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Diffusion-driven coarsening of droplets is a classical subject in statistical physics, yet coarsening kinetics in confined
systems have received little attention. We report here on the coarsening of droplets in thin (50-200 nm) films of phase-
separated barium borosilicate glasses. In this ultra-confined geometry where at most one droplet is observed within
the film thickness, droplets grow like a power-law of time, with an exponent about 0.17 significantly smaller than the
one of Ostwald ripening (1/3), characteristic of bulk coarsening. We complement these experimental results with two-
dimensional Cahn-Hilliard numerical simulations of diffusion, where a wider range of parameters can be varied. In
simulations in the ultra-confined geometry, we recover a slow coarsening behavior. We explain the anomalous scaling
exponent of simulations by the ultraconfined geometry, which imposes a different scaling with time of the radius of a
droplet and the distance between droplets. In the experimental system, diffusive transport also becomes less efficient
with time compared to the bulk case, with an additional change of geometry compared to simulations. A flattening of
droplets with time is indeed observed, which we attribute to strong variations of the diffusion coefficient with the local
matrix composition. We finally propose a simple model assuming a spatial localization of the diffusion paths to account
for this effect.

In recent years the texturation of thin films has become a
major tool to give new functions to material surfaces, such
as hydrophobicity1,2, dew collection3, anti-reflection4,5, light
absorption6,7, among many possible applications.

An appealing strategy to obtain and control texturation in
thin films and large surfaces is the use of phase separation, a
strategy used for example in bio- and bio-inspired materials to
achieve structural colors8–10. The tuning of the characteristic
size of patterns can be achieved via the application of a further
step of annealing. It is thus of direct technological interest to
understand the kinetics of coarsening of the phase-separated
patterns obtained in thin films.

As early predicted by Lifshitz, Slyozhov and Wagner11,12

(LSW) for the bulk case, the characteristic radius r(t) of a
phase-separated droplet is expected to grow as r(t)∝ t1/3 with
the annealing time t. This result obtained for the case of a di-
luted droplet actually remains valid for a higher concentration
of droplets13, but also with an inter-connected morphology14,
provided that the transport mechanism is bulk diffusion. The
growth law is faster (r(t) ∝ t) if coarsening is controlled by
hydrodynamic transport15 and slower (r(t) ∝ t1/4) if it is con-
trolled by surface diffusion on a substrate16,17.

The LSW scaling is valid in two and three dimensions, and
at first sight the thin film geometry could be expected to be in-
nocuous and to only give way to transient regimes. However,
the interaction with surfaces and in particular the contrasting
wetting properties of the two phases with substrate and atmo-
sphere have been shown to induce a rich and complex phe-
nomenology of the coarsening morphology and its kinetics.
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The modeling of this phenomenon coined as Surface Directed
Spinodal Decomposition (SDSD) has recently been reviewed
by Binder et al.18. Interestingly, the same authors note that the
case where phase separation at walls and in thin films starts by
the formation of critical nuclei has received less attention18.
Zinge-Allmang19 summarized theoretical models and a hand-
ful of experimental or numerical studies20–22 suggesting long
transient regimes and slower coarsening dynamics compared
to the bulk case, but also noted that no broad consensus exists
because of a scarcity of experimental and numerical studies.

Experimentally, phase separation has become a standard
tool to generate ordered patterns in polymer thin films23,24. Its
use in the context of inorganic thin films was pioneered by Se-
ward et al.25 in 1968. The development of Physical Vapor De-
position (PVD) techniques have recently triggered progress on
the deposition of phase separated thin films of oxide glasses
or suboxide materials4,20,26–30.

Here we report a quantitative study of the coarsening ki-
netics of droplets in phase-separated barium borosilicate thin
films deposited by magnetron sputtering. We report a growth
law r(t) ∝ tα with a exponent α ' 0.17, lower than the clas-
sical value α = 1/3 of the LSW scaling. Using simple scal-
ing arguments and numerical Cahn-Hilliard simulations, we
argue in the following that this anomalous slow regime origi-
nates from the combination of the confinement and the layered
structure of the nucleated droplets.

Our experimental system consists of thin films of barium-
borosilicate glass deposited by reactive magnetron sputter-
ing (PVD) on silicon wafers. As shown in Fig. 1a, the
barium-borosilicate ternary system has a large immiscibility
zone31–33. Several studies34–37 have investigated coarsening
kinetics for bulk samples within this ternary system.
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FIG. 1: a) Phase diagram of the ternary glass SiO2-BaO-B2O3. b) Sample preparation: fabrication of the bulk glass as a target
to be deposited as a thin layer on a silicon wafer by magnetron sputtering, followed by a thermal treatment triggering the phase

separation and the analysis before and after selective etching.

