coil resistance (Rc) 11.6 Ω
Coil inductance (Lc) 14.25 mH
Number of turns (Nc) 1088
Wire diameter 0.5 mm
Coil �lling ξc 65 %
Magnet remanence (Br) 1.32 T
Magnet volume (νs) 4, 3.10−5 m3

Table 2: Parameters of the coil-magnet system

5



Fig st
con�gu ig-
ure 7 c is
couplin all
amplit is
corresp an
optima ig-
ure 7) w y.

3. Mo

3.1. A

As he
electro
Figure 6: Magneto-mechanical coupling term θ(y)

Figure 7: Di�erent con�gurations of the magnet into the coil

ure 6 depicts the evolution of the coupling term θ(y) simulated for di�erent con�gurations. The �r
ration (blue curve) represents the case where the centroids of the magnet and coil coincide (F
ase 1). The coupling is very weak for the small displacements. However, it is desirable that th
g is maximised from the very onset of movement to dissipate the vibrational energy even for sm
ude displacements. The distance between one of the extrema of the blue curve and the ordinate ax
onds to the distance between the centroid of the magnet and one end of the coil. To achieve
l e�ciency even for low displacements, the second con�guration (red curve Figure 6 and case 2 F
here the magnet moves at the end of the coil seems the most e�cient one and is chosen for the stud

deling of the complete system

nalytical solution of the equations of movement

a reminder, the equations of movement characterizing the complete assembly taking into account t
-magnetomechanical coupling are

6
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



m1
d2x1

dt2 + c1
dx1

dt + k1x1 + c2(dx1

dt − dx2

dt ) + k2l(x1 − x2) + k2c(x1 − x2)3 = Fe sin(Ωt)

m2
d2x2

dt2 + c2(dx2

dt − dx1

dt ) + k2l(x2 − x1) + k2c(x1 − x2)3 − θ (y) I = 0

Lc
dI
dt + (Rc +Ri) I + θ (y) ẏ = 0

(

approximation is calculated analytically by assuming the term Lc
dI
dt is negligible for low frequenc

amplitudes. Unfortunately, this point has not been veri�ed by experimental measurements of t
ty because of the insu�cient sensitivity of our devices. However, a temporal solution of the syste
without this term on Matlab con�rmed this approximation. So, it is possible to write

Lc
dI

dt
= 0 −→ (Rc +Ri)I + θ(y)ẏ = 0 (

s then possible to write the second equation of (7) in the form

m2
d2x2

dt2
+

(
c2 +

θ2(y)

Rc +Ri

)(
dx2

dt
− dx1

dt

)
+ k2l(x2 − x1) + k2c(x2 − x1)3 = 0 (

s equation shows the existence of an equivalent damping coe�cient, of two natures : mechanical a
magnetic. The damping is controlled with the applied resistance, the higher the applied resistance

re the damping term θ2(y)
Rc+Ri

created by the coil/magnet assembly decreases, until it tends towards
mechanical damping and it becomes maximum for Ri zero.

analytical study of the dynamics of the multi-physics absorber coupled to a linear oscillator
ed by the complexi�cation and multi-scale methods. The equations of motion describing the mod

m1
d2x1

dt2 + c1
dx1

dt + k1x1 + c2(dx1

dt − dx2

dt ) + k2l(x1 − x2) + k2c(x1 − x2)3 = Fe sin(Ωt)

m2
d2x2

dt2 +
(
c2 + θ2(y)

Rc+Ri

)
(dx2

dt − dx1

dt ) + k2l(x2 − x1) + k2c(x2 − x1)3 = 0

(1

h Ω the applied frequency. In the previous part, the model describing the multi-physics coupling w
ced. Due to its complex expression and the di�culty to introduce it into the analytical solution,
cation of this law is made using the following expression

θ(y) = a1y
8 + a2y

6 + a3y
4 + a4y

2 + a5 (1

graphical representation of this approximation is shown in �gure 8.
n, the following change of variables is introduced

