
HAL Id: hal-03578817
https://hal.science/hal-03578817v1

Submitted on 17 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MidifilePerformer: a case study for chronologies
Juliette Chabassier, Myriam Desainte-Catherine, Jean Haury, Marin Pobel,

Bernard P Serpette

To cite this version:
Juliette Chabassier, Myriam Desainte-Catherine, Jean Haury, Marin Pobel, Bernard P Serpette.
MidifilePerformer: a case study for chronologies. 26th ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP ’21), Aug 2021, En ligne, South Korea. pp.13-22,
�10.1145/3471872.3472968�. �hal-03578817�

https://hal.science/hal-03578817v1
https://hal.archives-ouvertes.fr

Abstract

This article discusses the internal architecture of the MidifilePerformer application. This software
allows a user to follow a score described in the MIDI format at its own pace and with its own accentuation.
MidifilePerformer allows for a wide variety of style and interpretation to be applied to the vast number
of MIDI files found on the Internet.

We present here the algorithms enabling the association between the commands made by the per-
former, via a MIDI or alpha-numeric keyboard, and the notes appearing in the score. We will show that
these algorithms define a notion of expressiveness which extends the possibilities of interpretation while
maintaining the simplicity of the gesture.

1

MidifilePerformer: A Case Study for Chronologies

Juliette Chabassier, Inria, Bordeaux, France Juliette.Chabassier@inria.fr
Myriam Desainte-Catherine, LaBRI, Bordeaux, France, myriam.desainte-catherine@labri.fr

Jean Haury, Scrime, Bordeaux, France, jeanhaury@gmail.com
Marin Pobel, Université de Bordeaux, Bordeaux, France, marin.pobel@etu.u-bordeaux.fr

Bernard P. Serpette, Inria, Bordeaux, France, Bernard.Serpette@inria.fr

1 Introduction
MidifilePerformer is the heir of the Metapiano [8] which is an instrument, with only a few keys, driving a
degraded score where only the order of the notes and their pitches are preserved, the performer is in charge
of the intensity and the tempo1. The use of the Metapiano makes possible to forget the technical aspects
of a performance (large movements of hands and executions of complex chords) to focus on expressivity
(legato, staccato, rubato). Since the tempo is provided by the musician, the score does not have to specify
time indications and only contains sequences of beginnings and endings of notes linked to the pressing and
releasing of keys. Such degraded scores are described in a specific textual format and therefore must be
rewritten for each musical piece.

The major specificity of MidifilePerformer is to free itself from the particular format of the Metapiano
scores by finding the adequate information in MIDI files[2], and thus gives the possibility to musicians
to perform all the files in this format available on the internet. Even if some kinds of information of
the Metapiano format are difficult to find in a MIDI file, the later can be considered as a superset of the
Metapiano format. The effort is therefore in the simplification of the score unlike related works, such as
Antescofo [5], which allows complex annotations linking the score and the performance.

The implementation of the MidifilePerformer is based on a model-command-render triplet. A musician
reads a score, operates an instrument and produces music. This same analogy can be used in many fields,
to assemble a piece of furniture delivered in a kit, to make a dish etc. In all cases, we identify three entities.
The model is the score, the instructions for use, the cooking recipe. The commands represent the actions to
be taken to follow the model, play an instrument, tinker, cook. The rendering is the result in progress, the
performance, the furniture, the cooking dish. Note that, unlike the model-view-controller2, which forms a
cycle where the user is inserted, the two entities that are the model and the commands are independent3,
the rendering is here to synchronize these two entities. Even if it is natural that a human initiates the
commands, this is not a strong condition for the MidifilePerformer since some commands can be generated
by the computer. .

MidifilePerformer fits into this three-part concept. The model is a score in the form of a MIDI file.
The commands come, in real time, from computer equipment, MIDI or computer keyboard. The rendering
produces sound, according to the rhythm and the velocity of the commands, and the pitches of the model.
For a computer keyboard, a specific velocity is assigned to each character. Any device that can provide, in
real time, a velocity can be used as input for commands.

We see that the three concepts integrate different facets of the notion of time. The model is out
of time, it has no present, but defines stages in time. Commands are anchored in the present, can have
a knowledge of what was already done, can have a notion of what remains to be performed, but speak in

1 Two Metapiano interpretations can be listen on the following addresses: https://www.youtube.com/watch?v=0hDlWxA6SlY
and https://www.youtube.com/watch?v=Ul8dfY72TWQ

2 https://en.wikipedia.org/wiki/Model-view-controller
3the triplet could be renamed command-model-render

2

the present tense: I do that. The rendering is also anchored in the present but is only the result of the
commands. Thus, what we are trying to formalise is a function that produces the rendering, according to
the model and the commands. We will call this function the render function.

Each of these three entities, model, command and render, is the agglomeration of simpler elements that are
events: a thing, whether it is a note, an action or a sound, associated with a time. As time is a unit that can be or-
dered (past, present, future), it is natural to agglomerate events with increasing time. We read things in the
order they are supposed to happen. It is for this reason that we will call these sets of events chronologies.