The experimental protocol is summarized in Fig. 1b.
A macroscopic target of composition SiO2-BaO-B2O3
75:6:19 mol% was prepared using a traditional melt and
quench method. Thin films of thicknesses 45, 90, 98 and
175 nm were deposited on Si wafer substrates inside a custom
deposition chamber, using radio-frequency sputtering. Us-
ing electron probe microanalysis on several thicker samples,
the film composition was measured to be SiO2-BaO-B2O3
88:4:8 mol%. The discrepancy between target and film com-
positions comes from preferential sputtering of light elements,
and a reaction with atmosphere extracting boron from the film
to form boric acid. SIMS (Secondary Ion Mass Spectrome-
try) profiles confirmed that the concentration is homogeneous
through the thickness of films.

Samples were annealed under air atmosphere at 950 ◦C in
an electrical furnace. This temperature is a trade-off to limit
crystallization at higher temperatures, and to activate molec-
ular diffusion which is an Arrhenian process. Characteristic
times of heating and cooling steps were about 2-3 minutes.
Annealing times were varied between 1 minute and 32 hours.

Phase-separated films were imaged with Scanning Elec-
tron Microscopy (SEM), collecting Back-Scattered Electrons
(BSE), using the good contrast between the (bright) barium-
rich phase and the other (dark) silica-rich phase. SEM ac-
quisitions were performed on film surface and cross-section,
completed by Atomic Force Microscopy (AFM) analysis in
tapping mode using tip radius below 10 nm after selective
etching of the Barium-rich phase with diluted acidic solu-
tion (HF/HNO3). For quantitative image analysis, the Python
package scikit-image38 was used to label pixels from the two
phases thanks to a blob-detection algorithm combined with a
region-growing step, and to compute the Voronoi cell of each
droplet using the random-walker algorithm39.

In order to test the universality of our experimental results,
we have also performed numerical Cahn-Hilliard simulations
using a in house code based on a mass conserving scheme us-
ing finite differences and explicit forward time-stepping. De-
tails of the model are given in supplemental material A. As
shown in Figure 5(a), in order to emulate a thin-film geome-
try, the simulation is performed in a 2D rectangular domain (of
thickness e= 32,48,64 and lateral size L= 4096) with no-flux

boundary conditions imposed on the two longest segments,
and periodic boundary conditions on the shortest segments. In
the initial state a series of Gaussian germs of half-disk geome-
try (typical radius r0 = 6 with an exclusion distance `exc = 20)

a) b)

c) d)

e)

FIG. 2: (a-d) Plane-view SEM images of phase-separated
thin films of thickness 45 nm after annealing times of 1 min,

15 min, 120 min and 1200 min at 950 ◦C. The scale bars
represent 250 nm. (d) also shows the contours of segmented

droplets and their Voronoi cells. (e) Cross-section SEM
image of a phase-separated film of thickness 90 nm after
annealing 1200 min at 950 ◦C. The scale bar represents

250 nm.
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FIG. 3: Kinetics of droplets growth. (a-b-d) Experiments:
time evolution of (a) average droplet radius r and (b) average

distance between droplets `, for three different film
thicknesses e1 = 45 nm, e2 = 98 nm and e3 = 175 nm, with
power-law least-squares fits for e2. (d) Time evolution of the
surface density of droplets, for the three experimental film

thicknesses. (c) Simulations: same as (a-b) for
Cahn-Hilliard simulations of droplet coarsening in thin films

of three thicknesses ẽ1 = 32, ẽ2 = 48 and ẽ3 = 64, with
droplets initialized at the surface of the film.

are implemented at the surface40.
We show in Fig. 2 plane-view and cross-section SEM im-

ages of phase-separated thin films at different annealing times,
for a film thickness of 45 nm and 90 nm. A droplet morphol-
ogy is observed. Cross-section images show (Fig. 2 (e)) that
most (almost all) droplets touch the surface. A similar mor-
phology is observed for the other two thicknesses: at most
one droplet is observed within the thickness of the glass film,
a situation which we call ultra-confined geometry.

