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Vibration absorbers are known for their use in vibration mitigation. In particular, nonlinear vibration absorbers have been of great interest for vibratory level reduction as they do not have to be tuned to the natural frequency of their supporting structure. In order to obtain satisfactory operations of the absorber (energy necessary for its activation and dissipated vibratory level), it is necessary to identify the correct parameters of the absorber which are its nonlinear stiness and damping. However, when moving from analytics to designing an experimental prototype, it is complicated to have the appropriate parameter values, especially damping, because it is very dicult (or even impossible) to adjust a precise value for a mechanical assembly. As a consequence, this bad adjustment leads to an ineciency of the absorber and unsatisfactory results. To avoid this lack of robustness, the addition of a multiphysical coupling, to a nonlinear absorber is studied in this paper in order to create an equivalent damping coecient from another nature : electromagnetomechanical. This new damping generated is adapted and allows to adjust the equivalent damping coecient of the absorber to get the best eciency, analytically and experimentally.

Introduction

Structures subjected to dynamic excitation may exhibit harmful vibrations, potentially reducing their lifespan. Therefore, vibration mitigation has received great interest [START_REF] Ibrahim | Recent advances in nonlinear passive vibration isolators[END_REF]. Passive linear vibration absorbers, called TMDs (Tuned Mass Damper) are frequently used in industry to reduce vibration level of critical components. For a dynamic sollicitation close to the natural frequency of the main structure to be damped, they are ecient for a mass ratio between the TMD and the modal mass of the structure of about 5-10%. However, the natural frequency of the TMD must be tuned to the structure otherwise a loss of eciency appears quickly.

In the last decade, nonlinear vibration absorbers, usually known as Nonlinear Energy Sinks (NES), have been the object of numerous studies in the eld of Nonlinear Dynamics to circumvent the limits of TMD. The substitution of the linear stiness by an essentially nonlinear one allows the NES to not have a natural frequency and to adapt itself to the supporting structure, hence initiating the energy transfer for a mass ratio of about 1% only. Analytical models of the dynamical behavior of NES have shown a promising potential to dissipate energy. Experimental and theorical studies have shown that the nonlinearity of the NES allows an irreversible transfer of energy, known as Targered Energy Transfer, from the primary system to the NES [25]. Passive control of resonance using a NES was studied analytically [START_REF] Starosvetsky | Dynamics of a strongly nonlinear vibration absorber coupled to a harmonically excited two-degree-of-freedom system[END_REF][START_REF] Starosvetsky | Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry[END_REF] and experimentally [START_REF] Gourc | Experimental Investigation and Design Optimization of Targeted Energy Transfer Under Periodic Forcing[END_REF][START_REF] Pennisi | Experimental investigation and analytical description of a vibro-impact NES coupled to a single-degree-of-freedom linear oscillator harmonically forced[END_REF]. Investigations on the control of aeroelastic instabilities with a nonlinear absorber was also analyzed [1012].

Analytical models have also shown the sensitivity of a NES performance according to the values of its stiness and damping parameters. However, it is very dicult to control and to identify the damping coecient of a mechanichal assembly during the design in order to have the full potential described by the analytical model. The consequences of a incorrect value of damping coecient, which is not adjusted, is an important amplitude peak and even higher than that of the structure without absorber for frequencies lower than the natural frequency. This phenomenon called "detached resonance" is not due to a shift of a linear resonance, but to a branch of solutions due to nonlinear dynamics [START_REF] Gourc | Performance Comparison Between a Nonlinear Energy Sink and a Linear Tuned Vibration Absorber for Broadband Control[END_REF]. Therefore, it is important to identify and to adjust experimentally the right set of parameters.

The impact of an additional physics in the absorber has been studied recently with a research eld on multiphysics absorbers which would involve passive electrical circuits to convert the mechanical energy from the vibrations into electrical energy. Nowadays, the studies on this type of absorbers are rather oriented toward energy harvesting [1418]. In the present paper, an electrical circuit is used to create an equivalent mechanical damping, to overcome the unpredictability of the purely mechanical damping stemming from the assembly of the absorber. This work illustrates the concept of a new type of nonlinear absorber with an electro-magnetomechanical coupling in order to demonstrate the possibility to adjust the equivalent damping of the absorber to improve its eciency. In the rst part, the protype will be introduced. Then the analytical model of the system is presented to evaluate the performances of the potential of the electro-magnetomechanical coupling. The Complexication-Averaging (CX-A) technique and multi scale method [START_REF] Manevitch | The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables[END_REF] have been used to derive modulation equations, to compute the xed point solutions and the slow invariant manifold. Finally, the analytical results and experimental tests with a vibration shaker will be presented and compared.