The heart of the MidifilePerformer process is therefore to analyse the last command carried out in relation
to what has already been carried out in the model and to produce a result in accordance with the command
and the model.

First, we will define more formally the concepts of events and chronology. Then, we will analyse various
possibilities of combining a command with a model. Finally, we will give some hints of the implementation.

2 Events and Chronologies
We saw in the introduction that time plays an important role in the model-command-render triplet. This role
is even more important in the musical field. Nevertheless, time has little value in itself, it must necessarily
be attached to something, a structure, an action, the parameter of a function etc. In general we will call
object any timeless thing, the number 10 for example. The association of an object and a time forms the
event. The temperature of 10 degrees is an object, it was 10 degrees this morning is an event. We also speak
of temporal objects.

A decisive choice is to specify the mathematical domain of time. Either we associate it with real numbers
and we speak then of continuous time, or we identify it with natural numbers, in this case we speak of
discrete time. The choice of rational numbers can be interesting, this set is countable, so there are as many
rational numbers as integers, yet it is dense, between any two rational numbers we can always find a third
one between them. But, in the computer field, things are simplified since we usually use finite domains,
integers or floats. The difference between the two is a matter of density, for floats there are as many objects
between 0 and 1 as between 1 and the largest floating number. While for integers the objects are uniformly
distributed. It is this property which pushed us to use a discrete time, we took the milli-second as unit of
time. We will assume that Time denotes the set of time values.

So, if T is the type of an object class, then the cartesian product T × Time denotes the set of events on
T .

Event(T)
4
= T × Time

If an event corresponds to an object m occurring at time t, we will denote it mt.
In many examples, time is spread over an interval, it rained from noon until 2am. In this case, it is

practical to make a separation between the beginning and the end of the object that we are handling (the
rain in our example). Ifm is such an object occurring over an interval (t1, t2), we will denotemt1 its beginning
and mt2 its end. Nevertheless, this object can undergo variations in the interval considered, the rain will not
have the same intensity in its duration. Concretely, when using a MIDI object, m corresponds to the start
of a note (NOTE_ON) and m to the end of this note (NOTE_OFF). When an object m has neither start nor end,
this corresponds to a punctual event happening at the instant t, we will denote it ṁt. Continuous events,
such as provided by a pitch wheel for example, can be seen as series of punctual events. The algorithms
described in this article consider mainly events with a start and an end and therefore are related to Allen’s
interval algebra[1] .

In this article, we will focus on sets of events. We will call these sets chronologies since we will rely
heavily on the fact that time is totally ordered.

C(T) 4
= Chronology(T)

4
= P(Event(T))

In terms of notation, rather than using the usual writing of sets {mt1
1 ,m

t2
2 . . .}, the chronologies will be

described in the form of words mt1
1 m

t2
2 . . ., where, implicitly, t1 ≤ t2 ≤ . . . The special case where t1 = t2

3

will be handled by some specific analysis that we will show later.
The definition we have given for chronologies seems static, all the elements of a chronology are known

in advance. This is the case for a midi file. On the other hand, the commands are interactive: they
are potentially infinite words whose first event is only known when it happens. First, we will expose the
algorithms with static chronologies, but taking care to extract the elements in increasing order of time. This
precaution will allow us, in the implementation, to consider the chronologies as flows.

3 Functional Definition of MidifilePerformer
We are going to expose the MidifilePerformer engine here without going into the details of the chronology
implementations, that will be exposed in the next section.

3.1 Rendering Functions
The MidifilePerformer is centered around a rendering function that combines a model and commands to
produce an output called the render. To be independent of MIDI objects that will be used at user level, we
have developed a low-level layer with generic types, ie types of which we do not know the implementation,
but of which we can have a partial view of their properties. For example, for certain treatments, we will
impose that a command can be determined as being a start or an end of an interval, or neither.

Thus, if we abstract the elements of the model by a type T1, the commands by a type T2, a rendering
function is a function C(T1), C(T2)→ C(T3) where T3 represents the elements of the render. Of course, this
function combines objects of type T1 with those of type T2 to produce objects of type T3, but it will leave
the choice of the implementation of this combination at the time of the concrete definition of the abstract
types. On the other hand, the main role of the rendering function will be to make synchronization between
the model and the commands, it must associate, in time, events coming from one side with those coming the
other.

Time is a concrete value of the elements of a chronology. A rendering function can therefore rely on these
time values to make decisions. These will be developed according to general principles that we will discuss.

3.2 Principles
The rendering functions are very general, however some fundamentals have guided those that have been
implemented for the MidifilePerformer. We give here principles based on musical concepts, they can be
adopted on other categories.