ε =
m2

m1
, ω2

0 =
k1

m1
, K1 =

k2l

m2ω2
0

, K3 =
k2c

m2ω2
0

, λ1 =
c1

m2ω0
,

λ2 =
c2

m2ω0
, Ω =

Ω

ω0
, τ = ω0t,

θ2(y)

m2ω0(Rc +Ri)
=

9∑

i=1

γiy
18−2i

(1

substituting (12) in the equations (10), the equilibrium reads





ẍ1 + ελ1ẋ1 + ελ2(ẋ1 − ẋ2) + x1 + εK1(x1 − x2) + εK3(x1 − x2)3 = εF sin(Ωτ)

ẍ2 +
(
λ2 +

∑9
i=1 γiy

18−2i
)

(ẋ2 − ẋ1) +K1(x2 − x1) +K3(x2 − x1)3 = 0
(1

7
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Figure 8: Simpli�cation of the electro-magnetomechanical coupling model

dots ( ˙ ) represent the derivatives with respect to the dimensionless time τ . Now, the barycent
ates is introduced

v = x1 + εx2, w = x1 − x2 (1

n, (14) is introduced into (13), giving the following system





v̈ + ελ1
v̇+εẇ
1+ε + v+εw

1+ε − ε
(∑9

i=1 γiw
18−2i

)
ẇ = εF sin(Ωτ)

ẅ + ελ1
v̇+εẇ
1+ε + v+εw

1+ε + λ2(1 + ε)ẇ +
(∑9

i=1 γiw
18−2i

)
ẇ

+K1(1 + ε)w +K3(1 + ε)w3 = εF sin(Ωτ)

(1

cubic nonlinearity of the sti�ness and the multiphysics coupling in the second equation of t
does not allow an exact analytical solution. An approximation of periodic solutions is calculat
mbination of complexi�cation methods and multiple scales. The system is supposed to follow a 1
ce, meaning that the main oscillator and the NES oscillate at the same excitation frequency Ω.
n that this energy transfer is de�ned as a 1:1 resonance capture (LO and NES oscillate at the sam
cy) between the primary system and the NES[21, 21, 22]. First, the following complex variables
ced

Ψ1 = v̇ + iΩv, Ψ2 = ẇ + iΩw

Ψ1 = φ1 exp(iΩτ), Ψ2 = φ2 exp(iΩτ)
(1

following equivalences are valid





v =
1

2iΩ
(Ψ1 −Ψ∗

1), w =
1

2iΩ
(Ψ2 −Ψ∗

2)

v̇ =
1

2
(Ψ1 + Ψ∗

1), ẇ =
1

2
(Ψ2 + Ψ∗

2)

v̈ = Ψ̇1 −
iΩ

2
(Ψ1 + Ψ∗

1), ẅ = Ψ̇2 −
iΩ

2
(Ψ2 + Ψ∗

2)

(1

8
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
 −
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addition of the complex variables leads to partitioning the fast oscillations of the system at t
ion frequency Ω and the slow modulation of the complex amplitudes {φ1, φ2}. By injecting (17) in
e following system is obtained

˙
1 − iΩ

2 (Ψ1 + Ψ∗
1) + ε

1+ελ1

(
1
2 (Ψ1 + Ψ∗

1) + ε
2 (Ψ2 + Ψ∗

2)
)

+ 1
2iΩ(1+ε)

(
Ψ1 + Ψ∗

1 + ε
2 (Ψ2 + Ψ∗

2)
)

