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Abstract

Cuspidal robots can travel from one inverse kinematic solution to another without meeting
a singularity. The name cuspidal was coined based on the existence of a cusp point in the
workspace of 3R serial robots. The existence of a cusp point was proved to be a necessary
and sufficient condition for orthogonal robots to be cuspidal, but it was not possible to
extend this condition to non-orthogonal robots. The goal of this paper is to prove that
this condition stands for any generic 3R robot. This result would give the designer more
flexibility. In the presented work, the geometrical interpretation of the inverse kinematics
of 3R robots is revisited and important observations on the nonsingular change of posture
are noted. The paper presents a theorem regarding the existence of reduced aspects in any
generic 3R serial robot. Based on these observations and on this theorem, we prove that the
existence of a cusp point is a necessary and sufficient condition for any 3R generic robot to
be cuspidal.

1. Introduction

Cuspidal robots are those robots that can travel from one inverse kinematic solution
(IKS) to another without encountering a singularity. This property of cuspidal robots is
referred to as cuspidality. The name ‘cuspidal ’ originated from the existence of a cusp in
the singularity locus in the workspace of the robot [1]. Cuspidality exists in both serial
and parallel robots [2] but this paper focuses on serial robots only. Cuspidality was first
identified in 1988 by Parenti-Castelli [3] in some 6R robots and by Burdick in 1989 [4] in
3R robots. Most industrial robots are noncuspidal and the posture in which a noncuspidal
robot is operating can be easily identified with the signs of the factors of the determinant of
the Jacobian matrix [5]. Instead, posture identification is very difficult in cuspidal robots as
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Figure 1: An example of travelling from one IKS to another in joint space and workspace.

Robot parameters: d = [0, 1, 0], a = [1, 2, 3/2], α = [−
π

2
,
π

2
, 0].

path in the joint space (θ2, θ3): from (−0.742, 2.628) to (−3,−0.5).

the determinant does not usually factor [6].This makes trajectory planning more challenging
[7]. Cuspidal robots were first formalized and later extensively studied by Wenger et al.
[6, 8, 9, 7, 10, 11, 12]. Different approaches were implemented in the past to identify and
classify 3R orthogonal robots (i.e. robots with three mutually orthogonal joint axes), based
on cuspidality.

Identifying the number of aspects can allow the designer to identify whether a given
robot is cuspidal or not. Paganelli [13] and Wenger et al. [14] proposed a homotopy based
topological analysis of singularity loci to identify the maximum number of aspects for a
regional 3R serial chain. Though useful in many cases, this approach cannot be implemented
to classify robots based on cuspidality since the number of cusps is not constant in a given
homotopy class [15]. Baili proposed a deeper analysis and exhaustive classification of 3R
positional orthogonal serial robots based on cuspidality. This class of robots can be analyzed
in detail by using different algebraic and topological tools. This is because the orthogonality
constraint helps simplify some coefficients in the inverse kinematics polynomial [16].

The presence of a cusp in the workspace was proved to be a necessary and sufficient
condition for cuspidality in 3R orthogonal robots [12]. The proof used the fact that the
complete parameter space of orthogonal robots was mapped, and it was clear from the clas-
sification that the nonsingular change of IKS meant encircling a cusp in the workspace [17]
as illustrated in Fig. 1. Algebraic analysis of non-orthogonal 3R robots is more challenging,
and no classification scheme has been attempted yet. In the absence of any counter-example,
it has been conjectured that non-orthogonal 3R robots should behave like their orthogonal
counterparts, i.e., they should have a cusp in the workspace to be cuspidal, but no formal
proof exists to confirm this conjecture. A cusp allows a local nonsingular change of posture
in any 3R robot [18] and this shows that the existence of a cusp is a sufficient condition for
any 3R robot to be cuspidal. However, in theory, a nonsingular change of solution could be
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also feasible in a more global way and without any cusp. In fact, this feature was shown to
be present in parallel robots [19].

A necessary and sufficient condition of cuspidality for any generic 3R robot to be cuspidal
would allow great deal of flexibility to the designers to choose from parameters that do not
require strict alignment, orthogonality or intersection of joint axes.

The aim of this work is to provide a formal proof that the existence of a cusp is a
necessary and sufficient condition for any generic 3R robot to be cuspidal, should they be
orthogonal or not. This proof can be extended to all classes of 6R robots where the position
degrees of freedom (dof) are decoupled from the orientation dof, such as 6R robots with
a spherical wrist. This class forms a large population of 6R robots, thus emphasizing the
impact of the presented work.

The following work is divided into three sections: Section 2 revisits the geometrical
interpretation of the inverse kinematics of 3R robots, singularities and nonsingular change
of posture. These concepts are then presented both in joint space and workspace in order
to draw parallels. The main contribution of the work is expounded in Section 3 where a
necessary and sufficient cuspidality condition for any generic 3R robot is put forth. Section
4 concludes the work by discussing the implications of the contribution and addressing a
few pointers to future work.