1. The order of the beginnings of the notes in the score must be respected. It is a strong constraint, but
natural in our framework, which makes it possible to restrict the algorithms that we will study. On
the other hand, this constraint associated with the beginnings of notes could be relaxed for their ends.
It may be that a render function decides that an end of a note occurs after the beginning of another
when the score specified otherwise.

2. We prevent the release of a command from generating the start of a note. It is a counterintuitive
phenomenon. On the other hand, pressing a command can cause the end of a note if at the same time
a new note will be started.

3. We avoid as much as possible the inoperative commands. This must necessarily be the case for
the enfoncement of a command. Intuitively, one would be surprised that nothing happens when a
mechanism is triggered. Nevertheless, it will be tolerated that the release of a command has no effect.
For example, it is natural that, under the effect of a pedal, the release of a piano key does not muffle
the played note.

These principles have conditioned the algorithms of rendering functions that we present now.

4

3.3 Algorithms
3.3.1 Model Chronology Processing

As a first step, it is necessary to concretize the notion of simultaneity by grouping together the events having
the same time. For example the chronology of the model:

m1
t1m2

t1m1
t2m3

t2ṁ4
t3m2

t4m3
t4

turns into:

{m1,m2}t1{m1,m3}t2{ṁ4}t3{m2,m3}t4

Thus the beginnings of events m1 and m2 are grouped together at time t1, in the same way the two
endings of events m2 and m3 are grouped together at time t4. We notice, as for the time t2, that the
beginnings and the ends of events (different) can be grouped together. If the elements of the model are of
type T1, this stage of preprocessing of the model has the signature C(T1) → C(P(T1)). We will denote by
Mi the elements of P(T1) and we will take the notational convention M for sets with at least one starting
note and M for all other cases. So the previous example is rewritten in:

M1
t1M2

t2M3
t3
M4

t4

with M1 = {m1,m2}, M2 = {m1,m3}, M3 = {ṁ4} and M4 = {m2,m3}.
We can consider this preprocessing of the model as a creation of an S-word [6].
The next step consists in constructing an alternation of M and M , even if it means introducing empty

sets and merging sets that do not have a starting event (the M). For example, the previous sequence is
rewritten:

M1
t1M ′

1

t′1M2
t2M ′

2

t′2

with M ′
1 = ∅, et M ′

2 = {ṁ4,m2,m3}.
As it is the events of the commands that will define the times of the results, the values of t′1 and t′2 are

not predominant, in the current implementation t′1 = t2 − 1, just before the following start, and t′2 = t4, the
maximum of the merged times.

An optional step is to avoid empty sets in the following cases: mj ∈ Mi, M ′
i = ∅ and mj ∈ Mi+1,

which is verified for i = j = 1 in the previous example. In this case, the end of note mj is shifted ahead
in time in order to take the empty place of M ′

i . Thus, with this option considered, the result would be:
M1 = {m1,m2}, M ′

1 = {m1}, M2 = {m3} and M ′
2 = {ṁ4,m2,m3}. We observe that, without this option,

the first key release coming from the controls will not produce any effect, whereas with this option, this
release has the opportunity to control the end of note m1.

3.3.2 Merging Model and Commands

Once the transformations have been applied to the model to obtain a chronology in the form . . .Mi
xiM ′

i

x′
i . . .,

the ideal situation for the render function would be that the command chronology is also in the form:

. . . ci
tic′i

t′i . . .

That is to say an alternation of depression and relaxation. In that case. the render function would merge
the events from the two chronologies, one by one, to produce:

. . . (Mi ⊕ ci)ti(M ′
i ⊕ c′i)

t′i . . .

We notice that the times are taken in the commands. The ⊕ merge operator will build a set of objects
of type T3 from a set of objects of type T1 coming from the model and an object of type T2 coming from the
commands . This operator can be defined from a simpler operator � of type T1 × T2 → T3:

5

M ⊕ c 4
= {m� c/m ∈M}

The operator � is obviously dependent on the three types considered, but in the context of musical
objects used by MidifilePerformer, the operator � takes the velocity (in other words the gain or the volume)
in the command and the pitch (frequency) in the model.

Of course, this optimistic vision, where the controls are well arranged by alternating pressing and releas-
ing, is not necessarily achieved. Commands can generate all kinds of overlaps like:

c0
t0c1

t1c1
t2c0

t3 . . .

In Allen’s interval algebra terminology [1], in this particular case, we observe here a during, the end of
the second note appears before the end of the first. If we want to merge these commands with a model
M0M ′

0M1M ′
1, we can consider that, in all cases, in order to associate the start of intervals, the events

(M0 ⊕ c0)t0 and (M1 ⊕ c1)t1 have to be generated. For the rest, i.e. the end of intervals, we can consider 3
cases:

1. we respect the temporal order of the model. We generate (M ′
0 ⊕ c0), in an artificial way, at time t1.

