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We investigate the electron spin resonance of the organic spin-Peierls chain (o -DMTTF)2X withX
= Cl, Br and I. We describe the temperature dependence of the spin gap during the phase transition
and quantify the dimerization parameter δ. At the lowest temperatures, the susceptibility is governed
by defects in the spin dimerized chain. Such strongly correlated defects are the consequence of breaks
in the translational symmetry of the chain. In the vicinity of the defects the spins are polarized
antiferomagnetically forming a magnetic soliton: a spin 1

2 quasi-particle of size ruled by δ pinned
to the defects. For (o -DMTTF)2Br and (o -DMTTF)2Cl, we show that the one-half of the total
number of solitons are in isolation (as singles) whereas the other half form pairs (soliton dimers)with
a strong magnetic coupling. The Rabi oscillations of both the single-soliton and the soliton-dimer
are observed, which is a prerequisite in the context of quantum information.

I. INTRODUCTION

The physics of spin S = 1
2 chains remains extremely

rich because their low dimension leads to pronounced in-
fluence of the electronic correlation and allows the in-
terplay between magnetic, electronic and lattice degree
of freedom [1, 2]. In particular, in S = 1

2 antiferromag-
netic Heisenberg spin chains, the quantum fluctuation
prevents long-range order and the ground state is gap-
less [3]. However, this sate is unstable and a weak cou-
pling with the other chains or with the lattice opens a
gap in the magnetic spectrum and leads to a long-range
order (antiferromagnetic order) or to dimerization (spin-
Peierls). The effect of defects in 1D spin systems continue
to be actively studied because the break in the transla-
tion symmetry deeply alters the magnetic properties of
the host materials [4]. In the spin-Peierls infinite chains,
the ground state is a singlet (S = 0) separated from the
quasi continuum by a gap [5, 6]. The break in the trans-
lational symmetry, like a chain-end or a stacking fault,
alters the spins in the vicinity creating a magnetic soli-
ton (spin- 1

2 quasiparticle made of many correlated spins)
pinned to the defects [7, 8]. As a consequence of this
many-body spin- 1

2 soliton formation, the ground state is
a doublet separated from the quasicontinnum by a gap
[9]. Such a structure is of particular interest because its
energy levels are comparable to single molecular magnet
SMM like V15 [10–12] with unconventional quantum co-
herence properties [13, 14] which make it an interesting
potential qubit [15, 16].

Organic one-dimensional conductors were extensively
studied over the past decades due to the richness of the
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phase diagram. One of the most famous is the Fabre salt
(TMTTF)2X, where X is a counter anion. Depending
on the temperature, the pressure and the nature of X,
(TMTTF)2X can be a metallic/insulator/superconduc-
tor uniform/dimerized spin chain, Néel-/charge-/anion-
ordered ([17–22]). The defects in the spin chains have
been observed by electron spin resonance (ESR) [23, 24]
but due to a low spin-Peierls transition temperature TSP
and to a high homogeneity of the ESR line, the quantum
coherence study is limited.

The (o -DMTTF)2X family compounds, with X = Cl,
Br and I, have TSP ∼ 50 K higher than (TMTTF)2PF6
(TSP = 19 K) which itself has the highest TSP of the
(TMTTF)2X series. Moreover electron spin echo of the
pined soliton has been reported [14]. (o -DMTTF)2X
was first synthesized many decades ago [25] but inten-
sive studies have been published recently [26] with the
construction of the phase diagram [27, 28], the solid
solution with different counter anion [29] and the ESR
study[12, 14]

The three systems (o -DMTTF)2X crystallize in the
same space group I 4̄2d (no. 122) with cell parameters
a = b = 16.93 Å, 17.09 Å, 17.40 Å and c = 7.040 Å,
7.058 Å, 7.098 Å for (o -DMTTF)2Cl, (o -DMTTF)2Br
and (o -DMTTF)2I respectively. The halide anions X
are in position 4̄ while o−DMTTF molecules lie on the
two-fold axis forming a stack in the direction c. Each lin-
ear stack is turned by 90◦ with respect to its neighbors,
as shown in Fig. 1. This “chessboard” structure has a
consequence of a very weak inter-stack interactions com-
pared to the parallel stack of the famous (TMTTF)2X,
confirmed by the highly anisotropic conductivity of (o -
DMTTF)2X [27, 28]. Each pair of o−(DMTTF)2 shares
a spin S = 1

