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Abstract

Vibration absorbers are known for their use in vibration mitigation. In particular, nonlinear vibration
absorbers have been of great interest for vibratory level reduction as they do not have to be tuned to the
natural frequency of their supporting structure. In order to obtain satisfactory operations of the absorber
(energy necessary for its activation and dissipated vibratory level), it is necessary to identify the correct
parameters of the absorber which are its nonlinear stiffness and damping. However, when moving from
analytics to designing an experimental prototype, it is complicated to have the appropriate parameter values,
especially damping, because it is very difficult (or even impossible) to adjust a precise value for a mechanical
assembly. As a consequence, this bad adjustment leads to an inefficiency of the absorber and unsatisfactory
results. To avoid this lack of robustness, the addition of a multiphysical coupling, to a nonlinear absorber
is studied in this paper in order to create an equivalent damping coefficient from another nature : electro-
magnetomechanical. This new damping generated is adapted and allows to adjust the equivalent damping
coefficient of the absorber to get the best efficiency, analytically and experimentally.

Keywords: Vibrations, Control, Nonlinear Dynamics, Multiphysics

1. Introduction

Structures subjected to dynamic excitation may exhibit harmful vibrations, potentially reducing their
lifespan. Therefore, vibration mitigation has received great interest [1]. Passive linear vibration absorbers,
called TMDs (Tuned Mass Damper) are frequently used in industry to reduce vibration level of critical
components. For a dynamic sollicitation close to the natural frequency of the main structure to be damped,
they are efficient for a mass ratio between the TMD and the modal mass of the structure of about 5-10%.
However, the natural frequency of the TMD must be tuned to the structure otherwise a loss of efficiency
appears quickly.

In the last decade, nonlinear vibration absorbers, usually known as Nonlinear Energy Sinks (NES), have
been the object of numerous studies in the field of Nonlinear Dynamics to circumvent the limits of TMD.
The substitution of the linear stiffness by an essentially nonlinear one allows the NES to not have a natural
frequency and to adapt itself to the supporting structure, hence initiating the energy transfer for a mass ratio
of about 1% only. Analytical models of the dynamical behavior of NES have shown a promising potential
to dissipate energy. Experimental and theorical studies have shown that the nonlinearity of the NES allows
an irreversible transfer of energy, known as Targered Energy Transfer, from the primary system to the NES
[2-5]. Passive control of resonance using a NES was studied analytically [6, 7] and experimentally [8, 9].
Investigations on the control of aeroelastic instabilities with a nonlinear absorber was also analyzed [10-12].
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Analytical models have also shown the sensitivity of a NES performance according to the values of its
stiffness and damping parameters. However, it is very difficult to control and to identify the damping co-
efficient of a mechanichal assembly during the design in order to have the full potential described by the
analytical model. The consequences of a incorrect value of damping coefficient, which is not adjusted, is
an important amplitude peak and even higher than that of the structure without absorber for frequencies
lower than the natural frequency. This phenomenon called "detached resonance" is not due to a shift of a
linear resonance, but to a branch of solutions due to nonlinear dynamics [13]. Therefore, it is important to
identify and to adjust experimentally the right set of parameters.

The impact of an additional physics in the absorber has been studied recently with a research field on
multiphysics absorbers which would involve passive electrical circuits to convert the mechanical energy from
the vibrations into electrical energy. Nowadays, the studies on this type of absorbers are rather oriented
toward energy harvesting [14-18]. In the present paper, an electrical circuit is used to create an equivalent
mechanical damping, to overcome the unpredictability of the purely mechanical damping stemming from
the assembly of the absorber.

This work illustrates the concept of a new type of nonlinear absorber with an electro-magnetomechanical
coupling in order to demonstrate the possibility to adjust the equivalent damping of the absorber to improve
its efficiency. In the first part, the protype will be introduced. Then the analytical model of the system
is presented to evaluate the performances of the potential of the electro-magnetomechanical coupling. The
Complexification-Averaging (CX-A) technique and multi scale method [19] have been used to derive modula-
tion equations, to compute the fixed point solutions and the slow invariant manifold. Finally, the analytical
results and experimental tests with a vibration shaker will be presented and compared.