2. Preliminaries

This section revisits briefly the geometric interpretation of inverse kinematic solutions
proposed by Pieper [20]. This geometric interpretation will be used for our proof. Then,
the interpretation of critical points (singularities) and nonsingular change of posture in the
joint space and workspace are discussed, along with their geometrical implications. Relevant
definitions and their interpretations in different spaces are explained in order to provide a
background to the proof of the necessary and sufficient cuspidality condition. The section
also highlights key terms relevant to the proposed proof.

2.1. Inverse kinematic solutions

Let x = (x, y, z) be the vector of coordinates of the robot’s end effector in the workspace
W ⊂ R

3 at a configuration q = (θ1, θ2, θ3) in the joint space J = S1×S1×S1. The mapping
between J and W, denoted by f : J → W, defines the direct kinematics (1).

x = f(q),x ∈ W,q ∈ J (1)

The elements in the preimage f−1(q) are the inverse kinematic solutions (IKS) of q. A
robot configuration associated with an IKS is called a posture.

Solving the inverse kinematics of 3R serial robots was first reported in [20] where it was
noted that the solutions correspond to the intersection of a conic with a circle in c3s3-plane,
where c3 and s3 denote cos θ3 and sin θ3, respectively. The solution is presented briefly, as
it has a key role in the proof to follow. In this paper, classical D-H parameters are used, as
shown in Fig. 2.
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Figure 2: The D-H parameter notations used.

Let, R = ρ2 + z2, where ρ2 = x2 + y2 = g(θ2, θ3). The terms R and z can be written as

R = (F1 cos θ2 + F2 sin θ2) 2a1 + F3

z = (F1 sin θ2 − F2 cos θ2) sinα1 + F4

where Fi = gi(θ3), for i = 1, .., 4. Upon rearrangement, we obtain the general equation of a
conic in c3s3-plane as given in (2).

Axx c
2
3 + 2Axy c3s3 + Ayy s

2
3 + 2Bx c3 + 2By s3 + C = 0 (2)

The coefficients of the conic are skipped for brevity, but they are functions of the D-H
parameters and of (R, z) as shown in (3),

Axx = h1(a1, a2, a3)

Axy = h2(a1, a2, a3, d2, α2)

Ayy = h3(a1, a2, a3, d2, α1, α2)

Bx = h4(a1, a2, a3, d2, α2, R)

By = h5(a1, a2, a3, d2, d3, α1, α2, R, z)

C = h6(a1, a2, a3, d2, d3, α1, α2, R, z)

(3)

The inverse kinematic solutions are defined by the intersection points between the conic
(2) and the unit circle c23 + s23 = 1 in c3s3-plane. This conic can be a hyperbola, parabola
or an ellipse depending on the D-H parameters and end-effector pose. An example of each
one is shown in Fig. 3.
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(a) Hyperbola case (b) Parabola case (c) Ellipse case

Figure 3: Intersection of the conic and unit circle in c3s3-plane for robots with different D-H parameters.
Robot parameters (3a): d = [0, 1, 0], a = [1, 2, 3

2
], α = [π

2
, π

6
, 0], (ρ, z) = (2.46, 0.15)

Robot parameters (3b): d = [0, 1, 0], a = [1, 2, 3

2
], α = [π

3
, π

2
, 0], (ρ, z) = (2.33,−0.26)

Robot parameters (3c): d = [0, 1, 0], a = [1, 2, 3

2
], α = [π

6
,π
2
,0], (ρ, z) = (2.4, 0.6).

Performing the tangent half-angle substitution, t = tan θ3
2
, we get a quartic inverse

kinematic polynomial M(t) = at4 + bt3 + ct2 + dt + e similar to the one mentioned in [16].
The coefficients of M(t) are functions of the D-H parameters and of R and z. The solutions
to the polynomial equation, M(t) = 0, are the intersection points between the conic and the
circle and are labeled as mψ, where ψ ∈ {i, j, k, l} in the c3s3-plane.

2.2. Singularities

The Jacobian of f at a certain configuration, denoted by J(q), is the Jacobian matrix of
the robot at configuration q:

J(q) =
∂f(q)

∂q
(4)

The singularities are the critical points of f in J and correspond to the set of all config-
urations in the joint space where the Jacobian matrix loses rank, i.e. when the determinant
of J is zero. The critical values are the images of the critical points in W. It is known that
the roots of the inverse kinematic polynomial have multiplicity 2 or more at a singularity
[16]. The algebraic expression of the singularity condition for an arbitrary 3R manipulator
is recalled in Appendix A. The singularity in the workspace, the locus of critical value, is
the image of the locus of critical points in the workspace and can be obtained from the
inverse kinematic polynomial. The critical values in the workspace are those points where
the following relation is satisfied:

M(t) = 0

∂M(t)

∂t
= 0

Where, t = tan θ3
2

and M(t) is the quartic inverse kinematic polynomial related to a 3R
serial robot. The resulting algebraic expression is very large and is not reported here, see
[16] and [21] for more details.
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With the conic representation, the geometric interpretation of a singularity associated
with a double root is a point where the conic is tangent to the circle, as shown in Fig. 4.
The geometrical interpretation of a singularity associated with a root multiplicity higher
than 2 is discussed in detail in [22, 23].