−( γ1
65536Ω16 (Ψ2 −Ψ∗

2)16 − γ2
16384Ω14 (Ψ2 −Ψ∗

2)14 + γ3
4096Ω14 (Ψ2 −Ψ∗

2)12 − γ4
1024Ω10 (Ψ2 −Ψ∗

2)10

+ γ5
256Ω8 (Ψ2 −Ψ∗

2)8 − γ6
64Ω6 (Ψ2 −Ψ∗

2)6 + γ7
16Ω4 (Ψ2 −Ψ∗

2)4 − γ8
4Ω2 (Ψ2 −Ψ∗

2)2 + γ9) ε2 (Ψ2 + Ψ∗
2)

= εF sin(Ωτ)

˙
2 − iΩ

2 (Ψ2 + Ψ∗
2) + ε

1+ελ1

(
1
2 (Ψ1 + Ψ∗

1) + ε
2 (Ψ2 + Ψ∗

2)
)

+ 1
2iΩ(1+ε)

(
Ψ1 + Ψ∗

1 + ε
2 (Ψ2 + Ψ∗

2)
)

+( γ1
65536Ω16 (Ψ2 −Ψ∗

2)16 − γ2
16384Ω14 (Ψ2 −Ψ∗

2)14 + γ3
4096Ω14 (Ψ2 −Ψ∗

2)12 − γ4
1024Ω10 (Ψ2 −Ψ∗

2)10

+ γ5
256Ω8 (Ψ2 −Ψ∗

2)8 − γ6
64Ω6 (Ψ2 −Ψ∗

2)6 + γ7
16Ω4 (Ψ2 −Ψ∗

2)4 − γ8
4Ω2 (Ψ2 −Ψ∗

2)2 + γ9) 1
2 (Ψ2 + Ψ∗

2)

+λ2

2 (1 + ε)(Ψ2 + Ψ∗
2) + K1

2iΩ (Ψ2 −Ψ∗
2) + iK3

8Ω3 (Ψ2 −Ψ∗
2)3 = εF sin(Ωτ)

(1
n, the equations are averaged over the fast time scale. Therefore, only terms proportional to exp(iΩ
t. The Ψi terms are replaced with φi exp(iΩτ). A system proportional to φ1 and φ2 is established

φ̇1 − iΩ
2 φ1 + ελ1

2(1+ε) (φ1 + εφ2)− i
2Ω(1+ε) (φ1 + εφ2)− 715εγ1

65536Ω16 |φ2|16φ2 − 429εγ2
32768Ω14 |φ2|14φ2

− 33εγ3
2048Ω12 |φ2|12φ2 − 21εγ4

1024Ω10 |φ2|10φ2 − 7εγ5
256Ω8 |φ2|8φ2 − 5εγ6

128Ω6 |φ2|6φ2 − εγ7
16Ω4 |φ2|4φ2

− εγ8
8Ω2 |φ2|2φ2 − εγ9

2 φ2 + iεF
2 = 0

φ̇2 − iΩ
2 φ2 + ελ1

2(1+ε) (φ1 + εφ2)− i
2Ω(1+ε) (φ1 + εφ2) + λ2

2 (1 + ε)φ2 − (1 + ε) iK1

2Ω φ2

(1 + ε) i3K8Ω3 |φ2|2φ2 + 715γ1
65536Ω16 |φ2|16φ2 + 429γ2

32768Ω14 |φ2|14φ2 + 33γ3
2048Ω12 |φ2|12φ2 + 21γ4

1024Ω10 |φ2|10φ2

+ 7γ5
256Ω8 |φ2|8φ2 + 5γ6

128Ω6 |φ2|6φ2 + γ7
16Ω4 |φ2|4φ2 + γ8

8Ω2 |φ2|2φ2 + γ9
2 φ2 + iεF

2 = 0
(1

ce φ1 and φ2 are the slow evolutions of the amplitudes for a 1:1 type resonance, the temporal evoluti
LO-NES system is governed by the system of equations (19 ) considering a periodic oscillation of t
illators at the same frequency Ω.

xed point solutions

m (19), it is possible to determine the �xed point solutions. The latter corresponds to the period
ns of system (15) under the assumption of a 1:1 resonance. They are calculated by �nding the zer

φ̇1 = φ̇2 = 0 −→ φ1(τ) = φ10, φ2(τ) = φ20 (2

introducing (20) into (19), the expression of φ10 is calculated as a function of φ20 and syste
ters.