2. Electro-magnetomechanical coupling

2.1. Experimental setup

The design of the absorber consists of a mass-spring system nonlinearly coupled to the structure to be
damped, represented as a linear oscillator (LO). The prototype in this study is presented in Figure 1. It
consists of an LO composed of a mass of 64 kg connected to the ground by 4 springs. The LO is connected
to an excitation shaker transmitting a dynamic excitation. The mechanical components of the absorber are
a moving mass of 1.4 kg positionned on the LO, it is the absorber. It translates along two slides by means
of linear bearings. The restoring force of the absorber is generated by the four springs which are mounted
on pivots on the LO and the absorber, so they only undertak traction forces. The trajectory of the springs,
shown in Figure 2, leads to a mostly nonlinear cubic stiffness, comprising a residual linear term due to a
slight elongation during their installation. The nonlinear restoring force is given by the following equation.

fi(x) = kg + koo (1)

with

k21—2f+2k<1—ll0>7k20—kléo—£ (2)
k being the stiffness of the spring, P the preload applied to the spring and [y its initial length.

The electro-magnetomechanical coupling is achieved by a coil / magnet assembly. The 80 mm long coil
is placed on the top of the absorber. Being integral to the absorber, it moves around its associated magnetic
bar fixed to the LO (Figure 1). The magnetic bar, slightly longer than the coil with 90 mm, is made up of
18 superimposed cylindrical magnets giving a modular magnet system. The interaction between the field of
the magnet and the coil, stemming from their relative displacement, creates an electrical current. The field
created by the coil varies according to the resistance which is applied to its terminals. It can be configured
in open circuit (infinite resistance) or in closed circuit (almost zero resistance).



Y Excitation

Figure 2: Springs configuration causing nonlinear stiffness

The complete system is a 2-DOF model made up of the LO, described by a mass m;, a stiffness k; and
a damping coefficient ¢;. The LO is coupled to the absorber, described by a mass mg, a cubic stiffness ks,
a linear stiffness ko; and a damping coefficient co. The values of these different parameters of the system
are presented in TABLEL. An excitation force F,sin(Qt) is applied to the LO. A diagram of this system
is presented in Figure 3. As a reminder, in the assembly, the magnet is fixed to the main structure, while
the coil is fixed to the absorber (Figure 4). As a result the magnet displacement is x,, = z1, 1 being the
displacement of the LO, and the coil displacement is x. = z2, x5 being the displacement of the absorber.
The equations of movement characterizing this assembly taking into account the electro-magnetomechanical
coupling are

2 . I
miLE 4oy B4k +oeo(BE — B2 oy (21 — 29) + koo(z1 — 22)° = F.sin(Qt)
Mo T2 4 ep(B2 — A0y 4 oy (2 — 20) + Roe(wy —22)? =0 ()T = O (3)
LA+ (RAR)I+0(y)y = O



Parameter Value Parameter Value

c1 [N/m.s™!] 97 c2 [N/m.s™!] 1
ki [Nm~1] 91324 kg [N.m~}] 500

- koo [N.m=3]  8.44.10°

Table 1: Parameters of the system
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Figure 3: A linear principal oscillator coupled to an NES
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Figure 4: Coupled system: mechanical and electrical representations

L., R., R; and I are respectively the coil inductance, the coil resistance, the resistance applied to its
terminals and the current. The term 6 (y) is called the electro-magnetomechanical coupling coefficient where
Yy = T, — x. the displacement between the coil and the magnet.

2.2. Modelling of the electro-magnetomechanical coupling

In the literature, this electro-magnetomechanical coupling term is often considered constant for the
coil-magnet interaction. However, Sneller A.J. and al. [20] showed that the coupling term between these
components evolves nonlinearly with respect to their relative initial position. It is therefore important to
take this variation into account. In this part, their model is used to find the configuration where the coupling
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is the more important for low displacements. According to Faraday’s law, a voltage V is created across a
coil, proportional to the magnetic flux variation ® which crosses it.

dd d® dx
Ta T @

The model allows to calculate the voltage and nonlinear electromagnetic coupling between a coil and an
oscillating magnet inside. The expression for the voltage function of the displacement between the coil and
the magnet y = z,,, — x. is

Vo= 0(y)y (5)
O(y) = —% Z (—I)H—j {ln (ri + zi5) — 2% (6)

’ 2 ’ ’
with 23, = r} + (:xcj + y) , o = —L/2 and x5 = L/2. The following example will show that the electro-
magnetomechanical coupling strongly depends on the distance between the coil and the magnet.
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Figure 5: Magnet-coil interaction and polar cross section of a coil

Parameter Value Unit
Internal coil diameter (2r;) 33 mm
External coil diameter (2r2) 41.2 mm
Coil length (L) 80.4 mm
Coil resistance (R.) 11.6 Q
Coil inductance (L) 14.25 mH
Number of turns (N,) 1088

Wire diameter 0.5 mm
Coil filling &, 65 %
Magnet remanence (B;) 1.32 T
Magnet volume (v;) 4,310 m?