2 and forms a quasi-isotropic Heisenberg spin
chain along c-axis. When T < TSP the displacement
of the pairs of o−(DMTTF)2 creates the tetramerization
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Figure 1. Crystallographic structure of (o -DMTTF)2X. (a)
View of the ab plane and (b) perspective view of the unit
cell with four DMTTF in equivalent positions rotated by
90◦. The DMTTF molecules are stacked along c axis but
only 4 molecules are shown to avoid confusions. (c) Stacks of
(DMTTF)2 along the c axis. Each pair of (DMTTF)2 shares
a spin S = 1

2 forming a spin chain along c.

of the structure along the chain axis. To describe the
systems in the spin-Peierls phase we will use the S = 1

2
alternating-exchange Heisenberg chain Hamiltonian.

H =
∑
i

[J(1 + δ)S2i−1 · S2i + J(1− δ)S2i · S2i+1] .

(1)
Here J > 0 is the AFM isotropic Heisenberg exchange
integral and δ the explicit alternation parameter. In a
spin-Peierls system, δ is related to the elastic energy of
the lattice and the magneto-elastic coupling, which are
both responsible for the dimerization of the chain. The
effects of impurities in quantum spin chains have been ac-
tively studied in the past. Thanks to the improvement of
numerical methods, studies using exact diagonalization
[30], Quantum Monte Carlo [31, 32] and Density Matrix
Renormalization Group [33] exhibit the many-body na-
ture of non-magnetic defects.

Fig. 2 summarizes the spin-Peierls transition and the
effect of non-magnetic impurities. In the case of a fi-
nite length dimerized chain, parity plays an important
role in determining the magnetic properties. In case of
an even number of spins (Fig.2(b)), they create pairs of
spins and the ground state is non-magnetic with a large
gap comparable to that of the infinite spin-Peierls chain.
In case of an odd number of spins (Fig.2(c)), one spin
remains unpaired and the ground state is magnetic, sep-
arated from the next states by a gap comparable to that
of the infinite chain. However, contrary to a magnetic im-
purity inside a non-magnetic medium [35], the unpaired
spin is correlated to the rest of the chain and the local
polarization is spread over many neighbor spins, form-

J1 J2 J1 J2 J1 J2 J1 J2 J1 J2 J1 J2

J J J J J J J JJ

J1 J2 J1 J2 J1 J2 J1 J2 J1 J2 J1

(a)

(c)

(b)

(d)

Magnetization distribution

Figure 2. Schematic representation of the spin chain during
the spin-Peierls transition and the defect-induced soliton for-
mation. (a) For T > TSP , the uniform Heisenberg spin chain
is made of constant exchange coupling J between equidistant
nearest-neighbor spins. (b)and (c) For T < TSP the bond
lengths within the spin chain is modulated being alternatively
shorter or longer leading to an exchange coupling stronger
(J1 = J(1 + δ)) or weaker (J1 = J(1 − δ)) respectively. The
presence of non-magnetic defects (empty circle) create finite
chains. (b) If the chain contains an even number of spin, they
form pairs and the ground state is non-magnetic but (c) if it
contains an odd number of spins, one spin remained unpaired
and the ground state is magnetic. (d) Local magnetization of
the chin in (c) calculated by DMRG [34] with δ=0.1.

ing a magnetic soliton (as calculated by DMRG [34] with
δ=0.1 Fig.2(d)).

Since the ground state of the spin chain defects is a
doublet of effective spin S = 1

2 it should be quantita-
tively accessible through temperature dependent static
susceptibility by means of SQUID magnetometry or elec-
tron spin resonance (ESR). The former method suffers
from the impossibility to separate the effect of spin chain
defects from other extrinsic contribution (dirt, paramag-
netic impurities...). ESR, by adding the spectral dimen-
sion, can separate the different contributions.