φ10 = β1|φ20|16φ20 + β2|φ20|14φ20 + β3|φ20|12φ20 + β4|φ20|10φ20 + β5|φ20|8φ20

+β6|φ20|6φ20 + β7|φ20|4φ20 + β8|φ20|2φ20β9 + φ20 + β10

(2

injecting (21) into the second equation of (19), it is possible to obtain the following expression

A|φ20|16φ20 +B|φ20|14φ20 + C|φ20|12φ20 +D|φ20|10φ20 + E|φ20|8φ20

+F |φ20|6φ20 +G|φ20|4φ20 +H|φ20|2φ20 + Iφ20 + J = 0
(2

ere A, B and C are coe�cients which depend on the parameters of the system. By setting φ20

p(iθ) and some mathematical manipulations, a polynomial of order 17 is expressed

9
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17∑

i=0

αiZ
i
20 = 0, Z20 = |φ20|2 (2

h αi real coe�cients depending on the parameters of the system. The analytical solution of th
mial allows to calculate the modulus |φ20|, then φ20 and φ10 by going up in (22) and (20).
s possible to plot an equivalent of the FRF (Frequency Response Function) by plotting the evoluti
amplitude of the stationary responses (�xed points) as a function of the frequency. It will be us
next part to analyse the dynamic behavior of the system. The stability of �xed points is studied
small disturbances around them

φ1(τ) = φ10 + ρ1(τ), φ2(τ) = φ20 + ρ2(τ) (2

n, (24) is introduced in (19) and only the terms proportional to φi are kept. It results after som
atical arrangements, to the following relation




ρ̇1

ρ̇2

ρ̇∗1
ρ̇∗2







M11 εM21 0 0
M21 M22 0 M24

0 0 M∗
11 εM∗

21

0 M∗
24 M∗

21 M∗
22


 =




ρ1

ρ2

ρ∗1
ρ∗2


+ C (2

stability of the �xed points is determined by the computation of the eigenvalues of the matrix (25
igenvalues are negative reals, then the �xed point is stable. If a real eigenvalue crosses the compl
ne, the �xed point is then a saddle-node. Finally, if a pair of conjugate complex eigenvalues leav
e left of the complex half-plane, it leads to a Hopf bifurcation.

symptotic study

rder to study the energy transfer, an asymptotic analysis by the method of multiple scales is carri
ause the mass ratio ε with a NES, is very low, ε << 1 [8]. First of all, the time τ is decomposed in
sub-scales of time, increasingly smaller. The derivation is a sequence of partial derivatives :

∂

∂τ
=

∂

∂τ0
+ ε

∂

∂τ1
+ ε2 ∂

∂τ2
+ ..., τk = εkτ, k = 0, 1, 2, ... (2

solutions is also expressed as a polynomial of ε :





φ1(τ0, τ1, ...) = φ10 + εφ11 + 0(ε),
∂φ1

∂τ
=
∂φ10

∂τ0
+ ε

(
∂φ11

∂τ0
+
∂φ10

∂τ1

)
+ 0(ε)

φ2(τ0, τ1, ...) = φ20 + εφ21 + 0(ε),
∂φ2

∂τ
=
∂φ20

∂τ0
+ ε

(
∂φ21

∂τ0
+
∂φ20

∂τ1

)
+ 0(ε)

(2

equations (26) and (27) are introduced in (19). Terms proportional to ε0 are gathered.