Table 2: Parameters of the coil-magnet system
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Figure 7: Different configurations of the magnet into the coil

Figure 6 depicts the evolution of the coupling term 6(y) simulated for different configurations. The first
configuration (blue curve) represents the case where the centroids of the magnet and coil coincide (Fig-
ure 7 case 1). The coupling is very weak for the small displacements. However, it is desirable that this
coupling is maximised from the very onset of movement to dissipate the vibrational energy even for small
amplitude displacements. The distance between one of the extrema of the blue curve and the ordinate axis
corresponds to the distance between the centroid of the magnet and one end of the coil. To achieve an
optimal efficiency even for low displacements, the second configuration (red curve Figure 6 and case 2 Fig-
ure 7) where the magnet moves at the end of the coil seems the most efficient one and is chosen for the study.

3. Modeling of the complete system

3.1. Analytical solution of the equations of movement

As a reminder, the equations of movement characterizing the complete assembly taking into account the
electro-magnetomechanical coupling are



my dt21 + o 4 kw4 eo(BE — G2) + k(w1 — 22) + kae(z1 — 32)° = Fesin(Qt)

m2%+62(%7dzfl)+kgl(l‘gfxl)+k’gc(1‘173?2)379(?])[ = 0 (7)

L% +(Re+R)I+0(y)y = 0

An approximation is calculated analytically by assuming the term L, %L ¢ is negligible for low frequencies
and low amplitudes. Unfortunately, this point has not been verified by experimental measurements of the
intensity because of the insufficient sensitivity of our devices. However, a temporal solution of the system
with or without this term on Matlab confirmed this approximation. So, it is possible to write

dI
It is then possible to write the second equation of (7) in the form
d*x 62 dx dx
m2 dt22 + <C + R, J(ryl)g ) (dt2 - dtl> + koy(z2 — 1) + kac(za — 21)* = 0 (9)

This equation shows the existence of an equivalent damping coefficient, of two natures : mechanical and
electromagnetic. The damping is controlled with the applied resistance, the higher the applied resistance R;

2
the more the damping term Rgciy%i created by the coil/magnet assembly decreases, until it tends towards a

purely mechanical damping and it becomes maximum for R; zero.

The analytical study of the dynamics of the multi-physics absorber coupled to a linear oscillator is
presented by the complexification and multi-scale methods. The equations of motion describing the model
are

mq dtgl =+ Cl dt + kl.Tl + CQ(m — m) =+ k‘gl(xl — 1’2) =+ k‘zc(Il — :132)3 = Fe sm(ﬁt)
(10)

2
my G + (02 + zfiyz%) (G = %) + k(e — @1) + kool —21)* = 0

With  the applied frequency. In the previous part, the model describing the multi-physics coupling was
introduced. Due to its complex expression and the difficulty to introduce it into the analytical solution, a
simplification of this law is made using the following expression

0(y) = a1y® + a2y’ + azy* + asy® + as (11)

The graphical representation of this approximation is shown in figure 8.
Then, the following change of variables is introduced

k k koe

5‘:@’ wgzil7 K1:72l2’ Kg: 22’ 1= Cl 5

mi miy maoWwy moWwy moWo
C2 Q 92 (y) (12)

Ao = , 0 = —, — t’ TN 18—214

2 molWo wo T wo ’ITLQOJQ R + R Z'Yzy
By substituting (12) in the equations (10), the equilibrium reads
S[:’.l +5)\1I’.1 +6/\2($.1 —152)+I1+6K1(1‘1 —$2)+€K3(1’1 —I2)3 = EFSiIl(QT)
‘ (13)
2 + ()\2 +30 71'1/18_2’) (22 — @1) + Ki(z2 —21) + K3(w2 —21)® = 0
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Figure 8: Simplification of the electro-magnetomechanical coupling model

The dots ( *) represent the derivatives with respect to the dimensionless time 7. Now, the barycentric

coordinates is introduced
V=121 +ET2, W=2T]— T2

Then, (14) is introduced into (13), giving the following system

. ;s i 9 _ 94 .
U4eh Uff;ﬂ + UlJr-s-E;U —€ (Zi:l yiw'® 22) wo =

W+ eA R+ 4 de(L+e)w + (Z?:l %wlg_m) W
+Ki(1+e)w+ K3(1+e)w® =

(14)

eF sin(Qr)
(15)

eFsin(Qr)