We therefore produce (M0⊕ c0)t0 (M ′
0⊕ c0)t1 (M1⊕ c1)t1 (M ′

1⊕ c1)t2 . Note that at time t1, we do not
necessarily have access to all the information of the end of the interval c0 which will be produced at
time t3. It will therefore be necessary to take default values. In general, in the context of MIDI files,
the end of notes do not contain any information other than pitch.

2. one respects the order of the end of interval of the model. It is imperative that the effect produced
by M ′

0 be generated before the effect produced by M ′
1, we therefore generate (M ′

0 ⊕ c1) at time t2 and
(M ′

1 ⊕ c0) at time t3. We therefore produce (M0 ⊕ c0)t0 (M1 ⊕ c1)t1 (M ′
0 ⊕ c1)t2 (M ′

1 ⊕ c0)t3 .

3. we respect the association of start and end of interval. We generate (M ′
1⊕ c1) at time t2 and (M ′

0⊕ c0)
at time t3. We therefore produce (M0 ⊕ c0)t0 (M1 ⊕ c1)t1 (M ′

1 ⊕ c1)t2 (M ′
0 ⊕ c0)t3 .

These three cases are described more formally in Figures 1 and 2 by the functions combine1, combine2
and combine3. We have also introduced a new case via the function combine0 which we will explain later.

These functions have a similar profile. They all take as parameter the chronology µ of the model having
undergone the processing described previously, the chronology σ of the commands and potentially some
auxiliary structures, π and τ , depending on the cases considered. These functions make a case study
according to the chronologies of model and commands. The first case is when we can find in the model a
series of two elements M1 and M2 and the commands begin with an interval start ct. In this case, the event
(M1⊕c)t will have to be emitted. It will also be necessary to memoize the events contained inM2 in order to
restore them later, this is why the variable π intervenes. The second case is when the commands begin with
an end of interval. In this case, the events to be sent must have been stored in the π structure. The third
case concerns punctual events. Regardless of the case, it is necessary to consider, via the function filter,
whether this event must be returned by the rendering function. The last case corresponds to the end of one
of the two chronologies.

The combine0 function is special. It considers that the orders cannot include any end of interval. This is
the case, for example, for one of the game modes of bao-pao or metaclaquettes4 where commands are always
punctual events. These end of intervals, M2⊕c, are saved in the variable π each time a command is received,
and emitted, in the form πt, upon receipt of the next command. The τ variable is used to store the time of
the last command, in order to issue the last end of the interval.

The function combine1 is similar to combine0 except that a releasing command (ct) can trigger an end
of interval (M2 ⊕ c), if it occurs just after the related depression command. Otherwise, the behaviour will
be the same as that of the function combine0. For a model of the form M1M ′

1M2M ′
2, if the commands

are in the form c1
t1 c1

t′1 c2
t2 c2

t′2 . . . , then, unsurprisingly, the rendering will be (M1 ⊕ c1)t1 (M ′
1 ⊕ c1)t

′
1

4https://www.bao-pao.com

6

combine0(µ, σ, π, τ)
4
=

match (µ, σ) with
| (M1

x·M2
y·µ′), (ct·σ′)→

πt·(M1 ⊕ c)t·combine0(µ′, σ′,M2 ⊕ c, t)

| _, (ċt·σ′)→
filter(ċ, t)·combine0(µ, σ′, π, t)

| _,_→ πτ

combine1(µ, σ, π, τ)
4
=

match (µ, σ) with
| (M1

x·M2
y·µ′), (ct·σ′)→

πt·(M1 ⊕ c)t·combine1(µ′, σ′,M2 ⊕ c, t)
| _, (ct·σ′)→
πt·combine1(µ, σ′, ∅, t)

| _, (ċt·σ′)→
filter(ċ, t)·combine1(µ, σ′, π, t)

| _,_→ πτ

Figure 1: combine0 and combine1

combine2(µ, σ, π)
4
=

match (µ, σ, π) with
| (M1

x·M2
y·µ′), (ct·σ′)→

(M1 ⊕ c)t·combine2(µ′, σ′,M2·π)
| _, (ct·σ′), π′·M →

(M ⊕ c)t·combine2(µ, σ′, π′)
| _, (ċt·σ′)→
filter(ċ, t)·combine2(µ, σ′, π)

| _,_,_→ []

combine3(µ, σ, π)
4
=

match (µ, σ, π) with
| (M1

x·M2
y·µ′), (ct·σ′)→

(M1 ⊕ c)t·combine3(µ′, σ′, (c,M2)·π)
| _, (c·tσ′), π1·(c,M)·π2 →

(M ⊕ c)t·combine3(µ, σ′, π1·π2)
| _, (ċt·σ′)→
filter(ċ, t)·combine3(µ, σ′, π)

| _,_,_→ []