:





∂φ10

∂τ0
= 0

∂φ20

∂τ0
+ λ2

2 φ20 + i
2 (φ20 − φ10)− iK1

2 φ20 − 3
8 iK3|φ20|2φ20 + 715γ1

65536Ω16 |φ20|16φ20

+ 429γ2
32768Ω14 |φ20|14φ20 + 33γ3

2048Ω12 |φ20|12φ20 + 21γ4
1024Ω10 |φ20|10φ20 + 7γ5

256Ω8 |φ20|8φ20

+ 5γ6
128Ω6 |φ20|6φ20 + γ7

16Ω4 |φ20|4φ20 + γ8
8Ω2 |φ20|2φ20 + γ9

2 φ20 = 0

(2

s important to note that at the �rst time scale τ0, the amplitude modulations are independent of t
ion force. Indeed, this force only appears at the slower time scale τ1 = ε1τ . The equations at t
0 are rewritten in the polar form :

φ10 = N10 exp(iθ10), φ20 = N20 exp(iθ20) (2

10
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following system of equations is then obtained :

∂N10

τ0
= 0

∂N20

τ0
= −λ2

2 N20 + N10

2 sin(θ0)− 715γ1
65536N

17
20 − 429γ2

32768N
15
20 − 33γ3

2048N
13
20 − 21γ4

1024N
11
20 − 7γ5

256N
9
20

− 5γ6
128N

7
20 − γ7

16N
5
20 − γ8

8 N
3
20 − γ9

2 N20

∂θ0
∂τ = N10

2N20
cos(θ0)− 1

2 + K1

2 + 3
8K3N

2
20

(3

h θ0 = θ20 − θ10. The equilibrium equations are given by :





sin(θ0) = 1
N10

(λ2N20 + 715γ1
32768N

17
20 + 429γ2

16384N
15
20 + 33γ3

1024N
13
20 + 21γ4

512 N
11
20 + 7γ5

128N
9
20

+ 5γ6
64 N

7
20 + γ7

8 N
5
20 + γ8

4 N
3
20 + γ9N20)

cos(θ0) = N20

N10

(
1−K1 − 3

4K3N
2
20

)
(3

squaring the equations and then adding them, the �xed points of the system satisfy the equation

N2
10 = N2

20

(
1−K1 −

3

4
K3N

2
20

)
+ (λ2N20 +

715γ1

32768
N17

20 +
429γ2

16384
N15

20 +
33γ3

1024
N13

20

+
21γ4

512
N11

20 +
7γ5

128
N9

20 +
5γ6

64
N7

20 +
γ7

8
N5

20 +
γ8

4
N3

20 + γ9N20)

(3

h Z = N2
20. This equation de�nes the Slow Invariant Manifold (SIM) of the system, it allows t

between the parameters of the system which characterizes the dynamics of this one including
ude. For a �xed value of N10, the polynomial of degree 3 is solved analytically. For each value of N
three positive solutions for N20 are found. To determine the stability of the solutions of the invaria
, it is necessary to study the eigenvalues of the corresponding stability matrix. Figure 9 presents
le of the SIM for the case of a NES with the electro-magnetomechanical coupling when the resistan
mal Rmin.

h possible solution is represented by a circle. The curve suggests three distinct zones. First at lo
ude, where the displacement of the LO is between 0 and 3.2 mm, only one stable solution (bl
exists for the periodic amplitude of the NES and the LO, there is a resonance 1:1, otherwise know
stant Response Amplitude (CAR). The NES has almost the same amplitude as the LO, the slope
imately 1. In this zone, the NES is inactive because it follows only the movement of the LO.