It is known that the singularities of 3R serial robots are independent of the first joint
angle, θ1 [24]. This allows one to reduce the 3-dimensional joint space to (θ2, θ3). Conse-
quently, the workspace is symmetric about the first joint axis. Assuming unlimited joints,
it can thus be described by a half-cross section in the plane (ρ =

√

x2 + y2, z).

2.3. Recall of important definitions

Generic 3R serial robot : A 3R serial robot is generic if and only if there exists only
rank-2 singularities, i.e., the locus of critical points in joint space has no self-intersection or
does not include any isolated point singularity [24].

Aspects : The aspects are the largest singularity free connected regions in the joint space
of a serial robot [5]. Figure 5 shows two aspects in the joint space of a 3R serial robot.

Cusp: A cusp is a point in the workspace of a serial robot that satisfies the following
conditions [12]:











M(t) = 0
∂M
∂t

(t) = 0
∂2M
∂t2

(t) = 0

(5)

where M(t) is the inverse kinematic polynomial of degree four of a generic 3R serial robot.
In Figs. 1, 4a and 4c, the robot has four cusps located at the corners of the inner region.

The cusp also has to satisfy:
∂3M

∂t3
(t) 6= 0 (6)

in order to exclude quadruple roots. However, it was shown in [24] that quadruple roots
cannot exist in generic 3R robots, and the condition in (6) is thus always satisfied here. So,
in the context of generic 3R serial robots, a cusp in the workspace can be identified solely
by condition (5).

Node: A node is a point in the workspace of a 3R serial robot where the inverse kinematic
polynomial, M(t), admits two distinct roots of multiplicity two as illustrated in Fig. 4b.

Cuspidal robot : A robot for which there exists a path in the joint space connecting
two inverse kinematic solutions without crossing the locus of critical points, is defined as a
cuspidal robot.

Pseudosingularity curve: If S is the set of critical points in the joint space, the pre-image
of the critical values excluding S is defined as the pseudosingularity curve [21]:

PS = f−1(f(S)) \ S (7)

Reduced aspect : A reduced aspect is a region in the joint space that is bounded by the
pseudosingularity curve and/or the locus of critical points and which has a one-to-one map
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(a) Point in workspace with root multiplicity 2

(b) Node point - pair of roots with root multiplicity 2

(c) Cusp point in workspace with root multiplicity 3

Figure 4: Types of critical values in the workspace and corresponding tangency in c3s3-plane.
Robot parameters (4a): d = [0, 1, 0], a = [1, 2, 3

2
], α = [-π

2
, π

2
, 0], (ρ, z) = (2.913, 0.1).

Robot parameters (4b): d = [0, 1, 0], a = [4, 2, 6], α = [-π
2
, π

2
, 0], (ρ, z) = (2.84, 3.79)

Robot parameters (4c): d = [0, 1, 0], a = [1, 2, 3

2
], α = [-π

2
, π

2
, 0], (ρ, z) = (2.48, 1.96).
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Figure 5: The two singularity free connected regions, called aspects, in joint space for a 3R serial robot
Robot parameters: d = [0, 1, 0], a = [1, 2, 3

2
], α = [-π

2
, π

2
, 0]

to a bounded region in the workspace [7]. Fig. 6 illustrates an example of a set of reduced
aspects in an aspect of the joint space for an orthogonal 3R cuspidal robot. The blue lines
are the locus of critical points and critical values in the joint space and the workspace,
respectively, while the red lines are the pseudosingularities present in the joint space. Note
that the reduced aspects 1 and 3 in the joint space map to the same region in the workspace,
suggesting two IKS in an aspect.

Figure 6: An example showing a set of reduced aspects present in an aspect of the joint space.
Robot parameters: d = [0, 1, 0], a = [1, 2, 3

2
], α = [−π

2
, π

2
, 0].

2.4. Nonsingular change of posture

In the presented work, the joints of the robots are unlimited, and thus the workspace is
not constrained by the joint limits. A generic 3R robot may have up to 4 IKS at a given
end-effector pose. An IKS can be defined by a point in the joint space, and a nonsingular
change of posture can be described by a connected path between two IKS that does not
cross the locus of critical points in the joint space.
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(a) Phase 1: Starting from a point in workspace with 4 IKS

(b) Phase 2: Entering a 2 solution region in workspace

(c) Phase 3: intersection point crosses the vertex of the conic

(d) Phase 4: Re-entering the 4-solution region in workspace
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(e) Phase 5: Reaching the same position in workspace

Figure 7: An example of a nonsingular change of posture in the joint space and the workspace, and its
corresponding geometrical interpretation in the c3s3-plane.
Robot parameters: d = [0, 1, 0], a = [1, 2, 3

2
], α = [-π

2
, π

2
, 0].

Path in the joint space (θ2, θ3): from (-0.742, 2.628) to (-3, -0.5).

In the workspace, a nonsingular change of posture defines a loop as we end up at the
same position we started from. It has been noted in [12] that the nonsingular trajectory in
workspace always starts from a point with four IKS. The nature of this trajectory in the
workspace will be studied in detail in the coming sections.