Electro-magnetomechanical coupling

Experimental setup

The design of the absorber consists of a mass-spring system nonlinearly coupled to the structure to be damped, represented as a linear oscillator (LO). The prototype in this study is presented in Figure 1. It consists of an LO composed of a mass of 64 kg connected to the ground by 4 springs. The LO is connected to an excitation shaker transmitting a dynamic excitation. The mechanical components of the absorber are a moving mass of 1.4 kg positionned on the LO, it is the absorber. It translates along two slides by means of linear bearings. The restoring force of the absorber is generated by the four springs which are mounted on pivots on the LO and the absorber, so they only undertak traction forces. The trajectory of the springs, shown in Figure 2, leads to a mostly nonlinear cubic stiness, comprising a residual linear term due to a slight elongation during their installation. The nonlinear restoring force is given by the following equation.

f nl (x) = k 2l x + k 2c x 3 (1) 
with

k 2l = 2P l + 2k 1 - l l 0 , k 2c = kl 0 l 3 - P l 3 (2) 
k being the stiness of the spring, P the preload applied to the spring and l 0 its initial length. The electro-magnetomechanical coupling is achieved by a coil / magnet assembly. The 80 mm long coil is placed on the top of the absorber. Being integral to the absorber, it moves around its associated magnetic bar xed to the LO (Figure 1). The magnetic bar, slightly longer than the coil with 90 mm, is made up of 18 superimposed cylindrical magnets giving a modular magnet system. The interaction between the eld of the magnet and the coil, stemming from their relative displacement, creates an electrical current. The eld created by the coil varies according to the resistance which is applied to its terminals. It can be congured in open circuit (innite resistance) or in closed circuit (almost zero resistance). The complete system is a 2-DOF model made up of the LO, described by a mass m 1 , a stiness k 1 and a damping coecient c 1 . The LO is coupled to the absorber, described by a mass m 2 , a cubic stiness k 2c , a linear stiness k 2l and a damping coecient c 2 . The values of these dierent parameters of the system are presented in Table1. An excitation force F e sin(Ωt) is applied to the LO. A diagram of this system is presented in Figure 3. As a reminder, in the assembly, the magnet is xed to the main structure, while the coil is xed to the absorber (Figure 4). As a result the magnet displacement is x m = x 1 , x 1 being the displacement of the LO, and the coil displacement is x c = x 2 , x 2 being the displacement of the absorber. The equations of movement characterizing this assembly taking into account the electro-magnetomechanical coupling are

           m 1 d 2 x1 dt 2 + c 1 dx1 dt + k 1 x 1 + c 2 ( dx1 dt -dx2 dt ) + k 2l (x 1 -x 2 ) + k 2c (x 1 -x 2 ) 3 = F e sin(Ωt) m 2 d 2 x2 dt 2 + c 2 ( dx2 dt -dx1 dt ) + k 2l (x 2 -x 1 ) + k 2c (x 1 -x 2 ) 3 -θ (y) I = 0 L c dI dt + (R c + R i ) I + θ (y) ẏ = 0 (3) Parameter Value Parameter Value m 1 [kg] 64 m 2 [kg] 1.4 c 1 [N/m.s -1 ] 97 c 2 [N/m.s -1 ] 1 k 1 [N.m -1 ] 91324 k 2l [N.m -1 ] 500 - - k 2c [N.m -3 ] 8.44.10 6
Table 1: Parameters of the system L c , R c , R i and I are respectively the coil inductance, the coil resistance, the resistance applied to its terminals and the current. The term θ (y) is called the electro-magnetomechanical coupling coecient where y = x mx c the displacement between the coil and the magnet.

Modelling of the electro-magnetomechanical coupling

In the literature, this electro-magnetomechanical coupling term is often considered constant for the coil-magnet interaction. However, Sneller A.J. and al. [START_REF] Sneller | On the nonlinear electromagnetic coupling between a coil and an oscillating magnet[END_REF] showed that the coupling term between these components evolves nonlinearly with respect to their relative initial position. It is therefore important to take this variation into account. In this part, their model is used to nd the conguration where the coupling is the more important for low displacements. According to Faraday's law, a voltage V is created across a coil, proportional to the magnetic ux variation Φ which crosses it.

V = - dΦ dt = - dΦ dx dx dt (4) 
The model allows to calculate the voltage and nonlinear electromagnetic coupling between a coil and an oscillating magnet inside. The expression for the voltage function of the displacement between the coil and the magnet y = x mx c is

V = θ(y) ẏ (5) θ(y) = - N c B r ν s ξ 2A c 2 i,j=1 (-1) i+j ln (r i + z ij ) - r i z ij (6) with z 2 ij = r 2 i + x cj + y 2 , x c1 = -L/2 and x c2 = L/2.
The following example will show that the electromagnetomechanical coupling strongly depends on the distance between the coil and the magnet. Table 2: Parameters of the coil-magnet system ). The coupling is very weak for the small displacements. However, it is desirable that this coupling is maximised from the very onset of movement to dissipate the vibrational energy even for small amplitude displacements. The distance between one of the extrema of the blue curve and the ordinate axis corresponds to the distance between the centroid of the magnet and one end of the coil. To achieve an optimal eciency even for low displacements, the second conguration (red curve Figure 6 and case 2 Figure 7) where the magnet moves at the end of the coil seems the most ecient one and is chosen for the study.