ween 3.2 and 3.7 mm LO displacement amplitude, starting from a �rst bifurcation point B1, the
ranches of solutions: 2 stable separated by an unstable one. These solutions are di�erentiated
plitude of the NES: the low amplitudes and the highest amplitudes for the stable solutions and t
ediate amplitudes for the unstable. This typical con�guration of nonlinear dynamics is at the orig
ovement generating relaxation cycles. For an amplitude value of LO, the system is �rst attract
lower amplitude solution of the NES, but a quick jump to the higher amplitude branch occurs. O
st branch, the NES dissipates much more energy through the damping coe�cient c2 for a simil
ude of the LO. However, with this energy dissipation, the whole system loses energy and falls back
amplitude solution. Having returned to this branch, the system recovers vibratory energy again a
litude begins to increase again until the jump on the high-amplitude branch forming a cycle whi
. This particular behavior is achieved by the presence of unstable solutions (red circles), surround
two branches of stable solutions. This phenomenon called SMR (Strongly Modulated Response),
d numerically and experimentally.

ally, beyond 3.7 mm LO displacement, a second bifurcation point B2 is reached. As for the �rst zon
e stable solution for the LO / NES pair is possible, but this time, the amplitude of the NES is mu
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Figure 9: Slow Invariant Manifold (SIM) (blue circles: stable solutions, red circles: unstable solutions)

compared to LO. However, unlike the zone of relaxation cycles, the dynamics of the system is aga
AR resonance and the slope is again around 1 heading towards a horizontal asymptote.

possible to identify the relaxation zone Z1 and Z2 analytically. These bounds are obtained by solvi
ariant manifold equation to zero. Two remarks is made on these bounds. First, they both depe
coe�cient of the cubic sti�ness coe�cient K3 and the damping of the NES λ2. It is necessary f
t λ2 <

√
3 so that relaxation cycles can occur. Second, the activation threshold of the NES depen

inverse of K3. Therefore, a low threshold is obtained for high values of K3. At �rst glance, it
e to say the activation of the NES would be around the level of Z2 (if the NES has not undergone
ance, allowing it to jump to the higher branch). Because the amplitude jump takes place when t
aches the level of energy required. This point is veri�ed using the calculation of �xed points.

dy of the dynamical behavior of the multiphysics NES

nalytical study

that the analytical model is set up, the NES with the addition of the electro-magneto-mechanic
g will be studied using the �xed point solutions and the SIM. To begin with, the SIM of the NE
(in�nite resistance - open electrical circuit) position and Rmin (minimum resistance - closed c
ly the internal resistance of the coil is considered) are plotted in Figure 10 in order to observe t
n in the dynamics of our system caused by the multi-physics coupling. As a reminder, the coupli
es the equivalent damping coe�cient of the absorber. Two changes are noticeable when adding t
g (NES + Rmin). First, a decrease in the three solutions area is caused. Then, an advance of th
wards greater displacements of the LO, generating a greater activation threshold of the NES, goi
.8 mm without coupling (Rinf ) to 3.7 mm. Moreover, in this �gure, the SIM of the system with
g coe�cient c2 = 12 N/m.s−1 is drawn instead of that measured 1 N/m.s−1. It is remarkable th
pling makes it possible to obtain a SIM very similar of a system with a purely mechanical NES wi
ing c2 = 12 N/m.s−1.

12
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t of all, the classic mechanical NES, without the addition of multiphysics coupling, is studied usi
oint solutions in order to understand the di�erent behaviors of the NES according to the level
ion and to observe the importance of the damping coe�cient. First, the results for a solicitati
N are presented in Figure 11. The �gure introduces the analytical evolution of the LO when t
locked in gray and when the NES is released in blue. In both cases, a linear dynamic response
d with a similar amplitude of about 1.6 mm. The NES is then inactive. This result is explain
previous SIM where it is shown that the activation threshold of the absorber without multi-phys
g (equivalent to the in�nite resistance case (Rinf )) is about 2.8 mm. At 1.6 mm, the NES is
amplitude solutions branch if it has not been disturbed to make it jump to the high amplitu

. In addition, on the low amplitude branch, the slope is slightly greater than 1, explaining a slig
tion of energy by the absorber. If the dynamic excitation continues to increase, passing to Fe =
following frequency evolution is given in Figure 12.