In the c3s3-plane, the nonsingular change of posture has an interesting interpretation.
If we have four intersection points, mi, mj , mk and ml, between the conic and the unit
circle in c3s3-plane corresponding to the four IKS at a particular end-effector pose, then the
nonsingular change of posture between two IKS corresponding to mj and ml is such that
mj switches with ml without vanishing as an intersection point of the conic and the unit
circle. An example of a nonsingular change of posture is illustrated in Fig. 7.

Proposition 1. If A and B are two bounded regions in the same aspect sharing a common
pseudosingularity curve AB∗ and their image in the workspace belongs to regions Aw and
Bw respectively, then the absolute difference between the number of IKS in region Aw and
in region Bw is always two (refer to Fig. 9). Moreover, the absolute difference between the
number of IKS in region Aw or Bw and at any point on the boundary AB∗

w between them, is
always one (Fig. 8).

This is a well-known property [16] and is commonly interpreted as two inverse kinematic
solutions merge at a singular configuration. It is also important to note that for a generic
3R robot, the shared boundary does not include isolated finite points.
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Figure 8: Regions separated by the locus of critical values in the workspace. There are 3 IKS on AB∗

w
.

Robot parameters: d = [0, 1, 0], a = [4, 2, 6], α = [-π
2
, π

2
, 0].

If a pseudosingularity exists in the joint space of a 3R serial robot, then each point on
the pseudosingularity curve has an image on the locus of critical values in the workspace.
Therefore, crossing a pseudosingularity curve in the joint space is similar to crossing the
locus of critical values in the workspace, and thus the images of the regions sharing the
pseudosingularity curve should have absolute difference of two.

Figure 9: An example of the regions separated by the pseudosingularity curve in joint space and the corre-
sponding images in workspace.
Robot parameters: d = [0, 1, 0], a = [1, 2, 3

2
], α = [-π

2
, π

2
, 0], (ρ, z) = (2.5, 0.5).

2.5. Sufficient condition

Theorem 1. The existence of a cusp in the workspace of a 3R robot is a sufficient condition
for the robot to be cuspidal.
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Proof. Using Whitney’s theorem [25], it has been noted in [18], that the existence of a
cusp in the workspace of a 3R robot is equivalent to a nonsingular change of posture in a
sufficiently small neighborhood of the cusp.

It is important to note that the work in [18] does not establish the necessary and suf-
ficient cuspidality condition, as the existence of a cusp can be confirmed only if we have a
nonsingular change of posture in a sufficiently small neighborhood. In Fig. 10, the nonsin-
gular change of posture from q1 to q3 for a point, x, in the workspace is not local and thus
the equivalence in [18] cannot be used to prove that the above sufficient condition is also
necessary. In the next section, we establish a proof that the existence of a cusp is also a
necessary condition for a any generic 3R robot to be cuspidal.

Figure 10: Example showing a non-local nonsingular change of posture in joint space and workspace.

Robot parameters: d = [0, 1, 0], a = [1, 2, 1], α =
[π

6
,
π

2
, 0
]

.

Trajectory in joint space (θ2, θ3): (-3, 0.5) to (2, 3) to (0.2, 2.8).

3. Proof

In this section, we present the proof of the necessary cuspidality condition for any generic
3R robot. The proof discusses several lemmas and uses proposition 1 and definitions in Sec-
tion 2 to arrive at a conclusion. Figure 11 shows a flowchart illustrating the organization
of the proof. This fowchart should be read as follows: Proposition 2 is the cuspidality nec-
essary condition which, along with the cuspidality sufficient condition (Theorem 1), makes
it possible to establish the necessary and sufficient condition of cuspidality in the end of
this section (Theorem 3). To prove Proposition 2, Lemmas 1, 2 and 3 are first established,
leading to Theorem 2 which, along with Proposition 1, leads to Lemma 4. Lemmas 4 and 5
lead to Lemma 6, which makes it possible to prove Proposition 2.
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Figure 11: The flowchart of the proof for the necessary and sufficient condition. Proposition 1 and Theorem
1 are already proven and mentioned in Section 2.

3.1. Necessary condition

Proposition 2. If a generic 3R robot is cuspidal, then there exists a cusp in the workspace
of this robot.

We prove Proposition 2 by contradiction: we consider a hypothetical cuspidal robot that
has no cusps in its workspace and we show that this case cannot exist. In order to do so,
we first need to set and prove a series of lemmas.

Lemma 1. The nature of the conic, i.e. ellipse, hyperbola or parabola, related to a particular
set of the D-H parameters of a generic 3R robot remains the same throughout the workspace
of the robot.

Proof. The determinant of the matrix D displayed in (8) determines the nature of the conic.
Since Axx, Axy and Ayy are functions of D-H parameters only as shown in (3), the nature of
the conic remains the same throughout the workspace.