Modeling of the complete system

Analytical solution of the equations of movement

As a reminder, the equations of movement characterizing the complete assembly taking into account the electro-magnetomechanical coupling are

           m 1 d 2 x1 dt 2 + c 1 dx1 dt + k 1 x 1 + c 2 ( dx1 dt -dx2 dt ) + k 2l (x 1 -x 2 ) + k 2c (x 1 -x 2 ) 3 = F e sin(Ωt) m 2 d 2 x2 dt 2 + c 2 ( dx2 dt -dx1 dt ) + k 2l (x 2 -x 1 ) + k 2c (x 1 -x 2 ) 3 -θ (y) I = 0 L c dI dt + (R c + R i ) I + θ (y) ẏ = 0 (7) 
An approximation is calculated analytically by assuming the term L c dI dt is negligible for low frequencies and low amplitudes. Unfortunately, this point has not been veried by experimental measurements of the intensity because of the insucient sensitivity of our devices. However, a temporal solution of the system with or without this term on Matlab conrmed this approximation. So, it is possible to write

L c dI dt = 0 -→ (R c + R i )I + θ(y) ẏ = 0 (8) 
It is then possible to write the second equation of ( 7) in the form

m 2 d 2 x 2 dt 2 + c 2 + θ 2 (y) R c + R i dx 2 dt - dx 1 dt + k 2l (x 2 -x 1 ) + k 2c (x 2 -x 1 ) 3 = 0 (9) 
This equation shows the existence of an equivalent damping coecient, of two natures : mechanical and electromagnetic. The damping is controlled with the applied resistance, the higher the applied resistance R i the more the damping term θ 2 (y)

Rc+Ri created by the coil/magnet assembly decreases, until it tends towards a purely mechanical damping and it becomes maximum for R i zero.

The analytical study of the dynamics of the multi-physics absorber coupled to a linear oscillator is presented by the complexication and multi-scale methods. The equations of motion describing the model are

     m 1 d 2 x1 dt 2 + c 1 dx1 dt + k 1 x 1 + c 2 ( dx1 dt -dx2 dt ) + k 2l (x 1 -x 2 ) + k 2c (x 1 -x 2 ) 3 = F e sin(Ωt) m 2 d 2 x2 dt 2 + c 2 + θ 2 (y) Rc+Ri ( dx2 dt -dx1 dt ) + k 2l (x 2 -x 1 ) + k 2c (x 2 -x 1 ) 3 = 0 (10) 
With Ω the applied frequency. In the previous part, the model describing the multi-physics coupling was introduced. Due to its complex expression and the diculty to introduce it into the analytical solution, a simplication of this law is made using the following expression θ(y) = a 1 y 8 + a 2 y 6 + a 3 y 4 + a 4 y 2 + a 5 [START_REF] Lee | Suppression Aeroelastic Instability Using Broadband Passive Targeted Energy Transfers, Part 1: Theory[END_REF] The graphical representation of this approximation is shown in gure 8. Then, the following change of variables is introduced

ε = m 2 m 1 , ω 2 0 = k 1 m 1 , K 1 = k 2l m 2 ω 2 0 , K 3 = k 2c m 2 ω 2 0 , λ 1 = c 1 m 2 ω 0 , λ 2 = c 2 m 2 ω 0 , Ω = Ω ω 0 , τ = ω 0 t, θ 2 (y) m 2 ω 0 (R c + R i ) = 9 i=1 γ i y 18-2i (12) 
By substituting [START_REF] Hubbard | Transonic Aeroelastic Instability Suppression for a Swept Wing by Targeted Energy Transfer[END_REF] in the equations [START_REF] Lee | Suppressing Aeroelastic Instability Using Broadband Passive Targeted Energy Transfers, Part 2: Experiments[END_REF], the equilibrium reads The dots ( ˙) represent the derivatives with respect to the dimensionless time τ . Now, the barycentric coordinates is introduced

     ẍ1 + ελ 1 ẋ1 + ελ 2 ( ẋ1 -ẋ2 ) + x 1 + εK 1 (x 1 -x 2 ) + εK 3 (x 1 -x 2 ) 3 = εF sin(Ωτ ) ẍ2 + λ 2 + 9 i=1 γ i y 18-2i ( ẋ2 -ẋ1 ) + K 1 (x 2 -x 1 ) + K 3 (x 2 -x 1 ) 3 = 0 (13) 
v = x 1 + εx 2 , w = x 1 -x 2 (14) 
Then, ( 14) is introduced into (13), giving the following system