The cubic nonlinearity of the stiffness and the multiphysics coupling in the second equation of the
system does not allow an exact analytical solution. An approximation of periodic solutions is calculated
by a combination of complexification methods and multiple scales. The system is supposed to follow a 1:1
resonance, meaning that the main oscillator and the NES oscillate at the same excitation frequency . It
is shown that this energy transfer is defined as a 1:1 resonance capture (LO and NES oscillate at the same
frequency) between the primary system and the NES[21, 21, 22]. First, the following complex variables is

introduced
\Ifl :U+’LQ’U, \I/Q :U)+’LQ’LU
Uy = ¢1 exp(i1), Wy = ¢ exp(i€d7)

The following equivalences are valid

1 1
— (U W), w= e (Uy — W
v 229( 1 1)7 w 229( 2 2)

1 1
1.125(\1/14—\1/){), 11.125(\1/24—\1/;)

i=0, — %(\111 L), 0=, — %(\1124—\11;)

(16)

(17)



The addition of the complex variables leads to partitioning the fast oscillations of the system at the
excitation frequency € and the slow modulation of the complex amplitudes {¢1, ¢2}. By injecting (17) into
(15), the following system is obtained

i~ 4§ i (0 ) 4 58 4 9D) 4 e (V140 450+ 99)

(6553691(’ (W — W3)10 — W(%’Q ‘IJ*)M + 409%39[114 (‘1’2 )t — 1024910 (W — W)
Jr25698 (\1’2 \I/*) 6496(\112 -3 ) 1694(\112 ‘I’§> 492 (Vg — 03 ) +“Y9) (‘1’2 +¥3)
= eF sin(Q7)

Uy — B (Wy + U3) + 150 (301 4+ T) + 5 S(Wo + ¥3)) + mrtigsy (U1 + 05 + 5(¥2 + ¥3))
+ (555300 (V2 —8‘1’3)16 - m(‘lﬁ”z ‘1’*)14 + qogs0 (‘1’2 v5)t? — qpzicro (V2 - w5)to
+25gb8 (\IJQ - \113) 64 6(\112 - 2) 1694 (\112 \IJS) 492 (\1’2 - 2) +'79) (\112 + \I’*)

+22(14) (Vg + Uh) + £5(Uy — Wh) + B (W, — U3)3 = 5F51n(Q7‘)

(18)
Then, the equations are averaged over the fast time scale. Therefore, only terms proportional to exp(i€27)
are kept. The U, terms are replaced with ¢; exp(iQ27). A system proportional to ¢; and ¢s is established

b1 — Q¢1 ;‘3 2(51115) (¢1 + 5¢2)21 29(1+e) ((Z)l + 57¢2) 652:?2?1116 |‘?2|16¢2 - 3;1?2;;{1214 \¢2|14¢2
204?2312 |¢2‘1 ¢2 — 102232410 |¢2‘10¢2 - 253?358 ‘¢2|8¢2 - 1??56 ‘¢2| ¢2 — 1694 |¢2| b2
_53182 |¢2|2¢2 _ 679¢2 4 16 =0

b Pt i (01 eh2) — saire (61 +eg) + R (L4 e)de — (1) 550
—(1+e) ggg |22 b2 + 65751356’616 |¢2‘16¢2 + 324768’514 |¢2|14¢2 + 203438’812 |62 22 + 102214310 ‘¢2|10¢2
+ondss|dalP b2 + 12255 |h2/02 + 1or|d2l P2 + ghzld2lPd2 + Bha + L =0

(19)

Since ¢ and ¢ are the slow evolutions of the amplitudes for a 1:1 type resonance, the temporal evolution

of the LO-NES system is governed by the system of equations (19 ) considering a periodic oscillation of the
two oscillators at the same frequency Q.

3.2. Fixed point solutions

From (19), it is possible to determine the fixed point solutions. The latter corresponds to the periodic
solutions of system (15) under the assumption of a 1:1 resonance. They are calculated by finding the zeros

of (19)
b1 =2 =0 — 61(1) = 10, P2(T) = bao (20)

By introducing (20) into (19), the expression of ¢1o is calculated as a function of ¢ and system
parameters.

b10 = B1|d20]"Cb20 + Baldao| " Pao + B3l 20| 2d20 + Baldao|CPa0 + Bs|d20/pao

(21)
+B6|¢20(C P20 + B7]P20] P20 + Bs|P20]>B20B9 + 20 + Bio
By injecting (21) into the second equation of (19), it is possible to obtain the following expression
Alpao] P20 + Blpao| *hao + Clepao| "2 p20 + D o] b20 + E|p20|>b20 (22)

+F|¢20|8p20 + G| 0| b20 + H|pao|*d20 + Ih2o + J =0

Where A, B and C are coefficients which depend on the parameters of the system. By setting ¢ =
|p20] exp(i6) and some mathematical manipulations, a polynomial of order 17 is expressed



17
> aiZiy =0, Za = |20l (23)
i=0

With «; real coefficients depending on the parameters of the system. The analytical solution of this
polynomial allows to calculate the modulus |¢2], then ¢op and @19 by going up in (22) and (20).