In this paper we present an ESR investigation of (o -
DMTTF)2X with X=Cl, Br and I from room temper-
ature down to T = 5 K. ESR measurements on these
systems have been reported [12, 14], but with a weak
density of data points and, as we will explain in the fol-
lowing, an incorrect analysis of the gap. First, in Sec.
III A we present the magnetic susceptibility and extract
a quantitative estimation of the microscopic parameters,
such as the temperature dependence of the intra-chain
coupling Jeff (T ) (Sec. III A 1), the temperature depen-
dence of the dimerization parameter and the gap across
the spin-Peierls transition(Sec. III A 2), and the content
of spin chain defects. Then, in Sec. III B by means of a
continuous wave (CW) and pulsed ESR we study the dy-
namics of isolated and coupled magnetic solitons pinned
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by non-magnetic defects of the chain.

II. EXPERIMENTAL DETAILS

Single crystals of (o -DMTTF)2Br, (o -DMTTF)2I
and (o -DMTTF)2Cl have been grown by electro-
crystallization using the standard procedure described in
Ref. [26]. The crystals are needle shape with the chain
axis along the long length of the needle. The largest crys-
tals have been used in the low temperature ESR study
where the signal of the defects are observed but weak
due to the low concentration of strongly correlated de-
fects. The typical size was 0.2×0.2×3 mm3 along the
a, b and c axes. To avoid effects of temperature cycle
history, a fresh sample was used for each series of mea-
surements. The samples were glued on suprasil quartz
rode using a small amount of Apiezon grease on one side
of the samples to avoid too much stress while sweeping
the temperature.

CW-ESR measurements were performed using a con-
ventional Bruker EMX spectrometer operating in X-band
with microwave frequencies of about fmw = 9.387 GHz.
This spectrometer is equipped with a He-flow cryo-
stat (ESR900) and a cryogen-free cooler (Bruker Stinger
)which operates down to 7 K. The angular dependence of
ESR with respect to the static field was measured using
an automatic goniometer installed on the spectrometer.
The angle θ = 0◦ corresponds to H‖c. We paid particular
attention to the low temperature regime where the relax-
ation could be long. Therefore, the microwave power was
set low (< 1 mW) to prevent the ESR signal from satu-
ration. The field modulation was set under 1 G to avoid
the distortion of ESR lines due to over-modulation effect.

For pulsed ESR experiments, we used a Bruker Elexsys
E580 spectrometer equipped with a cryogen-free cryostat.
The Rabi oscillation measurements were performed with
the external static field H0 applied along the c-axis and
the microwave frequency of fmw = 9.693 GHz.The am-
plitude of the microwave field hmw was calibrated using
a S = 1

2 radical. The sequence used was the following:
p(t)− T − π/2− τ − π-echo, with p(t) the Rabi pulse of
a duration t, T � T2 the waiting time and π/2− τ − π-
echo is the standard Hahn echo used to probe 〈Sz〉 (t). A
S = 1

2 radical (DPPH) is used to calibrate the amplitude
of the microwave field.

III. RESULTS AND DISCUSSION

A. Susceptibility

Let us first describe the magnetic susceptibility ex-
tracted from ESR measurements. In the linear response
theory, the susceptibility from ESR χs is usually related
to the spectral intensity using the Kramers Krönig rela-
tion: χs =

∫
χ”(ω)dω which in case of small linewidth

and anisotropy becomes χs =
∫
IESR(H)dH . This is

true when the ESR signal is due to absorption only, but
here, (o -DMTTF)2X is a conductor at high temperature
and the dispersion induced by the conductivity has to be
taken into account [36]. We use eq.(S1) to fit our ESR
data:

IESR = A

(
Γ cosφ

Γ2 + (H −H0)2 + (H −H0) sinφ
Γ2 + (H −H0)2

)
(2)

where A is the amplitude of the signal and is directly pro-
portional to the magnetic susceptibility, Γ is half-width
at half-maximum, H0 is the resonance field and φ the
angle of dispersion. This fit procedure is very accurate
for all orientations and for T>20 K. However below 20 K
the signal attributed to the spin chain defects cannot be
fitted by eq. (S1) with a good accuracy and we decided
to use the standard double integration of the signal to
obtain χs. This is possible since at these temperatures
the (o -DMTTF)2X family is an insulator [27].