           v + ελ 1 v+ε ẇ 1+ε + v+εw 1+ε -ε 9 i=1 γ i w 18-2i ẇ = εF sin(Ωτ ) ẅ + ελ 1 v+ε ẇ 1+ε + v+εw 1+ε + λ 2 (1 + ε) ẇ + 9 i=1 γ i w 18-2i ẇ +K 1 (1 + ε)w + K 3 (1 + ε)w 3 = εF sin(Ωτ ) (15)
The cubic nonlinearity of the stiness and the multiphysics coupling in the second equation of the system does not allow an exact analytical solution. An approximation of periodic solutions is calculated by a combination of complexication methods and multiple scales. The system is supposed to follow a 1:1 resonance, meaning that the main oscillator and the NES oscillate at the same excitation frequency Ω. It is shown that this energy transfer is dened as a 1:1 resonance capture (LO and NES oscillate at the same frequency) between the primary system and the NES [START_REF] Kerschen | Theoretical and Experimental Study of Multimodal Targeted Energy Transfer in a System of Coupled Oscillators[END_REF][START_REF] Kerschen | Theoretical and Experimental Study of Multimodal Targeted Energy Transfer in a System of Coupled Oscillators[END_REF][START_REF] Gourdon | Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results[END_REF]. First, the following complex variables is introduced

Ψ 1 = v + iΩv, Ψ 2 = ẇ + iΩw Ψ 1 = φ 1 exp(iΩτ ), Ψ 2 = φ 2 exp(iΩτ ) (16) 
The following equivalences are valid

             v = 1 2iΩ (Ψ 1 -Ψ * 1 ), w = 1 2iΩ (Ψ 2 -Ψ * 2 ) v = 1 2 (Ψ 1 + Ψ * 1 ), ẇ = 1 2 (Ψ 2 + Ψ * 2 ) v = Ψ1 - iΩ 2 (Ψ 1 + Ψ * 1 ), ẅ = Ψ2 - iΩ 2 (Ψ 2 + Ψ * 2 ) (17) 
The addition of the complex variables leads to partitioning the fast oscillations of the system at the excitation frequency Ω and the slow modulation of the complex amplitudes {φ 1 , φ 2 }. By injecting ( 17) into (15), the following system is obtained

                             Ψ1 -iΩ 2 (Ψ 1 + Ψ * 1 ) + ε 1+ε λ 1 1 2 (Ψ 1 + Ψ * 1 ) + ε 2 (Ψ 2 + Ψ * 2 ) + 1 2iΩ(1+ε) Ψ 1 + Ψ * 1 + ε 2 (Ψ 2 + Ψ * 2 ) -( γ1 65536Ω 16 (Ψ 2 -Ψ * 2 ) 16 - γ2 16384Ω 14 (Ψ 2 -Ψ * 2 ) 14 + γ3 4096Ω 14 (Ψ 2 -Ψ * 2 ) 12 -γ4 1024Ω 10 (Ψ 2 -Ψ * 2 ) 10 + γ5 256Ω 8 (Ψ 2 -Ψ * 2 ) 8 -γ6 64Ω 6 (Ψ 2 -Ψ * 2 ) 6 + γ7 16Ω 4 (Ψ 2 -Ψ * 2 ) 4 -γ8 4Ω 2 (Ψ 2 -Ψ * 2 ) 2 + γ 9 ) ε 2 (Ψ 2 + Ψ * 2 ) = εF sin(Ωτ ) Ψ2 -iΩ 2 (Ψ 2 + Ψ * 2 ) + ε 1+ε λ 1 1 2 (Ψ 1 + Ψ * 1 ) + ε 2 (Ψ 2 + Ψ * 2 ) + 1 2iΩ(1+ε) Ψ 1 + Ψ * 1 + ε 2 (Ψ 2 + Ψ * 2 ) +( γ1 65536Ω 16 (Ψ 2 -Ψ * 2 ) 16 - γ2 16384Ω 14 (Ψ 2 -Ψ * 2 ) 14 + γ3 4096Ω 14 (Ψ 2 -Ψ * 2 ) 12 -γ4 1024Ω 10 (Ψ 2 -Ψ * 2 ) 10 + γ5 256Ω 8 (Ψ 2 -Ψ * 2 ) 8 -γ6 64Ω 6 (Ψ 2 -Ψ * 2 ) 6 + γ7 16Ω 4 (Ψ 2 -Ψ * 2 ) 4 -γ8 4Ω 2 (Ψ 2 -Ψ * 2 ) 2 + γ 9 ) 1 2 (Ψ 2 + Ψ * 2 ) + λ2 2 (1 + ε)(Ψ 2 + Ψ * 2 ) + K1 2iΩ (Ψ 2 -Ψ * 2 ) + iK3 8Ω 3 (Ψ 2 -Ψ * 2 ) 3 = εF sin(Ωτ ) (18) 
Then, the equations are averaged over the fast time scale. Therefore, only terms proportional to exp(iΩτ ) are kept. The Ψ i terms are replaced with φ i exp(iΩτ ). A system proportional to φ 1 and φ 2 is established