Figure 2: combine2 and combine3

(M2⊕c2)t2 (M ′
2⊕c2)t

′
2 . On the other hand, for commands c1t1 c2t2 c1t

′
1 c2

t′2 . . . , then the rendering becomes:
(M1 ⊕ c1)t1 (M ′

1 ⊕ c1)t2 (M2 ⊕ c2)t2 (M ′
2 ⊕ c2)t

′
2 . In this case, the release command c1 done at time t′1 has

no effect on the output, the events (M ′
1⊕ c1) are generated only with informations provided by c1, moreover

these events are emitted at time t2 and nothing will be done at time t′1.
The function combine2 keeps the end of intervals M2 in a list stored in π. These end of intervals are

inserted from the left (M2·π) and extracted from the right (π′·M) thus denoting a queue structure (FIFO).
A similar version using a stack structure (LIFO) is immediate. We will analyse this version under the name
case 2’. With the same two examples seen for the combine1 function, we get the same result for the first
case, on the other hand, for the second we get: (M1 ⊕ c1)t1 (M2 ⊕ c2)t2 (M ′

1 ⊕ c1)t
′
1 (M ′

2 ⊕ c2)t
′
2 , which

allows us to regain control of the time t′1 that we had lost with combine 1. For this same second example,
considering case 2’, by inverting the endings of the model interval, we obtain: (M1 ⊕ c1)

t1 (M2 ⊕ c2)
t2

(M ′
2 ⊕ c1)t

′
1 (M ′

1 ⊕ c2)t
′
2 , which transforms, from a musical point of view, a desire for monophonic overlap

from the performer, into a rendering of polyphonic during . Conversely, a will of during turns into overlap
with case 2, while it is respected in case 2’.

The function combine3 keeps the end of intervals M2 in a list stored in π, taking care to associate them
with the command that triggered the start of the interval (c). π is therefore an association list from which
we extract the end of the interval of the model corresponding to the command. Thus the two drawbacks,
which were observed for the previous case, disappear.

3.3.3 Expressiveness

To analyse more precisely the differences between the various algorithms, we will compare their behaviour
with respect to the set of possible model configurations containing two notes and reacting to a combination
of two commands.

Allen’s interval algebra is a good support for studying the relative positions of two notes in time and

7

aabb a{a, b}b abab {a, b}ba abba ab{a, b} {a, b}{a, b}

Figure 3: Allen’s 7 Different Time Configurations

Before Meets Overlaps Starts During Finishes Equals
{a}{a}{b}{b} {a}{}{a, b}{b} {a}{}{b}{a, b} {a, b}{a, b} {a}{}{b}{a, b} {a}{}{b}{a, b} {a, b}{a, b}

Figure 4: configurations after pre-treatment

in duration. Indeed, the figure 3 shows the seven arrangement configurations of two notes. We give both
the names coming from Allen’s algebra, their musical notations and their symbolic descriptions where "a"
denotes the note on the top and "b" that of the bottom, the set notation is used to specify the simultaneity of
the two events. Of Allen’s thirteen possibilities, we have gone to seven by omitting the symmetrical versions
which we obtain by inverting the two staves: we have arbitrarily chosen that the note of the upper staff
begins before that of the lower.

Moreover, in a score, and therefore in the chronology of the model, all these configurations are possible,
common even, as some are inaccessible for the commands. Indeed, the MIDI media do not integrate the
notion of simultaneity: if a two-note chord is placed on a MIDI keyboard, these two notes will always be
serialized, even if it means separating them by a minimum duration (one milli-second). If we take the seven
configurations of figure 3, only three do not include simultaneous events (either at the beginning or at the
end): Before, Overlaps and During.

Using these same seven configurations, if we perform the processing specified in 3.3.1, we obtain the
overall chronologies of figure 4.

Note that the three configurations Overlaps, During and Finishes provide the same overall chronology:
from the moment it was decided that a and b had to be generated from the same release command, we lose
the information of the temporal positioning of a with respect to b in the model. In the same way, we no longer
differentiate a Starts from a Equals. So, on the model side, we will only consider the Before, Meets, Finishes
and Equals configurations, and on the commands side, the Before, Overlaps and During configurations.

We can compare the various algorithms by means of a matrix where these algorithms are displayed in
rows with the various possibilities of two command intervals, and, in columns, the possible configurations of
two model intervals. At the intersection of a row and a column we will find the result of the algorithm applied
to the two chronologies of commands and models. This matrix is given in the figure 5. We do not mention
the case of Equals ({a, b}{a, b}) because this configuration involves only one interval in the chronology.

For example, let us take the case 2 corresponding to the use of the function combine2 of the figure
2, consider the second line of this case where the commands are in the form x0y1x2y3, which forms an
Overlaps in Allen’s intervals or a legato in the musical framework; suppose the model describes a Meets, so a
chronology of the form a0a1b1b

2
which, after processing, changes to the overall chronology {a}{}{a, b }{b}.