D =

[

Axx Axy
Axy Ayy

]

(8)

Lemma 2. The orientation of the principal axes of the conic related to a particular set of
D-H parameters of a generic 3R serial robot is constant throughout the workspace of the
robot.
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Proof. The eigenvectors of D determine the orientation of the principal axes and, as noted
in the proof of Lemma 1, D is independent of R and z and the eigenvectors are thus constant
for a given robot.

For a given point p in the workspace of a generic 3R robot, let n ∈ {1, 2, 3, 4} be
distinct preimages such that we have n intersection points between the conic and the circle
in c3s3-plane. We will say that an intersection point, mj , in c3s3-plane is adjacent to another
intersection point, mi, if it is the first intersection point encountered after travelling in either
clockwise or counterclockwise direction starting from mi. It has been illustrated in Fig. 4
that any path in the workspace starting from p to any point on the boundary, results in at
least 2 intersection points coming together at the tangent point in c3s3-plane. Accordingly,
the following Lemma is set:

Lemma 3. In a generic 3R robot, two intersection points, ma and mb, meet at a tangent
point corresponding to roots of the inverse kinematic polynomial with multiplicity two, only
if they are adjacent to each other in the cyclic ordering of the intersection points in the c3s3
- plane.

Proof. For two points ma,mb to meet together, ma should start travelling towards mb, or
mb should travel towards ma. If there exists an intersection point mc between them, then
ma and mb can meet at a tangent point only after either ma or mb meets mc at a tangent
point. A graphical illustration of the tangency between the adjacent points is given in Fig.
12.

As the critical values represent tangent points in c3s3-plane, a node in the locus of
critical values is when we have two tangency points. A cusp occurs when three out of
four intersection points merge together at a tangent point. All four solutions cannot meet
together at a tangent point in a generic 3R robot [24]. Also, isolated finite points of critical
values cannot exist in a generic 3R robot, and thus this particular case is not considered in
the context of critical values.

Theorem 2. In an arbitrary generic 3R robot, the inverse kinematic solutions lie always in
distinct reduced aspects.

Proof. As shown in Lemma 2, the orientation of the conic corresponding to a particular set
of D-H parameters remains constant. Suppose that the inverse kinematic solutions do not
belong to distinct reduced aspects. Then, there should exist a path between two inverse
kinematic solutions without intersecting a pseudosingularity or the locus of critical points.
The interpretation of such a path in c3s3-plane is that two intersection points mj and ml

switch places and neither mj nor ml becomes a tangent point in c3s3-plane.
As the orientation of the principle axes of the conic does not change, the intersection points,
mj and ml, in c3s3-plane cannot be adjacent in a cyclic ordering since it would imply mj

meeting ml at a tangent point to switch with ml. Let mk lie between mj and ml while
travelling clockwise starting from mj and let mi lie between mj and ml while travelling
counterclockwise starting from mj as shown in Fig. 12a. As we know that the conic is not
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(a) Initial configuration with four intersection points in c3s3 - plane

(b) Tangency between adjacent points on either side of the vertex

(c) Tangency between adjacent points on same side of the vertex
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(d) Tangency between adjacent points on same side of the vertex

Figure 12: The merging of two adjacent points in a conic at a tangent point and geometrical interpretation
of the components of the locus of critical values.

Robot parameters: d = [0, 1, 0], a = [1, 2, 3/2], α =
[

−
π

2
,
π

2
, 0
]

, (ρ, z) = (2.5, 1) and (3, 0).

rotating, the only way for mj to switch to ml is to meet either mk or mi at a tangent point.
If not, then ml meets mk or mi at a tangent point. This contradicts the assumption that
the inverse kinematic solutions associated with mj and ml do not lie in distinct reduced
aspects.

In a cuspidal robot, at least two inverse kinematic solutions q1 and q2 lie in an aspect.
By using Theorem 2, we know that q1 and q2 lie in two separate reduced aspects, and thus
we cross pseudosingularities during a nonsingular change of posture. As pseudosingularities
separate the reduced aspects whose image in the workspace lie in distinct non-connected
regions (from Proposition 1), we cross the pseudosingularities at least twice in a nonsingular
change of posture.

In order to discuss the path corresponding to the nonsingular change of posture in the
workspace, components of the locus of critical values are discussed. The interpretation of
these components in c3s3-plane allows one to draw important conclusions about the nature
of the locus of critical values.

3.2. Components of the locus of critical values

A n-solution region in the workspace is always bounded by the locus of critical values
which, for a generic 3R serial chain, can include cusps and/or nodes

Definition 1. The components of the critical values are the connected components of the
locus of the critical values, upon excluding all cusps and nodes.

A point p in a region of the workspace with four preimages, corresponds to a situation
where the conic intersects the unit circle at four points in c3s3-plane (Fig. 12a). Let the
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intersection points be mi, mj , mk and ml. There are up to four different pairs in which the
points can merge, viz. mimj , mjmk, mkml and mlmi (Fig. 12). Thus, depending upon
the type of robot, a 4-solution region in the workspace can be bounded by a maximum of
four distinct components of singularities. A geometrical interpretation of the component of
critical values is associated with the merging of a particular pair of intersection points in
c3s3 - plane.