                     φ1 -iΩ 2 φ 1 + ελ1 2(1+ε) (φ 1 + εφ 2 ) - i 2Ω(1+ε) (φ 1 + εφ 2 ) -715εγ1 65536Ω 16 |φ 2 | 16 φ 2 -429εγ2 32768Ω 14 |φ 2 | 14 φ 2 -33εγ3 2048Ω 12 |φ 2 | 12 φ 2 -21εγ4 1024Ω 10 |φ 2 | 10 φ 2 -7εγ5 256Ω 8 |φ 2 | 8 φ 2 -5εγ6 128Ω 6 |φ 2 | 6 φ 2 -εγ7 16Ω 4 |φ 2 | 4 φ 2 -εγ8 8Ω 2 |φ 2 | 2 φ 2 -εγ9 2 φ 2 + iεF 2 = 0 φ2 -iΩ 2 φ 2 + ελ1 2(1+ε) (φ 1 + εφ 2 ) - i 2Ω(1+ε) (φ 1 + εφ 2 ) + λ2 2 (1 + ε)φ 2 -(1 + ε) iK1 2Ω φ 2 -(1 + ε) i3K 8Ω 3 |φ 2 | 2 φ 2 + 715γ1 65536Ω 16 |φ 2 | 16 φ 2 + 429γ2 32768Ω 14 |φ 2 | 14 φ 2 + 33γ3 2048Ω 12 |φ 2 | 12 φ 2 + 21γ4 1024Ω 10 |φ 2 | 10 φ 2 + 7γ5 256Ω 8 |φ 2 | 8 φ 2 + 5γ6 128Ω 6 |φ 2 | 6 φ 2 + γ7 16Ω 4 |φ 2 | 4 φ 2 + γ8 8Ω 2 |φ 2 | 2 φ 2 + γ9 2 φ 2 + iεF 2 = 0 (19) 
Since φ 1 and φ 2 are the slow evolutions of the amplitudes for a 1:1 type resonance, the temporal evolution of the LO-NES system is governed by the system of equations [START_REF] Manevitch | The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables[END_REF] considering a periodic oscillation of the two oscillators at the same frequency Ω.

Fixed point solutions

From [START_REF] Manevitch | The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables[END_REF], it is possible to determine the xed point solutions. The latter corresponds to the periodic solutions of system [START_REF] Lai | On energy harvesting from a vibro-impact oscillator with dielectric membranes[END_REF] under the assumption of a 1:1 resonance. They are calculated by nding the zeros of ( 19)

φ1 = φ2 = 0 -→ φ 1 (τ ) = φ 10 , φ 2 (τ ) = φ 20 (20) 
By introducing [START_REF] Sneller | On the nonlinear electromagnetic coupling between a coil and an oscillating magnet[END_REF] into [START_REF] Manevitch | The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables[END_REF], the expression of φ 10 is calculated as a function of φ 20 and system parameters. 

Where A, B and C are coecients which depend on the parameters of the system. By setting φ 20 = |φ 20 | exp(iθ) and some mathematical manipulations, a polynomial of order 17 is expressed

9 i=0 α i Z i 20 = 0, Z 20 = |φ 20 | 2 (23) 
With α i real coecients depending on the parameters of the system. The analytical solution of this polynomial allows to calculate the modulus |φ 20 |, then φ 20 and φ 10 by going up in [START_REF] Gourdon | Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results[END_REF] and [START_REF] Sneller | On the nonlinear electromagnetic coupling between a coil and an oscillating magnet[END_REF].

It is possible to plot an equivalent of the FRF (Frequency Response Function) by plotting the evolution of the amplitude of the stationary responses (xed points) as a function of the frequency. It will be used in the next part to analyse the dynamic behavior of the system. The stability of xed points is studied by adding small disturbances around them

φ 1 (τ ) = φ 10 + ρ 1 (τ ), φ 2 (τ ) = φ 20 + ρ 2 (τ ) (24) 
Then, (24) is introduced in ( 19) and only the terms proportional to φ i are kept. It results after some mathematical arrangements, to the following relation

    ρ1 ρ2 ρ * 1 ρ * 2         M 11 εM 21 0 0 M 21 M 22 0 M 24 0 0 M * 11 εM * 21 0 M * 24 M * 21 M * 22     =     ρ 1 ρ 2 ρ * 1 ρ * 2     + C (25)
The stability of the xed points is determined by the computation of the eigenvalues of the matrix (25). If the eigenvalues are negative reals, then the xed point is stable. If a real eigenvalue crosses the complex half-plane, the xed point is then a saddle-node. Finally, if a pair of conjugate complex eigenvalues leaves from the left of the complex half-plane, it leads to a Hopf bifurcation.

Asymptotic study

In order to study the energy transfer, an asymptotic analysis by the method of multiple scales is carried out because the mass ratio ε with a NES, is very low, ε << 1 [START_REF] Gourc | Experimental Investigation and Design Optimization of Targeted Energy Transfer Under Periodic Forcing[END_REF]. First of all, the time τ is decomposed into several sub-scales of time, increasingly smaller. The derivation is a sequence of partial derivatives :

∂ ∂τ = ∂ ∂τ 0 + ε ∂ ∂τ 1 + ε 2 ∂ ∂τ 2 + ..., k = ε k τ, = 0, 1, 2, ... ( 26 
)
The solutions is also expressed as a polynomial of ε : 

       φ 1 (τ 0 ,
The equations ( 26) and ( 27) are introduced in [START_REF] Manevitch | The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables[END_REF]. Terms proportional to ε 0 are gathered. 