In Fig. 2 (a-d) SEM images also show that both the aver-
age diameter of droplets and their average distance increase
with annealing time. In order to study quantitatively this
growth phenomenon, we draw in Fig. 2 (d) the contour of the
droplets and the associated Voronoi cells. This allows us to
define two characteristic length scales: r(t) = 〈

√
Adroplet〉 is

an average radius of the droplets where Adroplet is the area
of one droplet and brackets denotes an ensemble average;
`(t) = 〈

√
AVoronoi〉 is a typical distance between neighboring

droplets where AVoronoi is the area of a Voronoi cell.
In Fig. 3 (a-b) we have plotted the evolution with time of the

two length scales r(t) and `(t), in logarithmic coordinates and
for three different film thicknesses. In both cases, a power-
law behavior is observed over the almost three time decades
of the temporal range: r(t) ∝ tαr and `(t) ∝ tα` . For the three
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FIG. 4: (a) Histogram of droplet radius r normalized by
average radius for 16 annealing times between one minute
(dark blue) and 1920 minutes (red) at 950 ◦C for the film

thickness of 98 nm (see Fig. 2(a)). Theoretical distributions
for the LSW model (ultra-diluted limit) and the Marder

model (with correlations between neighbors) are shown for
comparison. (b) Histogram of normalized areas of Voronoi

cells A , for the same annealing times as in (a). The
distribution of Voronoi areas for a Poisson distribution41 is

shown for comparison.

time series, least-square fits give for the exponents αr = 0.17
and α` = 0.18. Note that these values are significantly smaller
than the classical LSW exponent of Ostwald ripening, αLSW =
1/3.

In Fig. 4 we show the histogram of the characteristic radius
r(t) and of the area A (t) of the Voronoi cells. In rescaled co-
ordinates, it appears clearly that in both cases the histograms
obtained at different times of the annealing process super-
impose onto a unique master curve. The droplet pattern re-
mains therefore invariant after dynamic rescaling. Further-
more, while the histogram of droplet radii is quite different
from the one of the LSW model, corresponding to a diluted
limit, it is in quite good agreement with the model of Marder
which takes into account correlations between neighbors13.
More specifically, Marder introduces an interaction between a
particle and its shell of first neighbors. The length of this shell
defines a so-called screening length, a cut-off beyond which
interactions are not taken into account. As for the histogram
of Voronoi areas, it is more peaked than a Poisson model ob-
tained with randomly distributed points41, implying that there
exists an exclusion distance between droplets.

As noted by Binder et al18, the kinetics of phase separa-
tion in confined geometries still remains a challenging prob-
lem of nonequilibrium statistical mechanics. In the present
case, even though we measured exponents that differ from the
classical LSW prediction, the validity of dynamic scaling en-
courages us to analyze the power-law behavior of r(t) and `(t)
as a genuine scaling regime and not as a simple transient. In
the following, we adapt the classical scaling arguments for
LSW coarsening42,43 to the ultraconfined geometry.

In bulk geometry, mass conservation induces an immediate
(trivial) scaling relation between the characteristic radius r(t)
of a spherical droplet and the typical distance `(t) that sepa-
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FIG. 5: (a) Sketch of the spatial organization of droplets in an
"ultra-confined" thin layer geometry, introducing the

different length scales: r is the droplet radius, ` the distance
between droplets, and e the thickness of the layer. (b)
Concentration field resulting from the evaporation of a
droplet, displayed using a logarithmic colorscale. The

isovalue lines are 0.008, 0.009, 0.01 (bold dotted lines),
0.011, 0.012, then 0.014 and 0.016 (dashed lines).

rates two neighboring droplets:

[r(t)]d

[`(t)]d
≈ φ ⇒ r(t)≈ φ

1/d`(t) , (1)

where d is the space dimension and φ the volume fraction of
the minority phase in the bulk.

The proportionality between these two length scales r(t)
and `(t) breaks down in the present case of ultra-confinement
since droplets are expected to grow as in bulk (3D) while they
can only go further apart along the surface (2D):

[r(t)]d

e[`(t)]d−1 ≈ φ ⇒ r(t)≈ φ
1/de1/d`(t)

d−1
d , (2)

where e is the thickness of the thin film. We thus get ` ∝ r2 in
2D and ` ∝ r3/2 in 3D.