s time, the LO with the NES shows a behavior typical of systems �tted with nonlinear vibrati
ers. First, the appearance of areas with multiple solutions of amplitudes for the same frequenc
unstable (+) or stable (o). The system will converge towards a stable solution if it is possible.
branch of unstable solutions appears around the resonance involving a transfer of energy between t
re and the absorber where the cycles of relaxations occur. The activation threshold identi�ed by t
.8 mm, is shown in Figure 12. It is possible to see for frequencies above resonance that the amplitu
spects this threshold from which the unstable branch of single solutions appears. This results in
ing of attenuation of the vibration level when the NES is released.

ever, another phenomenon is observed in Figure 12. An area, for frequencies lower than the natur
cy present several solutions presents with two stable solutions. There is one at low amplitude a
r at higher amplitude beyond the activation threshold. The latter solution begins to degrade t
cy of the NES. This parasitic amplitude peak is the beginning of the appearance of what is called t
ed resonance.

increasing the load to Fe = 15 N, the analytical results presented in Figure 13 show that the amp
vel of the detached resonance becomes more important and could make the absorber ine�cient if t

13
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uency for Fe = 5 N

Figure 12: Evolution of the LO amplitude as a function of t
frequency for Fe = 10 N (o blue: stable solution; + turquoi
unstable solution)

re passed over this branch of stable solutions while undergoing a disturbance which would cause it
nto the latter. Finally with a load Fe = 20 N, Figure 14, in the area with multiple stable solution
utions with low amplitudes "separate" towards the lower frequencies, leaving at 4.7 Hz the soluti
gh amplitude as the only possible solution. There is a fall to lower frequencies only for low amplitu
ns. As a result, the NES becomes ine�cient.

3: Evolution of the LO amplitude as a function of
uency for Fe = 15 N (o blue: stable solution; +
e: unstable solution)

Figure 14: Evolution of the LO amplitude as a function of t
frequency for Fe = 20 N (o blue: stable solution; + turquoi
unstable solution)

s study of the absorber without the coil/magnet assembly shows its weaknesses. As soon as t
e�orts allow the LO to reach the activation level, the risk of the appearance of a detached resonan
ent, which can quickly cause the NES to loose its mitigation properties. This is mainly due to t
ue of the damping coe�cient of the absorber. By increasing its value, it would be possible to del
prevent the appearance of this parasitic amplitude peak as shown in Figure 15 where the analytic
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tion at Fe = 20 N was done with a damping coe�cient of the NES of c2 = 12 N/m.s−1 instead
N/m.s−1 to compare with the Figure 14. This time, a desired solution is shown, the amplitude lev
structure remains below the activation threshold which has slightly increased from 2.8 mm to 3
d which corresponds to the value found by the SIM of Figure 10. The addition of the multiphys
g would make it possible to get this desired result by creating an electrical damping which wou
e the equivalent damping of the absorber.

5: Evolution of the LO amplitude as a function of the frequency for Fe = 20 N (o blue: stable solution; + turquoi
solution) with a damping coe�cient of the NES c2 = 12 N/m.s−1

xperimental results

highlight the potential of multiphysics coupling, experimental tests on our prototype is made a
red to the analytical model. During these tests, two con�gurations are studied for the multiphys
g. First of all, the electrical circuit is in the open position, the electrical resistance is in�nite (Rin
erefore the damping generated by the coil/magnet assembly is zero. Then, the circuit is in closed p
the resistance is minimum (Rmin) (internal resistance into the coil) and then the generated dampi
imum.