ε 0 :            ∂φ10 ∂τ0 = 0 ∂φ20 ∂τ0 + λ2 2 φ 20 + i 2 (φ 20 -φ 10 ) -iK1 2 φ 20 -
It is important to note that at the rst time scale τ 0 , the amplitude modulations are independent of the excitation force. Indeed, this force only appears at the slower time scale τ 1 = ε 1 τ . The equations at the scale ε 0 are rewritten in the polar form :

φ 10 = N 10 exp(iθ 10 ), φ 20 = N 20 exp(iθ 20 ) (29) 
The following system of equations is then obtained : 

               ∂N10 τ0 = 0 ∂N20 τ0 = -λ2 2 N 20 + N10 2 sin(θ 0 ) -715γ1
= N10 2N20 cos(θ 0 ) -1 2 + K1 2 + 3 8 K 3 N 2 20 ( 30 
)
With θ 0 = θ 20θ 10 . The equilibrium equations are given by : 

       sin(θ 0 ) =
+ 5γ6 64 N 7 20 + γ7 8 N 5 20 + γ8 4 N 3 20 + γ 9 N 20 ) cos(θ 0 ) = N20 N10 1 -K 1 -3 4 K 3 N 2 20 ( 31 
)
By squaring the equations and then adding them, the xed points of the system satisfy the equation : 

N 2 10 = N 2 20 1 -K 1 - 3 
With Z = N 2 20 . This equation denes the Slow Invariant Manifold (SIM) of the system, it allows the relation between the parameters of the system which characterizes the dynamics of this one including its amplitude. For a xed value of N 10 , the polynomial of degree 3 is solved analytically. For each value of N 10 , one to three positive solutions for N 20 are found. To determine the stability of the solutions of the invariant variety, it is necessary to study the eigenvalues of the corresponding stability matrix. Figure 9 presents an example of the SIM for the case of a NES with the electro-magnetomechanical coupling when the resistance is minimal R min .

Each possible solution is represented by a circle. The curve suggests three distinct zones. First at low amplitude, where the displacement of the LO is between 0 and 3.2 mm, only one stable solution (blue circles) exists for the periodic amplitude of the NES and the LO, there is a resonance 1:1, otherwise known as Constant Response Amplitude (CAR). The NES has almost the same amplitude as the LO, the slope is approximately 1. In this zone, the NES is inactive because it follows only the movement of the LO. Between 3.2 and 3.7 mm LO displacement amplitude, starting from a rst bifurcation point B 1 , there are 3 branches of solutions: 2 stable separated by an unstable one. These solutions are dierentiated by the amplitude of the NES: the low amplitudes and the highest amplitudes for the stable solutions and the intermediate amplitudes for the unstable. This typical conguration of nonlinear dynamics is at the origin of a movement generating relaxation cycles. For an amplitude value of LO, the system is rst attracted to the lower amplitude solution of the NES, but a quick jump to the higher amplitude branch occurs. On this last branch, the NES dissipates much more energy through the damping coecient c 2 for a similar amplitude of the LO. However, with this energy dissipation, the whole system loses energy and falls back on the low amplitude solution. Having returned to this branch, the system recovers vibratory energy again and its amplitude begins to increase again until the jump on the high-amplitude branch forming a cycle which repeats. This particular behavior is achieved by the presence of unstable solutions (red circles), surrounded by the two branches of stable solutions. This phenomenon called SMR (Strongly Modulated Response), is observed numerically and experimentally.

Finally, beyond 3.7 mm LO displacement, a second bifurcation point B 2 is reached. As for the rst zone, only one stable solution for the LO / NES pair is possible, but this time, the amplitude of the NES is much greater compared to LO. However, unlike the zone of relaxation cycles, the dynamics of the system is again a 1:1 CAR resonance and the slope is again around 1 heading towards a horizontal asymptote.