Lemma 4. Let q1 and q2 be two inverse kinematic solutions in the same aspect. Considering
a generic nonsingular change of posture from q1 to q2, the images of the pseudosingularities
that the point q1 crosses to go to q2, belong to at least 2 different components of the critical
values in the workspace.

Proof. It is evident from the definition of pseudosingularity curve that if an IKS of a robot
lies on the pseudosingularity curve, then there exists an IKS of the robot on the locus of
critical points as well. An example of nonsingular change of posture is shown in Fig. 13
where the path crosses the pseudosingularity curve twice. qj crosses the pseudosingularity
curve twice at ps1 and ps2 in order to switch with ql in a nonsingular posture change. From
Theorem 2, we know that qj and ql lie in two distinct reduced aspects A and B, respectively.
The reduced aspect A is bounded by the locus of critical points and at least by the segment
of the pseudosingularity curve including ps1. The reduced aspect B is bounded by the locus
of critical points and at least by the segment of the pseudosingularity curve including ps2.
By Proposition 1, we assert that in generic 3R robots, pseudosingularities always separate
the reduced aspects whose image in the workspace belong to regions with different number of
IKS. So, we know that when qj crosses ps1, ql disappears after meeting the locus of critical
points bounding the reduced aspect B. Clearly, qj crosses the pseudosingularity at ps2 in
order to enter the reduced aspect B. For each point in the reduced aspect B, there should be
a corresponding point in the reduced aspect, A, as both of them map to the same bounded
region in the workspace, as shown in Fig. 6. Thus, when qj is on ps2, there appears a point
corresponding to ql on the locus of critical points bounding the reduced aspect A.

Let mi,mj ,mk,ml be the four intersection points in c3s3-plane corresponding to the four
IKS in the joint space, qi,qj ,qk,ql (see Fig. 13). When qj crosses the pseudosingularity
curve at ps1, ql meets either qi or qk. In c3s3-plane, ql meeting qi or qk is similar to ml

meeting either mi or mk at the tangent point. Now, when qj crosses the pseudosingularity
curve at ps2, ql enters A. ql emerging on the locus of critical point bounding A is similar
to ml merging with mi or mk in the initial setup. Thus, the images of the critical points
bounding A and B belong to two separate components of critical values as ql switches
position with qj . This proves that the images corresponding to ps1 and ps2 lie on two
distinct components of critical values in the workspace.

So a nonsingular change of posture in the workspace looks like a path that exits the
4-solution region by crossing a component of critical values and re-entering the region by
crossing another component of critical values. Figure 7 shows an example of a point crossing
two components of critical values in a nonsingular posture change. The path does not
necessarily enter and exit by crossing the components of critical values that form a cusp
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(a) Phase 1: Starting from a point in workspace with 4 IKS, qj and ql are in same aspect.

(b) Phase 2: qj meets ps
1
and ql meets qk at singularity curve.

(c) Phase 3: qj enters another reduced aspect and ql disappears.
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(d) Phase 4: qj meets ps2 and ql, qk reappear, but in different reduced aspects.

(e) Phase 5: qj switches with ql without disappearing.

Figure 13: An example of nonsingular change of posture crossing a pseudosingularity curve at 2 points.

Robot parameters: d = [0, 1, 0], a = [1, 2, 3/2], α = [−
π

2
,
π

2
, 0].

path in the joint space (θ2, θ3): from (−0.742, 2.628) to (−3,−0.5).

(refer to Fig. 10), but it is imperative to note that by proving Lemma 4, we know that the
path has to exit and enter by crossing two distinct components of critical value.

Lemma 5. If points mj, ml in c3s3-plane belong to the same aspect in the joint space and if
there exists a cusp in the workspace, then there exists another intersection point, mk, in the
middle of (in terms of circle ordering) mj and ml, such that mj,mk and mk,ml correspond
to the two components of critical values that form a cusp in the workspace (see Fig. 14).

Proof. As shown in Fig. 4, the interpretation of a cusp in c3s3-plane is such that 3 in-
tersection points come together at a tangent point. Also, a cusp is a merging point of two
separate components of critical value. As the components of critical values relate to merging
of a particular pair of intersection points, if two components are meeting at a cusp in the
workspace such that mj ,mk and ml merge in c3s3-plane with mk being in between mj and
ml, then the two components of critical values must belong to the merging of mjmk and
mkml.
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(a) Component of critical value adjacent to a cusp point

(b) Component of critical value adjacent to a cusp point

(c) Cusp point

Figure 14: Geometrical interpretation of the cusp point and the adjacent components of critical values

Robot parameters: d = [0, 1, 0], a = [1, 2, 3/2], α = [-
π

2
,
π

2
, 0].
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Figure 15: Region Aw in the workspace with 4 IKS and its geometrical interpretation. Robot parameters
are imagined to illustrate a particular case. The conic can be a hyperbola or an ellipse.

Lemma 6. For a nonsingular change of posture starting from a point in a bounded region
Aw in the workspace, there exists a path in the workspace that does not meet any critical
values not bounding region Aw.