It is possible to plot an equivalent of the FRF (Frequency Response Function) by plotting the evolution
of the amplitude of the stationary responses (fixed points) as a function of the frequency. It will be used
in the next part to analyse the dynamic behavior of the system. The stability of fixed points is studied by
adding small disturbances around them

$1(1) = ¢10 + p1(7), 2(7) = P20 + pa(T) (24)

Then, (24) is introduced in (19) and only the terms proportional to ¢; are kept. It results after some
mathematical arrangements, to the following relation

pr| | M eMz 0O 0 o1
pa| M2 Msy 0 Moy P2
-k * * = * + C 25
P1 0 0 My eMy P1 (25)
Pl L0 My My My 5

The stability of the fixed points is determined by the computation of the eigenvalues of the matrix (25).
If the eigenvalues are negative reals, then the fixed point is stable. If a real eigenvalue crosses the complex
half-plane, the fixed point is then a saddle-node. Finally, if a pair of conjugate complex eigenvalues leaves
from the left of the complex half-plane, it leads to a Hopf bifurcation.

3.8. Asymptotic study

In order to study the energy transfer, an asymptotic analysis by the method of multiple scales is carried
out because the mass ratio ¢ with a NES, is very low, ¢ << 1 [8]. First of all, the time 7 is decomposed into
several sub-scales of time, increasingly smaller. The derivation is a sequence of partial derivatives :

o 0 0 0

o = om on TS on T

The solutions is also expressed as a polynomial of ¢ :

901 _ Do, (a;;“ + %d:o) +0(e)
0 1

e=¢"r, k=0,1,2, ... (26)

61(70, 71,5 -.-) = P10 + €11 +0(¢),

or O
) O 1) L) 27)
2 20 21 20
L) = 0 —/= = 0
¢2(70, 71, -..) = P20 + @21 + 0(¢), ar = om +€<87’0 + o > +0(e)
The equations (26) and (27) are introduced in (19). Terms proportional to £° are gathered.
834;100 =0
e 33%0 + 22¢20 + (20 — ¢710) 1 oo — 2iKs3|da0l>Po0 + 65751356’816 |20/ "0 P20 (28)
+32768914|¢>20| 92520 + a1 \¢20| 220 + 1024910|¢20| g0 + 25698|¢20| ®20
12896|¢20| ®20 + 1694|¢20\ ®20 + 892|¢720\ $20+ P20 = 0

It is important to note that at the first time scale 7y, the amplitude modulations are independent of the
excitation force. Indeed, this force only appears at the slower time scale 71 = £'7. The equations at the
scale €V are rewritten in the polar form :

¢10 = Nioexp(ifig), ¢20 = Nag exp(ifao) (29)
10



The following system of equations is then obtained :

9N1g

T0 = 0
ONzo  _ >\2 Nio o3 71571 42977 3373 _ 21lma 75 AT9
0 ; N(;"’ 2 31;1(90) 3536N 32768N 2048N 1024N — 236 V20 (30)
Y6 _ T _ Y9
— 128 Va0 — 16 V50 8N 5 Nao
98 _  Nig _ 1 Ky 3 2
dr 2N cos(bp) — 5 + 5+ + §K3Ny
With 6y = 029 — 619. The equilibrium equations are given by :
: _ 1 715v1 42972 3373 21"/4 7'\/5
sin(fo) = ()‘2]7V20 + 32768N 16384N 1024N 512 N3y 128N
Y6 id ’Y
+58 N3 + N30 + B N3 + 79 Nao) (31)
N. 3 2
COS(Q()) = Nig (1 — K1 — ZK3N20)

By squaring the equations and then adding them, the fixed points of the system satisfy the equation :

3 715’}/1 429’}/2 33’}/3
N3 =N2 (1- K, — SK3N2 Ao N. 7 NI Ny3
10 = “720 ( 1= g KaNoo |+ (AaNao + 5500 Nag + 735 Voo + 19y (32)
214 Vs 56
+515 N20+128N§’0+ ol N20+ N20+ N20+79N20)

With Z = N3,. This equation defines the Slow Invariant Manlfold (SIM) of the system, it allows the
relation between the parameters of the system which characterizes the dynamics of this one including its
amplitude. For a fixed value of N1g, the polynomial of degree 3 is solved analytically. For each value of Ny,
one to three positive solutions for Nog are found. To determine the stability of the solutions of the invariant
variety, it is necessary to study the eigenvalues of the corresponding stability matrix. Figure 9 presents an
example of the SIM for the case of a NES with the electro-magnetomechanical coupling when the resistance
is minimal R,,;,-

Each possible solution is represented by a circle. The curve suggests three distinct zones. First at low
amplitude, where the displacement of the LO is between 0 and 3.2 mm, only one stable solution (blue
circles) exists for the periodic amplitude of the NES and the LO, there is a resonance 1:1, otherwise known
as Constant Response Amplitude (CAR). The NES has almost the same amplitude as the LO, the slope is
approximately 1. In this zone, the NES is inactive because it follows only the movement of the LO.