We do not mention the times in the elements of the model because these will be ignored by the algorithms
by systematically taking those coming from the commands. For this example, the successive steps of the
algorithm are described in the following figure:

8

Before Meets Overlaps/During/Finishes
{a}{a}{b}{b} {a}{}{a, b}{b} {a}{}{b}{a, b}

case 0 x0y1 a0a1b1b
2

a0a1b1b
2

a0b1a2b
2

case 1 x0x1y2y3 a0a1b2b
3

a0a2b2b
3

a0b2a3b
3

x0y1x2y3 a0a1b1b
2

a0a1b1b
2

a0b1a2b
2

x0y1y2x3 a0a1b1b
2

a0a1b1b
2

a0b1a2b
2

case 2 x0x1y2y3 a0a1b2b
3

a0a2b2b
3

a0b2a3b
3

x0y1x2y3 a0b1a2b
3

a0a1b1b
3

a0b1a3b
3

x0y1y2x3 a0b1a2b
3

a0a1b1b
3

a0b1a3b
3

case 2’ x0x1y2y3 a0a1b2b
3

a0a2b2b
3

a0b2a3b
3

x0y1x2y3 a0b1b
2
a3 a0a1b1b

2
a0b1a2b

2

x0y1y2x3 a0b1b
2
a3 a0a1b1b

2
a0b1a2b

2

case 3 x0x1y2y3 a0a1b2b
3

a0a2b2b
3

a0b2a3b
3

x0y1x2y3 a0b1a2b
3

a0a1b1b
3

a0b1a3b
3

x0y1y2x3 a0b1b
2
a3 a0a1b1b

2
a0b1a2b

2

Figure 5: Results of algorithms on 2x2 intervals

µ ρ π generate
{a}{}{a, b}{b} x0y1x2y3 ({a} ⊕ x)0
{a, b}{b} y1x2y3 {} ({a, b} ⊕ y)1

x2y3 {b}{} ({} ⊕ x)2
y3 {} ({b} ⊕ y)3

The first step will generate ({a} ⊕ x)0 then the function is called recursively on the residual model
{a, b}{b} and residual commands y1x2y3 while memorizing {}. Thus, after having followed all the steps, the
algorithm will have generated:

({a} ⊕ x)0({a, b} ⊕ y)1({} ⊕ x)2({b} ⊕ y)3

By performing the distribution induced by ⊕ and by considering, to simplify the writing of the results,
that for any element of the model m, for any command c we have m � c = m (we take all the information
in the model and the command only imposes its time), we get:

a0a1b1b
3

This corresponds to the element of the studied box of the matrix exposed in the figure 5. Now, if we apply
the same processing as performed on the model, and remove the time annotations, we get ,: {a}{}{a, b}{b},
which corresponds to a Meets . By carrying out this transformation for all the elements of the matrix of the
figure 5, we obtain a new matrix exposed in the figure 6.

It is easier to notice, in this new matrix, that the Meets and Finishes configurations are absorbing,
whatever the algorithm and the commands, we can only produce configurations of these same types. On the
other hand, Before type models are more interesting. They show that, depending on the algorithms, two
different types of commands can generate different types of results: the interpreter, within the framework
of the MidifilePerformer, is allowed to have an influence on the rendering. Moreover, we observe that, the
more complex the algorithm becomes, the more potential influence on the result the type of the commands
have. We will then talk about the expressiveness of the algorithm or the rendering function. Informally, this
expressiveness is related to the number of possible configurations that a rendering function can produce for

9

Before Meets Finishes
cas 0 Meets Meets Finishes
cas 1 Before Before Meets Finishes

Overlaps Meets Meets Finishes
During Meets Meets Finishes

cas 2 Before Before Meets Finishes
Overlaps Overlaps Meets Finishes
During Overlaps Meets Finishes

cas 2’ Before Before Meets Finishes
Overlaps During Meets Finishes
During During Meets Finishes

cas 3 Before Before Meets Finishes
Overlaps Overlaps Meets Finishes
During During Meets Finishes

Figure 6: Expressiveness

all models and commands, i.e. 2 for case 0, 3 for case 1, 4 for case 2 and 2’, and 5 for case 3. More formally,
if f is a rendering function of type C(T1), C(T2)→ C(T3), its expressiveness will be defined as its co-domain:

Expressiveness(f) = {r/∃m, c, f(m, c) = r}

We can focus on the expressiveness of a rendering function restricted to a particular model:

Expressiveness(f,m) = {r/∃c, f(m, c) = r}

In other words, a performer may be concerned about the expressive potential that the MidifilePerformer
may provide for the performance of a particular piece. Indeed, if the score mainly comprisesMeets or Finishes
type configurations, the algorithms will only allow a limited number of interpretations.

These considerations fully justify the option expressed at the end of the 3.3.1 section to transform some
Meets configurations of the model to Before. This greatly amplifies the potential of interpretations.