On the other hand, concentration fields obtained numeri-
cally show that the concentration gradient is mostly parallel
to the free surface (see Fig. 5). Therefore mass conservation
of material diffusing between droplets writes:

dv
dt

∝ SJ , (3)

where v ∝ rd is the volume of a droplet and S is a diffusion
cross-section. The one-dimensional flux value J is estimated
using Fick’s law

J = D
δc
`

. (4)

FIG. 6: (a) Average normalized shape of droplets measured
by AFM at different times. (b) Fraction of surface covered by
droplets, measured for the same sample (98 nm) from SEM

and AFM images. The difference between the two
measurements is attributed mainly to AFM-tip artifacts. (c)
AFM image of sample 90 nm after 30 min annealing, and

after chemical etching. Arrows indicate thin rifts revealed by
selective chemical etching, which are interpreted as a local

barium over-concentration. The scale bar represents 100 nm.

Here D is a diffusion coefficient associated to the mobility of
the most mobile species of our ternary diagram, which is bar-
ium, a network modifier. Since both phases have a large sil-
ica content, and approximately the same boron oxide content,
coarsening is controlled by the exchange of barium between
droplets, which is mediated by atomic diffusion through the
matrix phase.. The typical scale for the concentration gradient
is chosen as `. Here ` is equivalent to the "screening length"
which has been introduced by theoretical models of coarsen-
ing in films13,19, which showed that the screening length is
of the order of the inter-droplet distance `. As for the cross-
section S, we propose that it corresponds to the boundary of
the Voronoi cell, leading to S = e`d−2. Combining the above
equations with the usual assumption that δc ∝ γ/r where γ

is the surface tension and integrating the differential equation
results for the 2-d case of simulations in:

r(t) ∝ t1/5. (5)

The scalings obtained from this simple geometrical model are
in good agreement with numerical results both for r(t) ∝ t

1
5

and `(t) ∝ r2(t) ∝ t2/5 (see Fig. 3 (c)). This means that the
ultra-confined geometry is enough to result in a slow coarsen-
ing regime.
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Nevertheless, our experimental observations suggest that
` and r are proportional. Therefore, the scaling relation in-
duced by mass conservation (Eq. 2) for ultra-confined spher-
ical droplets is not respected. Rather, accounting for the pro-
portionality between ` and r, mass conservation implies that
the droplet volume scales as v ∝ r2. In particular the shape of
droplets must change with time. In Fig. 6 (a), we have plot-
ted the average shape of droplets obtained from AFM mea-
surements for different annealing times and after the chemi-
cal etching of the barium-rich phase. These profiles were ob-
tained by computing an angular average of the depth profile
for each droplet, normalizing it by the depth of the droplet,
and finally averaging these normalized profiles over several
tens of droplets measured in AFM images. We observe that
droplets become flatter with larger annealing times, explain-
ing why it is possible to almost conserve the total surface of
the barium-rich phase (implied by the proportionality between
` and r, and directly measured in Fig. 6 (b)).

The evolution of the shape of droplets with time is a surpris-
ing result, implying in particular that either the contact angle
at the surface between the two phases also evolves with time,
or that the curvature is not constant along the droplet surface.
However, the diffusion of barium in the matrix is expected to
depend strongly on the local chemical composition of the ma-
trix37,44,45, with an exponential dependence of the diffusion
coefficient with the silica concentration46,47. Therefore, we
expect that diffusion between droplets will be faster along spe-
cific paths where the barium concentration is higher, in partic-
ular, along segments linking droplets together at the surface.
The topography revealed by preferential chemical etching of
barium in Fig. 6 (c) shows small rifts along such segments, in
agreement with the hypothesis of preferential diffusion paths
with a higher barium concentration. Concentration gradients
within the matrix could result in a gradient of interfacial ten-
sion γ between the droplet composition and the local matrix
composition, and hence in variations of the local curvature
without pressure gradient inside the droplet (constant γ/r ra-
tio).

Still one may try to rewrite the previous scaling arguments
to account for a spatial heterogeneity of the diffusion paths.
Keeping unchanged the estimate of the flux J given in Eq. (4)
we rewrite Eq. (3), assuming now a platelet shape of the
droplet v(t) ∝ r0r(t)2 (where r0 is a typical radius) and a time
independent cross section S ∝ r2

0. Here we consider that the
length scale r0 gives also the characteristic width of the diffu-
sion paths (corresponding to the small rifts visible in Fig. 6c).
Accounting for this diffusion paths hypothesis, we now get:

d
dt

[
r0r(t)2]

∝ r2
0D

γ

[r(t)2]
, (6)

where we also assumed the proportionality `(t) ∝ r(t). This
leads asymptotically to r(t) ∝ t1/4. Together with the geomet-
rical confinement the hypothesis of a strong localization of the
diffusion paths thus seems to induce a coarsening slower than
the LSW law. This crude model certainly requires to be tested
more seriously. Numerical models incorporating these ingre-
dients (diffusivity and interfacial tension depending on the lo-
cal matrix composition) are beyond the scope of this study,

but could shed light on the specific coarsening dynamics in
phase-separated silicate films.