Between 3.2 and 3.7 mm LO displacement amplitude, starting from a first bifurcation point Bj, there
are 3 branches of solutions: 2 stable separated by an unstable one. These solutions are differentiated by
the amplitude of the NES: the low amplitudes and the highest amplitudes for the stable solutions and the
intermediate amplitudes for the unstable. This typical configuration of nonlinear dynamics is at the origin
of a movement generating relaxation cycles. For an amplitude value of LO, the system is first attracted
to the lower amplitude solution of the NES, but a quick jump to the higher amplitude branch occurs. On
this last branch, the NES dissipates much more energy through the damping coefficient co for a similar
amplitude of the LO. However, with this energy dissipation, the whole system loses energy and falls back on
the low amplitude solution. Having returned to this branch, the system recovers vibratory energy again and
its amplitude begins to increase again until the jump on the high-amplitude branch forming a cycle which
repeats. This particular behavior is achieved by the presence of unstable solutions (red circles), surrounded
by the two branches of stable solutions. This phenomenon called SMR, (Strongly Modulated Response), is
observed numerically and experimentally.

Finally, beyond 3.7 mm LO displacement, a second bifurcation point Bs is reached. As for the first zone,
only one stable solution for the LO / NES pair is possible, but this time, the amplitude of the NES is much
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Figure 9: Slow Invariant Manifold (SIM) (blue circles: stable solutions, red circles: unstable solutions)

greater compared to LO. However, unlike the zone of relaxation cycles, the dynamics of the system is again
a 1:1 CAR resonance and the slope is again around 1 heading towards a horizontal asymptote.

It is possible to identify the relaxation zone Z; and Z, analytically. These bounds are obtained by solving
the invariant manifold equation to zero. Two remarks is made on these bounds. First, they both depend
on the coefficient of the cubic stiffness coefficient K5 and the damping of the NES As. It is necessary for
Z; that Ay < v/3 so that relaxation cycles can occur. Second, the activation threshold of the NES depends
on the inverse of K3. Therefore, a low threshold is obtained for high values of K5. At first glance, it is
possible to say the activation of the NES would be around the level of Z5 (if the NES has not undergone a
disturbance, allowing it to jump to the higher branch). Because the amplitude jump takes place when the
NES reaches the level of energy required. This point is verified using the calculation of fixed points.

4. Study of the dynamical behavior of the multiphysics NES

4.1. Analytical study

Now that the analytical model is set up, the NES with the addition of the electro-magneto-mechanical
coupling will be studied using the fixed point solutions and the SIM. To begin with, the SIM of the NES
in R;,; (infinite resistance - open electrical circuit) position and Ry, (minimum resistance - closed cir-
cuit, only the internal resistance of the coil is considered) are plotted in Figure 10 in order to observe the
variation in the dynamics of our system caused by the multi-physics coupling. As a reminder, the coupling
increases the equivalent damping coefficient of the absorber. Two changes are noticeable when adding the
coupling (NES + Rynin). First, a decrease in the three solutions area is caused. Then, an advance of this
zone towards greater displacements of the LO, generating a greater activation threshold of the NES, going
from 2.8 mm without coupling (R;nf) to 3.7 mm. Moreover, in this figure, the SIM of the system with a
damping coefficient ¢, = 12 N/m.s~! is drawn instead of that measured 1 N/m.s~!. It is remarkable that
the coupling makes it possible to obtain a SIM very similar of a system with a purely mechanical NES with
a damping ¢y = 12 N/m.s~ 1.
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Figure 10: Slow Invariant Manifold of different NES configurations

First of all, the classic mechanical NES, without the addition of multiphysics coupling, is studied using
fixed point solutions in order to understand the different behaviors of the NES according to the level of
excitation and to observe the importance of the damping coefficient. First, the results for a solicitation
F. = 5N are presented in Figure 11. The figure introduces the analytical evolution of the LO when the
NES is locked in gray and when the NES is released in blue. In both cases, a linear dynamic response is
obtained with a similar amplitude of about 1.6 mm. The NES is then inactive. This result is explained
by the previous SIM where it is shown that the activation threshold of the absorber without multi-physics
coupling (equivalent to the infinite resistance case (R;,y)) is about 2.8 mm. At 1.6 mm, the NES is on
the low amplitude solutions branch if it has not been disturbed to make it jump to the high amplitude
branch. In addition, on the low amplitude branch, the slope is slightly greater than 1, explaining a slight
dissipation of energy by the absorber. If the dynamic excitation continues to increase, passing to F, = 10
N, the following frequency evolution is given in Figure 12.