Fig.3 (a) shows the temperature dependence of the
susceptibility extracted from the ESR measurements
χESR(T ) of (o -DMTTF)2I and (o -DMTTF)2Br ((o -
DMTTF)2Cl is very close to (o -DMTTF)2Br and is re-
ported in the Supplementary Materials [37] to avoid over-
loading of Fig.3 ). χESR is usually in arbitrary units
since it depends on the experimental parameters. How-
ever, using reference data, it is possible to renormalize
χESR to absolute units. In our case, we renormalized
χESR using independent SQUID measurements of the
same compounds [27]. In Fig. 3, the squares and circles
are ESR data while the lines are SQUID measurements
from Ref.[27]. Above TSP the susceptibilities measured
by ESR and by the SQUID are very similar. However,
at low temperature the Curie tails induces by magnetic
impurities are clearly different.

Table I. Concentration of S = 1/2 defects extracted from the
Curie like behavior at low temperature assuming g=2

SQUID 10−4.at−1 [27] ESR 10−4.at−1

(o -DMTTF)2Cl 25 5.6
(o -DMTTF)2Br 37 6.6
(o -DMTTF)2I 14 4

Table I shows the concentration of defects/impurities
extracted from the Curie behavior at low temperature
assuming S = 1/2 and g=2. Clearly, the quantity of
impurities is larger in the SQUID measurements than in
ESR. This is not surprising since SQUID measurements
are not selective and yield the total magnetic moment of
a bulk sample, while ESR is highly selective and provides
information on a particular kind of impurities. Fig. 3(b)
shows the spin chain susctibility χc upon the deduction
of the low-temperature Curie-tails. For the full range of
temperature and in the limit of experimental error, the
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Figure 3. (a) Temperature dependence of the spin suscep-
tibility χs deduced from ESR in (o -DMTTF)2Br (squares)
and (o -DMTTF)2I (circles). The plain lines are SQUID data
adapted from ref [27]. (b) Temperature dependence of the
spin susceptibility corrected for the Curie tail of S = 1/2
defects χc (see table I). The dashed lines are the theoretical
values of the susceptibility using exchange constants Jeff pre-
sented in the inset and extrapolated to low temperature.

SQUID and ESR data on (o -DMTTF)2Br are identical.
This is less clear for (o -DMTTF)2I. For T >TSP SQUID
and ESR susceptibility are identical, however, below TSP,
χc from ESR shows a much stronger temperature depen-
dence than the SQUID one. We think that this difference
is due to the nature of (o -DMTTF)2I which should be
close to a highly pressure-sensitive region of the phase
diagram. As noted in Ref. [27] (o -DMTTF)2I is difficult
to place on the phase diagram. The authors observed
a charge density wave (CDW) transition at TC = 47 K
and no gap in the ESR indicating a position in the high-
pressure zone of the phase diagram, while we observe
a clear spin-Peierls transition at TSP =63 K and a be-
havior comparable to that of (o -DMTTF)2Br and (o -
DMTTF)2Cl suggesting a pressure lower than expected.
This difference might be due to the method of gluing the
samples, which can induce different strains at low tem-
perature.

In the following we describe the susceptibility in both

the uniform spin chain phase (T >TSP) and the dimer-
ized phase (T <TSP) using a method developed by John-
ston et al. [38]. My means of Quantum Monte Carlo
(QMC) and transfer-matrix density-matrix renormaliza-
tion group (TMRG) they unified and improved the theo-
retical predictions developed for the dimerized spin chain
by Bulaevskii [39] and for the uniform spin chain by Bon-
ner and Fisher [40], Eggert Affleck and Takahashi [41],
and Klümper and Johnston [42] .

1. Uniform chain susceptibility

In the uniform spin chain regime ( T > TSP ), all the
models cited above failed to describe the susceptibility
of (o -DMTTF)2X. This anomaly has been observed in
(TMTTF)2PF6 [43], deuterated (TMTTF)2PF6D12[44],
(TMTTF)2SbF6[5],(TMTTF)2AsF6 [45] and has been
attributed to thermal expansion. All the theoretical
models describe susceptibility at constant volume ([χ]V )
while measurements are performed at constant pressure
([χ]P ). A method to convert the temperature depen-
dence of ([χ]P ) to ([χ]V ) was developed by Wzietek et al.
[46] in the case of (TMTSF)2PF6 by performing X-ray
and nuclear magnetic resonance (NMR) under pressure.
This method is laborious and suffers from the arbitrarity
of choice of reference temperature volume. We choose a
different approach by extracting the exchange constant
J as function of the temperature at constant pressure.
This is possible with the Johnston et al. method but
needs very accurate absolute measurements.