Proof. If there exists a cusp, the Lemma is automatically true [17] as encircling the cusp
point is an example of a path that intersects the components of critical values bounding a
single region in the workspace. We thus consider only the case in which there is no cusp
in the boundary of the region Aw. The proof of the Lemma comes from the simultaneous
analysis of the nonsingular change of posture in the workspace as well as in c3s3-plane.
Considering a point p in the 4-solution region in the workspace (see Fig. 15), let the four
intersection points corresponding to this position in c3s3-plane be mi, mj , mk and ml. Let,
mi and mk be the solutions in the same aspects. We know from Lemma 4 that the region
Aw is bounded by at least 2 components of critical values. As the boundary of the region
Aw does not have a cusp, the components of critical values that bound the region Aw in the
workspace are related to two cases: merging of mi, ml and mj , mk (see Fig. 15) or mi, mj

and mk, ml. Without loss of generality, we may assume the first case. As there are only
two possible tangent points, Aw is bounded by only 2 components of critical values.

As region Aw is bounded and there exists no cusps, the two components of critical values
bounding the region Aw must intersect. In the c3s3-plane, points (mi,ml) and (mj ,mk)
either meet simultaneously at two distinct points (bitangent case) or they meet at a single
point of tangency between the conic and the circle as illustrated in Fig. 16. Since we are
considering generic robots, we cannot have four equal IKS, and we can immediately conclude
that the intersection of the components of critical values corresponds to the bitangent case.

Let Bw be an arbitrary 4 solution region in the workspace that is not Aw. Proceeding
by contradiction, it is sufficient to show that a path crossing two distinct components of
the critical values bounding region Bw in order to enter and exit Bw, does not correspond
to a nonsingular change of posture. An example of such a workspace is illustrated in Fig.
17 and the interpretation of a closed loop path in the workspace is given in Fig. 18, which
shows that such a path cannot define a nonsingular change of posture. From Lemma 4, we
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Figure 16: The intersections of components of critical values bounding Aw in the workspace and its geo-
metrical interpretation. Robot parameters are imagined to illustrate a particular case. The conic can be a
hyperbola or an ellipse.

Figure 17: An example of the shape of the workspace, where a closed loop path starting from a point in Aw

must cross two distinct components of critical values bounding region Bw

.
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already know that the path in workspace corresponding to the nonsingular change of posture
crosses two different components of critical values of region Aw. If the path exits Aw by
crossing the component corresponding to the merging of mi and ml, then it must cross the
component belonging to the merging of mj and mk while entering the same region. Now,
if the case shown in Fig. 17 exists, then in order to enter Aw, we will have to cross another
4-solution region, Bw, bounded by at least 2 different components of critical value. As we
are considering only the case without cusps in the workspace, Bw is also bounded by two
components of critical values having no point in common, i.e. if one component corresponds
to the merging of mi and ml, then the other component must correspond to the merging
of mj and mk. While crossing Bw, one needs to cross both components. This means that if
one tracks the intersection point mi from its initial position, then this point will have been
a tangent point (in c3s3-plane) while crossing either of the two components of Bw. This
leads to a contradiction, as we have assumed that one of the points we are tracking will not
be tangent to the unit circle to qualify as a valid nonsingular change of posture. Figure 18
illustrates a path where two singularities of another 4-solution region without any cusp are
crossed. We start from an initial point p in the 4-solution region, Aw, of the workspace
that corresponds to Posture 1 in the c3s3-plane (refer to Fig. 18). We assume that the
robot corresponding to this case is cuspidal and the IKS corresponding to mj and ml lie
in the same aspect. In Posture 2, we cross the component of critical values that belongs
to the merging of mi and ml. This already suggests that for a valid nonsingular change of
posture, mj should switch places with ml without being a tangent point in the c3s3-plane.
The path going from Posture 3 to Posture 5 is the entry into another 4-solution region, Bw.
As we have entered region Bw by crossing the component of critical values corresponding to
the merging of mi and ml, we need to exit the region by crossing the component of critical
values corresponding to the merging of mj and, mk as shown in Posture 6. This proves
that such a path is an invalid nonsingular change of posture, as we encountered a singular
configuration while exiting Bw.

3.3. The “candy” case

Proof of Proposition 2. By Lemma 6, the curves corresponding to the critical values are
enclosed by an outer boundary of the workspace and would have a shape as illustrated in
Fig. 19. We shall refer to this shape as the “candy” case. We arrive at this case by starting
with a point, p, in the workspace with four preimages. Let the points of intersection in
c3s3-plane corresponding to p be mi, mj , mk and ml. The region, Aw, in which p exists
must be bounded by the locus of critical values. As we assume that there are no cusps, the
region will have to be bounded by only two components corresponding to the merging of
(mi,mj and mk,ml) or (mi,ml and mj ,mk) as shown in Fig. 15. These two components
of the critical values intersect at two points, a and b. The geometrical interpretation of
the intersection of the components of critical values is that both mi,ml and mj ,mk merge
at tangent points simultaneously. This can happen in two cases, either all four intersection
points merge together or mi,ml and mj ,mk meet together at separate tangent points in
c3s3-plane, forming a node point in the workspace as shown in Fig. 16. Since four points
merging at a single tangent point corresponds to a nongeneric case, we will consider only the