This time, the LO with the NES shows a behavior typical of systems fitted with nonlinear vibration
absorbers. First, the appearance of areas with multiple solutions of amplitudes for the same frequency,
either unstable (+) or stable (0). The system will converge towards a stable solution if it is possible. A
unique branch of unstable solutions appears around the resonance involving a transfer of energy between the
structure and the absorber where the cycles of relaxations occur. The activation threshold identified by the
SIM, 2.8 mm, is shown in Figure 12. It is possible to see for frequencies above resonance that the amplitude
level respects this threshold from which the unstable branch of single solutions appears. This results in a
beginning of attenuation of the vibration level when the NES is released.

However, another phenomenon is observed in Figure 12. An area, for frequencies lower than the natural
frequency present several solutions presents with two stable solutions. There is one at low amplitude and
another at higher amplitude beyond the activation threshold. The latter solution begins to degrade the
efficiency of the NES. This parasitic amplitude peak is the beginning of the appearance of what is called the
detached resonance.

By increasing the load to F, = 15 N, the analytical results presented in Figure 13 show that the ampli-
tude level of the detached resonance becomes more important and could make the absorber inefficient if the
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Figure 11: Evolution of the LO amplitude as a function of Figure 12: Evolution of the LO amplitude as a function of the
the frequency for F. =5 N frequency for F. = 10 N (o blue: stable solution; + turquoise:
unstable solution)

structure passed over this branch of stable solutions while undergoing a disturbance which would cause it to
jump onto the latter. Finally with a load F, = 20 N, Figure 14, in the area with multiple stable solutions,
the solutions with low amplitudes "separate" towards the lower frequencies, leaving at 4.7 Hz the solution

with high amplitude as the only possible solution. There is a fall to lower frequencies only for low amplitude
solutions. As a result, the NES becomes inefficient.
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Figure 13: Evolution of the LO amplitude as a function of Figure 14: Evolution of the LO amplitude as a function of the

the frequency for F. = 15 N (o blue: stable solution; + frequency for F. = 20 N (o blue: stable solution; + turquoise:
turquoise: unstable solution) unstable solution)

This study of the absorber without the coil/magnet assembly shows its weaknesses. As soon as the
forcing efforts allow the LO to reach the activation level, the risk of the appearance of a detached resonance
is present, which can quickly cause the NES to loose its mitigation properties. This is mainly due to the
low value of the damping coefficient of the absorber. By increasing its value, it would be possible to delay
or even prevent the appearance of this parasitic amplitude peak as shown in Figure 15 where the analytical
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calculation at F, = 20 N was done with a damping coefficient of the NES of ¢; = 12 N/m.s~! instead of
c2 =1 N/m.s~! to compare with the Figure 14. This time, a desired solution is shown, the amplitude level
of the structure remains below the activation threshold which has slightly increased from 2.8 mm to 3.3
mm and which corresponds to the value found by the SIM of Figure 10. The addition of the multiphysics
coupling would make it possible to get this desired result by creating an electrical damping which would
increase the equivalent damping of the absorber.

7 T

LO + NES locked
6 © LO +NES 1
5t 4
4 Activation threshold |

Amplitude LO [mm]

4 45 5 55 6
Frequency [HZz]

Figure 15: Evolution of the LO amplitude as a function of the frequency for F. = 20 N (o blue: stable solution; + turquoise:
unstable solution) with a damping coefficient of the NES ¢z = 12 N/m.s~!

4.2. Experimental results

To highlight the potential of multiphysics coupling, experimental tests on our prototype is made and
compared to the analytical model. During these tests, two configurations are studied for the multiphysics
coupling. First of all, the electrical circuit is in the open position, the electrical resistance is infinite (R )
and therefore the damping generated by the coil/magnet assembly is zero. Then, the circuit is in closed po-
sition, the resistance is minimum (R,,;,) (internal resistance into the coil) and then the generated damping
is maximum.