4 Implementation of Rendering Functions
The algorithms given in the previous section presuppose the total knowledge of the data handled, namely the
whole of the model and the commands, one also speaks of static or post-mortem analysis. As much as it is
acceptable to know a score in advance, it is not conceivable to wait until the end of a performance to render
it. The render function must therefore be responsive, it must provide results, as soon as possible, in response
to commands. We then speak of data flow applications, which are a generalisation of producer/consumer or
server/client problems. A MIDI keyboard can be seen as a server that produces MIDI events. At the end of
the chain, we will find a synthesizer which will be assimilated to a client consuming MIDI events. In between
are elements that are both consumers and producers. The data flow determines the graph from which we
can identify the sources (keyboards) and sinks (synthesizers).

4.1 Data Flow: Push and Pull
Push and pull are two general techniques to implement data flow processing [7]. First, methods of type push
transmit datas to clients as soon as they are produced. Second, pull type methods ask to producers datas
when they are needed.

10

In push mode, the consumer registers to the producer in order to be alerted when a data is produced. In
Java, this is particularly the case for obtaining MIDI events 5 or events coming from the graphical interface
6. It is the consumer’s responsibility to consume the resource as quickly as possible. If there are several
consumers for the same producer, in general, the same resource, when produced, is distributed to all clients.
For particular applications, Round-robin techniques can be used where the resources are given, one at a
time, to each consumer.

In pullmode, the consumer explicitly requests a resource from the producer. This request can be blocking,
it stops the computing unit of the client as long as the server has not produced a resource. In Java, this
mode is used for the acquisition of sound samples coming from a microphone 7 or to obtain bytes from a
stream (file, TCP connection etc.) 8 method.

It is possible to have access to a producer of type push and to be exposed as a new server of type pull.
This technique requires memory space in order to store the resources awaiting a request from the client.

Conversely, it is possible to have access to a producer of type pull and to be exposed as a new server of
type push. If the blocking wait for the resource is acceptable, this service transformation is costless.

In these two data flow type conversions, it is of course possible to perform a transformation of the received
resource before transmitting it to the client. We thus find the functionality of a map applied to the flow of
data.

A more delicate point appears when a node of the data flow graph has more than one antecedent: it
has access to several producers. This is the case with the combine function with model and command
chronologies. The choice of the types of the data streams is strongly influenced by the transformation that
the node in question must perform. In our case, the events coming from the commands are the engine of the
rendering function. As long as there are no new commands, there is no need to move forward in the model.
It is this observation which made the implementation incline to use pull type streams.

4.2 The Chosen Implementation
Figure 7 shows the organization of the MidifilePerformer data flow acyclic graph (DAG).

(Midi) file distr

read

fold analyse

combineunfoldwrite

T2

P ()T1 T1
P ()T1

P ()T
1

T3 P ()T3

Figure 7: data flow of MidifilePerformer

The silhouettes on the graph’s edges explain the type of data flow, push or pull. We have also noted
5interface javax.sound.midi.Transmitter
6methods java .awt.Container.add***Listener
7the method javax.sound.sampled.DataLine.read
8the java.io.InputStream.read

11

above these silhouettes the type of objects passing through the data stream. We observe that the whole is in
pull mode except for the sources coming from the keyboards. Each of these inputs (push) writes in a shared
memory of type first in, first out (FIFO). The read function reads this shared memory, in a blocking way,
to provide a service of type pull.

The model chronology begins by reading the MIDI file, this is done in one block due to the organization
of the file structured by tracks. The next function, distr, is an enumerator, it takes a few objects and
distributes them, one by one, in pull mode. The function fold compacts the events received when they have
the same time, shaping the simultaneity concept. The analyze function organizes these concurrent event
packets as described in the 3.3.1 section. These two functions, fold and analyze, must memorize one event.
For example, the function fold must read one event too much to realize that its associated time does not
correspond to the time of the packet it is building 9.

The central node of the graph corresponds to the function combine studied in the previous section. Its
output provides event packets constructed by the combinator ⊕. These packets must be serialized, by the
unfold function, before being transmitted, one by one, to each of the sinks of the graph which know how to
consume MIDI events.

All internal nodes of the graph are generic, they can be reused for types other than the MIDI objects.
Note that it is the write function which will trigger all the read strings on the data streams of the pull type.
These channels are blocked by the acquisition of an event on the keyboards.

4.3 Current State of the Software
The elements described in this article have been integrated into a graphical interface written in Java. The
software code sources are available on GitHub 10. The set is divided into three packages:

1. core. This package contains ten classes or interfaces, all generic with one exception. A first abstract
class defines the flows. This class combined with the notion of event allows the development of the
abstract class of chronologies. To set up the algorithms, generic types can rely on three interfaces
defining equality on events, the notion of interval and the combination function (�). Two other
interfaces make it possible to define the expected behavior of the generators at the origin of the
production of events (which will have in particular instances for the MIDI inputs and for the alpha-
numeric keyboard) and the expected behavior of the end consumers of the events (in fine a MIDI
synthesizer or the display screen). Above all this, there are two concrete classes implementing a
chronology allowing, on the one hand, to have the possibility of memoizing the last event consulted
and, on the other hand, of memoizing all the events consulted. It is this last class which allows the
recording of the events emitted by the interpreter in order to carry out a restitution a posteriori.
Finally, a last class, the one which is not generic but which only has entry points (static methods)
comprising genetic types, defines the various algorithms described in this article.