It is possible to identify the relaxation zone Z 1 and Z 2 analytically. These bounds are obtained by solving the invariant manifold equation to zero. Two remarks is made on these bounds. First, they both depend on the coecient of the cubic stiness coecient K 3 and the damping of the NES λ 2 . It is necessary for Z 1 that λ 2 < √ 3 so that relaxation cycles can occur. Second, the activation threshold of the NES depends on the inverse of K 3 . Therefore, a low threshold is obtained for high values of K 3 . At rst glance, it is possible to say the activation of the NES would be around the level of Z 2 (if the NES has not undergone a disturbance, allowing it to jump to the higher branch). Because the amplitude jump takes place when the NES reaches the level of energy required. This point is veried using the calculation of xed points. Now that the analytical model is set up, the NES with the addition of the electro-magneto-mechanical coupling will be studied using the xed point solutions and the SIM. To begin with, the SIM of the NES in R inf (innite resistance -open electrical circuit) position and R min (minimum resistance -closed circuit, only the internal resistance of the coil is considered) are plotted in Figure 10 in order to observe the variation in the dynamics of our system caused by the multi-physics coupling. As a reminder, the coupling increases the equivalent damping coecient of the absorber. Two changes are noticeable when adding the coupling (NES + R min ). First, a decrease in the three solutions area is caused. Then, an advance of this zone towards greater displacements of the LO, generating a greater activation threshold of the NES, going from 2.8 mm without coupling (R inf ) to 3.7 mm. Moreover, in this gure, the SIM of the system with a damping coecient c 2 = 12 N/m.s -1 is drawn instead of that measured 1 N/m.s -1 . It is remarkable that the coupling makes it possible to obtain a SIM very similar of a system with a purely mechanical NES with a damping c 2 = 12 N/m.s -1 . First of all, the classic mechanical NES, without the addition of multiphysics coupling, is studied using xed point solutions in order to understand the dierent behaviors of the NES according to the level of excitation and to observe the importance of the damping coecient. First, the results for a solicitation F e = 5N are presented in Figure 11. The gure introduces the analytical evolution of the LO when the NES is locked in gray and when the NES is released in blue. In both cases, a linear dynamic response is obtained with a similar amplitude of about 1.6 mm. The NES is then inactive. This result is explained by the previous SIM where it is shown that the activation threshold of the absorber without multi-physics coupling (equivalent to the innite resistance case (R inf )) is about 2.8 mm. At 1.6 mm, the NES is on the low amplitude solutions branch if it has not been disturbed to make it jump to the high amplitude branch. In addition, on the low amplitude branch, the slope is slightly greater than 1, explaining a slight dissipation of energy by the absorber. If the dynamic excitation continues to increase, passing to F e = 10 N, the following frequency evolution is given in Figure 12.

This time, the LO with the NES shows a behavior typical of systems tted with nonlinear vibration absorbers. First, the appearance of areas with multiple solutions of amplitudes for the same frequency, either unstable (+) or stable (o). The system will converge towards a stable solution if it is possible. A unique branch of unstable solutions appears around the resonance involving a transfer of energy between the structure and the absorber where the cycles of relaxations occur. The activation threshold identied by the SIM, 2.8 mm, is shown in Figure 12. It is possible to see for frequencies above resonance that the amplitude level respects this threshold from which the unstable branch of single solutions appears. This results in a beginning of attenuation of the vibration level when the NES is released. However, another phenomenon is observed in Figure 12. An area, for frequencies lower than the natural frequency present several solutions presents with two stable solutions. There is one at low amplitude and another at higher amplitude beyond the activation threshold. The latter solution begins to degrade the eciency of the NES. This parasitic amplitude peak is the beginning of the appearance of what is called the detached resonance.

By increasing the load to F e = 15 N, the analytical results presented in Figure 13 show that the amplitude level of the detached resonance becomes more important and could make the absorber inecient if the structure passed over this branch of stable solutions while undergoing a disturbance which would cause it to jump onto the latter. Finally with a load F e = 20 N, Figure 14, in the area with multiple stable solutions, the solutions with low amplitudes "separate" towards the lower frequencies, leaving at 4.7 Hz the solution with high amplitude as the only possible solution. There is a fall to lower frequencies only for low amplitude solutions. As a result, the NES becomes inecient. This study of the absorber without the coil/magnet assembly shows its weaknesses. As soon as the forcing eorts allow the LO to reach the activation level, the risk of the appearance of a detached resonance is present, which can quickly cause the NES to loose its mitigation properties. This is mainly due to the low value of the damping coecient of the absorber. By increasing its value, it would be possible to delay or even prevent the appearance of this parasitic amplitude peak as shown in Figure 15 where the analytical calculation at F e = 20 N was done with a damping coecient of the NES of c 2 = 12 N/m.s -1 instead of c 2 = 1 N/m.s -1 to compare with the Figure 14. This time, a desired solution is shown, the amplitude level of the structure remains below the activation threshold which has slightly increased from 2.8 mm to 3.3 mm and which corresponds to the value found by the SIM of Figure 10. The addition of the multiphysics coupling would make it possible to get this desired result by creating an electrical damping which would increase the equivalent damping of the absorber. 

Experimental results

To highlight the potential of multiphysics coupling, experimental tests on our prototype is made and compared to the analytical model. During these tests, two congurations are studied for the multiphysics coupling. First of all, the electrical circuit is in the open position, the electrical resistance is innite (R inf ) and therefore the damping generated by the coil/magnet assembly is zero. Then, the circuit is in closed position, the resistance is minimum (R min ) (internal resistance into the coil) and then the generated damping is maximum.