First of all, the results with the configuration of the NES without multi-physics coupling (R;,¢) are pre-
sented in Figure 16. The left figure shows the analytical results and the right figure shows the experimental
results. First, for the configuration where the NES is blocked, the analytical and experimental results show
a very close response with a maximum amplitude of 8 mm in both cases. For the NES configuration with
(Riny), the experimental results show two different responses depending on whether one is sweep up or
down. For sweep down, the LO shows a peak at high amplitude towards frequencies lower than fy, making
the NES inefficient. For sweep up, the attenuation of the vibratory level is well attenuated, going from
8 to 4 mm. A peak at higher amplitude begins to appear around the same frequency as that present in
decreasing sine. These observations are in clear agreement with the analytical results obtained. The high
amplitude peak is also present. However, despite the two possible stable solutions between 4 and 4.4 Hz in
the analytical model, the high amplitude peak is a single possible solution for the LO. However, during the
tests, this peak is not obtained for the sine sweep down, only a beginning of appearance is visible. This fact
can be explained by the fact that our tests are sine sweeps, not allowing time for the system to stabilize on
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the high amplitude solution which can take a few seconds.
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Figure 16: Evolution of the LO amplitude as a function of the frequency for F, = 25 N. The figure on the left introduces the
analytical results (o blue: stable solution; + turquoise: unstable solution). The figure on the right introduces the experimental

results

Now, the configuration with the maximum coupling (R.») is analyzed in Figure 17. In this case the
analytical results are also coherent and close to the experimental results. For sine sweep up and down,
the same responses are obtained and the model shows only one possible path. In both cases the attenu-
ation of the vibratory level is similar, going from 8 mm to 3.7 mm during the tests and 3.8 mm for the
model. Now, comparing Figure 16 and Figure 17, the influence of coupling is clear. As the NES "saturates"
and becomes inefficient without coupling, it becomes satisfactory when the multiphysics coupling is added
in order to increase its damping. This clearly shows the interest of having a calibrated damping. The dif-
ficulty in controlling the damping of a mechanical assembly here shows the limit of a purely mechanical NES.
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Figure 17: Evolution of the LO amplitude without and with NES + R;, ¢
figure on the left introduces the analytical results (o blue: stable solution; + turquoise: unstable solution). The figure on the

right introduces the experimental results
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Its interest is also shown for a solicitation F, = 30 N. However, the amplitude level of the LO when
the NES is blocked is higher during the tests compared to the analytical results. This is due to the fact
that the limit of stroke of the LO springs is reached, causing shocks between the spirals and causing in-
stabilities. The results in configuration without coupling (R;,y) are shown in Figure 18. During the tests,
whether for sweep up and down, the high amplitude peak is present. That is coherent with the analytical
model since only one stable solution is present for a given frequency and also shows this peak. The dis-
continuity of stable solutions causing an amplitude jump to 5.3 Hz is also present in the experimental results.
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Figure 18: Evolution of the LO amplitude without and with NES + R;, s as a function of the frequency for Fe = 30 N. The
figure on the left introduces the analytical results (o blue: stable solution; + turquoise: unstable solution). The figure on the
right introduces the experimental results

Finally, the results with the coupling activated are presented in Figure 19. While with zero multi-physics
coupling, the NES still remained inefficient, the absorber still attenuates effectively with active coupling.
Only the beginning of the appearance of a peak at higher amplitude appears at 4.7 Hz, whether in the
analytical model or in experimental tests. While it represents a unique solution in the model, for sweep up,
the LO does not present the start of a peak and its amplitude always remains well attenuated.

5. Conclusion

In this paper, the crucial role of the damping coefficient of a NES is emphasized. In fact, the analytical
model shows that the NES efficiency is sensitive to its parameters and the model shows also the need to
identify the set of parameters in order to avoid and to prevent the detached resonance. However, a purely
mechanical nonlinear absorber has two shortcomings : the damping coefficient is difficult to control due
to manufacturing tolerances or wear, and cannot be changed if desired. The method presented here to
adapt the damping coefficient is the addition of an electro-magnetomechanical coupling to our system by
the coil-magnet interaction. This coupling made it possible to create a damping of an electrical nature in
addition to the mechanical damping allowing the increase of the equivalent damping of the absorber. The
experimental tests, as well as the analytical model have shown the efficiency of the coupling making the
NES more efficient. Despite the problems encountered on our structure considered as the LO, the analytical
model gives a coherent and satisfactory prediction of the dynamic behavior of the LO.
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Figure 19: Evolution of the LO amplitude as a function of the frequency for F. = 30 N. The figure on the left introduces the
analytical results (o blue: stable solution; + turquoise: unstable solution). The figure on the right introduces the experimental
results
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