This whole code is about 0.7 klocs 11.

2. impl. This second package gives concrete implementations of the previous package. All definitions are
geared towards the MIDI specification. At this level, it is also defined a restricted subset of MIDI,
having a simple syntax, in order to establish non-regression tests.

This second package contains approximately 1.2 klocs. The base of test of non-regression is not included
in this number, it comprises on its own 0.4 klocs.

3. app. The last package uses the concrete implementations in order to provide a user interface. There is
approximately one class per each graphic component. The interface allows you to select the MIDI files
to be interpreted, the inputs (MIDI keyboard or alpha-numeric keyboard), the outputs (synthesizer
or screen), options (algorithm parameters, such as the filter). You can save the selected options in a

9 We can make the analogy with lexical analyzers of the type LL (1)
10https://github.com/scrime-u-bordeaux/MidiFilePerformer
11kloc = thousand lines of code

12

configuration file which will be read at each launch. Finally, you can listen to the MIDI file at its own
tempo, hear the interpretation you have made of it and save this interpretation as a MIDI file.

This last package has about 1.3 klocs.

The additional cost, in terms of lines of code, requested for the graphical interface is perhaps due to the
graphical library used. However, these three packages remain in the same order of magnitude of volume.

5 Conclusions
We have described the internal structure of the MidifilePerformer application structured around model and
command chronologies. The modification of the temporal associations between the elements of the model
and of the commands introduces a notion of expressiveness which allows the interpreter to increase the
possibilities of links between the notes while keeping the simplicity of the technique.

Compared to the previous version of the software, we have made an effort to unify the implementation
of the model and command chronologies. These chronologies have been defined with generic tools that can
be reused for data other than MIDI events.

The fact that the score is seen as a flow of data will allow us to develop more reactive interactions with
the model. For example, we can consider that a second performer enters a performance by taking a specific
channel from the MIDI file, this will call into question the pre-processing established in the 3.3.1 section,
which will not be a problem if these treatments are done on the fly in the data stream.

Another perspective consists in generating an interactive scenario for the OSSIA score software[4][3] by
modeling each note by a process. Thus, it would be possible to make modifications on the score, for example
to manually simplify some musical excerpts in order to make them easier to perform, or on the contrary
to give more control to the musician to increase the expressiveness, or to allow synchronization with other
media engines to augment the score. Then the modified scenario would be executed by OSSIA score.

References
[1] James F. Allen. Towards a general theory of action and time. Artificial Intelligence, 23(2):123–154, 1984.

[2] The MIDI Manufacturers Association. The Complete MIDI 1.0 Detailed Specification. http://www.
freqsound.com/SIRA/MIDI\Specification.pdf, 2014. [Online; accessed 05-May-2021].

[3] Jean-Michael Celerier. Authoring interactive media : a logical & temporal approach. Theses, Université
de Bordeaux, March 2018.

[4] Jean-Michaël Celerier, Pascal Baltazar, Clément Bossut, Nicolas Vuaille, Jean-Michel Couturier, and
Myriam Desainte-Catherine. Ossia: towards a unified interface for scoring time and interaction. In Marc
Battier, Jean Bresson, Pierre Couprie, Cécile Davy-Rigaux, Dominique Fober, Yann Geslin, Hugues
Genevois, François Picard, and Alice Tacaille, editors, Proceedings of the First International Conference
on Technologies for Music Notation and Representation - TENOR2015, pages 81–90, Paris, France, 2015.
Institut de Recherche en Musicologie.

[5] Arshia Cont. ANTESCOFO: Anticipatory Synchronization and Control of Interactive Parameters in
Computer Music. In International Computer Music Conference (ICMC), pages 33–40, Belfast, Ireland,
August 2008.

[6] Irène A. Durand and Sylviane R. Schwer. A tool for reasoning about qualitative temporal information: the
theory of s-languages with a lisp implementation. Journal of Universal Computer Science, 14(20):3282–
3306, nov 2008.

[7] Conal Elliott. Push-pull functional reactive programming. In Haskell Symposium, 2009.

13

http://www.freqsound.com/SIRA/MIDI\ Specification.pdf
http://www.freqsound.com/SIRA/MIDI\ Specification.pdf

[8] Jean Haury. Un répertoire pour un clavier de deux touches : théorie, notation et application musicale,
volume 11 of Document numérique. Lavoisier, 2008.

14

	Introduction
	Events and Chronologies
	Functional Definition of MidifilePerformer
	Rendering Functions
	Principles
	Algorithms
	Model Chronology Processing
	Merging Model and Commands
	Expressiveness

	Implementation of Rendering Functions
	Data Flow: Push and Pull
	The Chosen Implementation
	Current State of the Software

	Conclusions