First of all, the results with the conguration of the NES without multi-physics coupling (R inf ) are presented in Figure 16. The left gure shows the analytical results and the right gure shows the experimental results. First, for the conguration where the NES is blocked, the analytical and experimental results show a very close response with a maximum amplitude of 8 mm in both cases. For the NES conguration with (R inf ), the experimental results show two dierent responses depending on whether one is sweep up or down. For sweep down, the LO shows a peak at high amplitude towards frequencies lower than f 0 , making the NES inecient. For sweep up, the attenuation of the vibratory level is well attenuated, going from 8 to 4 mm. A peak at higher amplitude begins to appear around the same frequency as that present in decreasing sine. These observations are in clear agreement with the analytical results obtained. The high amplitude peak is also present. However, despite the two possible stable solutions between 4 and 4.4 Hz in the analytical model, the high amplitude peak is a single possible solution for the LO. However, during the tests, this peak is not obtained for the sine sweep down, only a beginning of appearance is visible. This fact can be explained by the fact that our tests are sine sweeps, not allowing time for the system to stabilize on the high amplitude solution which can take a few seconds. Now, the conguration with the maximum coupling (R min ) is analyzed in Figure 17. In this case the analytical results are also coherent and close to the experimental results. For sine sweep up and down, the same responses are obtained and the model shows only one possible path. In both cases the attenuation of the vibratory level is similar, going from 8 mm to 3.7 mm during the tests and 3.8 mm for the model. Now, comparing Figure 16 and Figure 17, the inuence of coupling is clear. As the NES "saturates" and becomes inecient without coupling, it becomes satisfactory when the multiphysics coupling is added in order to increase its damping. This clearly shows the interest of having a calibrated damping. The difculty in controlling the damping of a mechanical assembly here shows the limit of a purely mechanical NES. Its interest is also shown for a solicitation F e = 30 N. However, the amplitude level of the LO when the NES is blocked is higher during the tests compared to the analytical results. This is due to the fact that the limit of stroke of the LO springs is reached, causing shocks between the spirals and causing instabilities. The results in conguration without coupling (R inf ) are shown in Figure 18. During the tests, whether for sweep up and down, the high amplitude peak is present. That is coherent with the analytical model since only one stable solution is present for a given frequency and also shows this peak. The discontinuity of stable solutions causing an amplitude jump to 5.3 Hz is also present in the experimental results. Finally, the results with the coupling activated are presented in Figure 19. While with zero multi-physics coupling, the NES still remained inecient, the absorber still attenuates eectively with active coupling. Only the beginning of the appearance of a peak at higher amplitude appears at 4.7 Hz, whether in the analytical model or in experimental tests. While it represents a unique solution in the model, for sweep up, the LO does not present the start of a peak and its amplitude always remains well attenuated.

Conclusion

In this paper, the crucial role of the damping coecient of a NES is emphasized. In fact, the analytical model shows that the NES eciency is sensitive to its parameters and the model shows also the need to identify the set of parameters in order to avoid and to prevent the detached resonance. However, a purely mechanical nonlinear absorber has two shortcomings : the damping coecient is dicult to control due to manufacturing tolerances or wear, and cannot be changed if desired. The method presented here to adapt the damping coecient is the addition of an electro-magnetomechanical coupling to our system by the coil-magnet interaction. This coupling made it possible to create a damping of an electrical nature in addition to the mechanical damping allowing the increase of the equivalent damping of the absorber. The experimental tests, as well as the analytical model have shown the eciency of the coupling making the NES more ecient. Despite the problems encountered on our structure considered as the LO, the analytical model gives a coherent and satisfactory prediction of the dynamic behavior of the LO. 
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 5 Figure 5: Magnet-coil interaction and polar cross section of a coil
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 67 Figure 6: Magneto-mechanical coupling term θ(y)
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 8 Figure 8: Simplication of the electro-magnetomechanical coupling model
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 9 Figure 9: Slow Invariant Manifold (SIM) (blue circles: stable solutions, red circles: unstable solutions)
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 10 Figure 10: Slow Invariant Manifold of dierent NES congurations
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 1112 Figure 11: Evolution of the LO amplitude as a function of the frequency for Fe = 5 N
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 1314 Figure 13: Evolution of the LO amplitude as a function of the frequency for Fe = 15 N (o blue: stable solution; + turquoise: unstable solution)
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 15 Figure 15: Evolution of the LO amplitude as a function of the frequency for Fe = 20 N (o blue: stable solution; + turquoise: unstable solution) with a damping coecient of the NES c 2 = 12 N/m.s -1
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 16 Figure 16: Evolution of the LO amplitude as a function of the frequency for Fe = 25 N. The gure on the left introduces the analytical results (o blue: stable solution; + turquoise: unstable solution). The gure on the right introduces the experimental results
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 17 Figure 17: Evolution of the LO amplitude without and with NES + R inf as a function of the frequency for Fe = 25 N. The gure on the left introduces the analytical results (o blue: stable solution; + turquoise: unstable solution). The gure on the right introduces the experimental results
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 18 Figure 18: Evolution of the LO amplitude without and with NES + R inf as a function of the frequency for Fe = 30 N. The gure on the left introduces the analytical results (o blue: stable solution; + turquoise: unstable solution). The gure on the right introduces the experimental results
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 19 Figure 19: Evolution of the LO amplitude as a function of the frequency for Fe = 30 N. The gure on the left introduces the analytical results (o blue: stable solution; + turquoise: unstable solution). The gure on the right introduces the experimental results
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