t of all, the results with the con�guration of the NES without multi-physics coupling (Rinf ) are pr
in Figure 16. The left �gure shows the analytical results and the right �gure shows the experiment
. First, for the con�guration where the NES is blocked, the analytical and experimental results sho
close response with a maximum amplitude of 8 mm in both cases. For the NES con�guration wi
, the experimental results show two di�erent responses depending on whether one is sweep up
For sweep down, the LO shows a peak at high amplitude towards frequencies lower than f0, maki
S ine�cient. For sweep up, the attenuation of the vibratory level is well attenuated, going fro
mm. A peak at higher amplitude begins to appear around the same frequency as that present
ing sine. These observations are in clear agreement with the analytical results obtained. The hi
ude peak is also present. However, despite the two possible stable solutions between 4 and 4.4 Hz
lytical model, the high amplitude peak is a single possible solution for the LO. However, during t
his peak is not obtained for the sine sweep down, only a beginning of appearance is visible. This fa
explained by the fact that our tests are sine sweeps, not allowing time for the system to stabilize
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6: Evolution of the LO amplitude as a function of the frequency for Fe = 25 N. The �gure on the left introduces t
al results (o blue: stable solution; + turquoise: unstable solution). The �gure on the right introduces the experimen

, the con�guration with the maximum coupling (Rmin) is analyzed in Figure 17. In this case t
cal results are also coherent and close to the experimental results. For sine sweep up and dow
e responses are obtained and the model shows only one possible path. In both cases the atten
f the vibratory level is similar, going from 8 mm to 3.7 mm during the tests and 3.8 mm for t
Now, comparing Figure 16 and Figure 17, the in�uence of coupling is clear. As the NES "saturate
comes ine�cient without coupling, it becomes satisfactory when the multiphysics coupling is add
r to increase its damping. This clearly shows the interest of having a calibrated damping. The d
in controlling the damping of a mechanical assembly here shows the limit of a purely mechanical NE

7: Evolution of the LO amplitude without and with NES + Rinf as a function of the frequency for Fe = 25 N. T
the left introduces the analytical results (o blue: stable solution; + turquoise: unstable solution). The �gure on t

roduces the experimental results
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interest is also shown for a solicitation Fe = 30 N. However, the amplitude level of the LO wh
S is blocked is higher during the tests compared to the analytical results. This is due to the fa
e limit of stroke of the LO springs is reached, causing shocks between the spirals and causing i
ies. The results in con�guration without coupling (Rinf ) are shown in Figure 18. During the tes
r for sweep up and down, the high amplitude peak is present. That is coherent with the analytic
since only one stable solution is present for a given frequency and also shows this peak. The d
ity of stable solutions causing an amplitude jump to 5.3 Hz is also present in the experimental resul

8: Evolution of the LO amplitude without and with NES + Rinf as a function of the frequency for Fe = 30 N. T
the left introduces the analytical results (o blue: stable solution; + turquoise: unstable solution). The �gure on t

roduces the experimental results

ally, the results with the coupling activated are presented in Figure 19. While with zero multi-phys
g, the NES still remained ine�cient, the absorber still attenuates e�ectively with active couplin
he beginning of the appearance of a peak at higher amplitude appears at 4.7 Hz, whether in t
cal model or in experimental tests. While it represents a unique solution in the model, for sweep u
does not present the start of a peak and its amplitude always remains well attenuated.

nclusion

his paper, the crucial role of the damping coe�cient of a NES is emphasized. In fact, the analytic
shows that the NES e�ciency is sensitive to its parameters and the model shows also the need
the set of parameters in order to avoid and to prevent the detached resonance. However, a pure
ical nonlinear absorber has two shortcomings : the damping coe�cient is di�cult to control d
ufacturing tolerances or wear, and cannot be changed if desired. The method presented here
the damping coe�cient is the addition of an electro-magnetomechanical coupling to our system
l-magnet interaction. This coupling made it possible to create a damping of an electrical nature
n to the mechanical damping allowing the increase of the equivalent damping of the absorber. T
ental tests, as well as the analytical model have shown the e�ciency of the coupling making t
ore e�cient. Despite the problems encountered on our structure considered as the LO, the analytic
gives a coherent and satisfactory prediction of the dynamic behavior of the LO.
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