We identified that slow droplet coarsening, with exponents
lower than 1/3, are an intrinsic characteristic of the ultra-
confined geometry of thin phase-separated films, where only
one droplet is found in the film thickness. Numerically we
could identify a key geometrical ingredient of this slow coars-
ening: the decoupling between the distance between droplets
and the radius of droplets. Droplets are further and further
from each other with annealing time in this geometry, result-
ing in less efficient diffusive transport. In the experimen-
tal case of silicate thin films, along with the confinement, a
change of droplet geometry with time is measured, with flat-
ter droplets as time increases. Qualitatively, we attributed this
change of aspect ratio to the strong dependence of the diffu-
sion coefficient with the local matrix composition and could
propose a simple model of slow coarsening based upon geo-
metrical confinement and localized diffusion paths

We gratefully acknowledge the help of Bruno Bresson and
Anne Lelarge for AFM measurements, and of Erick Lam-
otte and Johnny Vallon for bulk glass elaboration. This work
was funded thanks to a joint Ph.D. grant of Agence Nationale
Recherche et Technologie and Saint-Gobain Research Paris.
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SUPPLEMENTARY MATERIAL

A. The Cahn Hilliard Model

In this subsection we present in more details the Cahn-
Hilliard model used here and discuss the parameters used and
the link between them and physical quantities. The Cahn
Hilliard model used was introduced and studied in48. It is
based on a conservation equation:

∂tc = ∇(M∇µ) (7)

where c is a linear function of concentration, M is the mo-
bility and µ is the chemical potential. µ is to the functional
derivative of a free functional energy that writes:

F = γ

∫ 1
κ

c2(1− c)2 +κ(∇c)2 (8)

where γ is a parameter that is proportional to the surface ten-
sion whereas κ is a parameter that is proportional to the in-
terface thickness. The function c2(1− c)2 is a simple double
well potential with a common tangent in c = 1 and c = 0. This
model has for equilibrium solutions front between c = 0 and
c = 1, the points on the common tangent. The front solution
writes:

c =
1
2

(
1+ tanh(

x√
2κ

)
. (9)

This front has a thickness proportional to κ and the excess en-
ergy (the surface tension) associated with the front is γ

√
2/6.

Finally the diffusion coefficient in either one or the other
phase is with the model used here:

D =
2M
κ

(10)

In our simulations we have used γ = 1 and κ = 1 while the
mobility was taken M = 4. The grid spacing was equal to 1
and the time step to 0.01.

This choice is arbitrary but it has not any consequence on
the physics as long as the interface thickness is much smaller
than the characteristic size of the studied patterns. Indeed in

this case, it has been shown that the deviation of equilibrium
concentration close to a curved interface (which is the driving
force for coarsening) is a function of γ/r with r the radius of
curvature of the interface and is independent of the interface
thickness. Since this work is focused on scaling laws during
a self similar regime, the results obtained are robust with re-
spect to both time and space rescaling and are independent of
the parameters used which solely affect the prefactors of the
scaling laws.

B. Distribution of radii in the simulations

We measured the distributions of radius of the droplets
normalized by the mean radius in the numerical simulations.
The results are presented in the Figure 7 for the early time
(t = 200) and later times (t > 104). In the very first time,
while all the numerical seeds have the same radius, the distri-
butions broaden quickly toward a gaussian-like shape. Those
distributions superimposed on each other for different values
of thicknesses. Also when the ripening regime is obtained
after a short transient, the distributions collapse on a master
curve for all times, underlining the self-similarity of the dis-
tributions. In these confined 2D simulations, this master curve
is closer to the LSW prediction (line).

FIG. 7: Histogram of the droplet radius r normalized by the
average radius for early time t = 200 (a) and for all the time

greater than 104 (b). The red dots correspond to bulk 2D
simulations, the other dots to e = 32, 48, and 64. The line

shows the LSW prediction for the distribution of radius. We
excluded from this analysis the rare droplets touching both

boundaries.