23



Figure 18: The closed loop path in the workspace, where the path crosses another 4-solution region and its
corresponding interpretation in c3s3-plane. Robot parameters are imagined to illustrate a particular case to
show that such a path does not correspond to a nonsingular change of posture. The postures in red boxes
correspond to the steps in the shown path where the definition of nonsingular posture change is violated

.
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case of mi,ml and mj ,mk meeting together at separate tangent points. As at the ends of our
candy shape, only two segments meet without forming a node (see m and n in Fig. 19), it
corresponds to a case of four solutions merging at a common point. This is a contradiction
to the assumption of a generic 3R robot because points with multiplicity four correspond to
a nongeneric 3R robot [24].

Figure 19: The “candy” case.

By using Theorem 1 and Proposition 2, a necessary and sufficient condition can be
derived for a generic 3R cuspidal robot. Formally, the corollary is stated as:

Theorem 3. The existence of a cusp point in the workspace is a necessary and sufficient
condition for a generic robot to be cuspidal.

Figure 20 illustrates an example of non-orthogonal cuspidal and non-cuspidal robots in
joint space, workspace and c3s3-plane.

4. Conclusions

In the presented work, we have revisited the geometrical interpretation of the inverse
kinematic model of 3R serial robots. The geometrical interpretation provides a better un-
derstanding of the critical values in the workspace, the nodes and the cusps. The paper has
also presented important observations regarding the shape and the orientation of the conic
represented in c3s3-plane, corresponding to a specific set of DH parameters. By analyzing
the nonsingular posture change in joint space, workspace and c3s3-plane, the authors have
extended the proof of existence of reduced aspects in the joint space of generic 3R robots.
As a main contribution of the work, we have put forth the proof of the necessary condition
of existence of a cusp in the workspace for a generic 3R serial robot to be cuspidal. In
combination with an existing sufficient condition, we have presented formally the necessary
and sufficient condition for a generic 3R robot to be cuspidal. The presented work is ex-
pected to be of great importance for the designer in extending the classification of generic
3R serial robots based on cuspidality. When designing a new robot, knowing whether a set
of given D-H parameters defines a cuspidal robot or not is of high interest. The proposed
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(a) An example of the non-orthogonal and cuspidal case.

Robot parameters: Robot parameters: d = [0, 1, 0], a = [1, 2, 1], α = [-
π

6
,
π

2
, 0].

(b) An example of the non-orthogonal and non-cuspidal case.

Robot parameters: Robot parameters: d = [0, 1, 0], a = [1, 0.2, 2], α = [-
π

3
, 1.745, 0].

Figure 20: The aspects in the joint space, regions in the workspace and corresponding conics in the c3s3 -
plane for a cuspidal and non-cuspidal non-orthogonal robot.
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necessary and sufficient condition based on the existence of a cusp point in the workspace
can be used by the designer to verify if the robot is cuspidal or not. As the presented work
is applicable to positional robots, the results obtained in the paper can be directly extended
to 6R wrist-partitioned robots with wrist at the end and at the beginning. This is due to
the fact that the singularities related to the orientation are decoupled from the positional
singularities in these robots. This allows a designer to analyze the positional singularities in
two dimensions only. As a part of future work, the geometrical interpretation of the inverse
kinematic model of generic 6R serial robots will be studied to have similar conclusions on
the cuspidal nature of generic 6R serial robots.

Appendix A. Singularity in the joint space: the locus of critical points

The singularity for a 3R serial robot in the joint space, the locus of critical points, can
be derived from the relation:

det(J) = 0 (A.1)

where, J, is the Jacobian matrix given in (4). Let, iTj be the transformation matrix of
frame j with respect to frame i. e be the position vector of the end-effector with respect to
frame 0.

e =0 T1
1T2

2T3









0
0
0
1









(A.2)

The Jacobian of e is the Jacobian matrix for the 3R serial robot.

J =

[

∂e

∂θ1

∂e

∂θ2

∂e

∂θ3

]

(A.3)

The expression for (A.1) is:

det(J) = (((−c3 (a3 d2 s2 s3 + a1 d3) ca2 + a2 c2 c3 d2 + (−c2 d2 s
2
3 + c2 d2) a3 − a2 d3 s2

s3) sa2 + c3 (a1 a3 s3 − d2 d3 s2) ca
2
2 + a2 a3 s2 s

2
3 ca2 + (−s3 (a2 c2 + a1) a3+

d2 d3 s2) c3 − a2 s3 (a2 c2 + a1)) sa1 + a1 ((ca2 a3 c2 c3 s3 + s2 (a2 c3+

(−s23 + 1) a3)) sa2 + c2 c3 d3 (ca2 − 1) (ca2 + 1)) ca1) a3

Here, ci, si, cai, sai correspond to cos θi, sin θi, cosαi, sinαi respectively and αi, di and
ai are the classical D-H parameters (see fig. 2).
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