To describe the uniform spin chain phase we use the
following method: (a) we choose a range of temperature
far enough from TSP to avoid fluctuations of spin-Peierls
and ensure that the alternating parameter δ vanishes, in
our case T=150 K to 300 K, which is at least 3 times
TSP. (b) We use the Padé approximant and the co-
efficients provided in Table I of Ref.[38] to extract the
exchange constant Jeff (T ) for each temperature in this
range. The result is provided in the inset of Fig.3(b)
for (o -DMTTF)2Br and (o -DMTTF)2I. We observe that
the effective exchange coupling Jeff decreases as T in-
creases. Such behavior has been noticed in NaV2O5 [38]
and qualitatively explained by Sandvik et al. [47] and
Kühne et al. [48] by including dispersionless phonons
(Einstein phonons) linearly coupled to the spin chain.
In our case, a more direct effect is the variation of cell
volume observed by changing the temperature. Radical
organic salts are known to have a large thermal expansion
compared to inorganic metal oxides. In (TMTYF)2XF6
(with X=Sb, As, P and Y=S or Se)[49–51] the variation
of the chain length is about 3%. For (o -DMTTF)2Br and
(o -DMTTF)2I, the X-ray diffraction measurements show
a linear temperature dependence of the cell parameters,
theincrase of c change between T = 100 K and room
temperature of about 2% (see Appendix A for details).

To estimate the effect of the variation of the cell pa-
rameter c, we used the molecular DFT calculation on a



5

0 20 40 60
Temperature (K)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
χ
c

(×
10
−

4
cm

3 .
m

ol
−

1 )

o-(DMTTF)2I

2× 101 3× 101 4× 101

T(K)

10−6

10−5

10−4

10−3

χ
c

(c
m

3 .
m

ol
−

1 ) Bulaevski FA
Bulaevski
Johnston et al.

Figure 4. Temperature dependence of the spin susceptibil-
ity in the low-temperature region for (o -DMTTF)2I. Below
TSP =63 K the susceptibility drops to the non-magnetic spin-
Peierls state. The plain orange line is the best fit using eq.
(3) taking α and ∆ as two independent fit parameters. The
green dashed dot and red dashed lines are the best fits to
the Bulaevski and Johnston et al. model respectively using
only δ as a fit parameter. The inset is the log-log scale of
the figure, magnifying the discrepancy of the Bulaeveski FA
model at low temperature. Analysis for (o -DMTTF)2Br and
(o -DMTTF)2Cl are provided in [37]

minimal dimer cell (see Appendix B). A 2% change of
the distance between 2 o-(DMTTF)2 molecules leads to
13% change of the exchange constant, in agreement with
the values of Jeff presented in the inset of Fig.3(b)

By incorporating the effective exchange coupling con-
stant Jeff calculated from T = 150 K to T = 300 K and
extrapolated to lower temperature into the uniform spin
chain model [52] we obtain the colored dashed lines in
Fig. 3(b). We notice that susceptibility calculated using
the extrapolated Jeff reproduces the experimental data
with a good accuracy down to T = 100 K. A small dis-
crepancy observed for T < 100 K can be attributed to
the opening of a pseudogap, which is in agreement with
the temperature where weak diffuse X-ray scattering lines
were observed [27]- a sign of a pretransitional effect.

2. Dimerization of the spin chain

For T <TSP the gapless Heisenberg uniform spin chain
progressively enters in a non-magnetic gapped stated
(S = 0) via a spin-Peierls transition [27]. The sus-
ceptibility extracted from our ESR study (χESR) below
TSP shows no significant difference from the DC suscep-
tibility from previous SQUID measurements for either
(o -DMTTF)2Br (Fig. 3) or (o -DMTTF)2Cl (see SI).
However, for (o -DMTTF)2I shows a temperature depen-
dence comparable to that in (o -DMTTF)2Br and (o -
DMTTF)2Cl (with a higher TSP) but is significantly dif-
ferent from the SQUID data.

The determination of the spin gap ∆ is of fundamental

importance since it is directly related to the dimeriza-
tion parameter δ [53, 54]. However it is a tricky problem
since it depends on the microscopic model used. The
model that is the most widely used in the literature was
developed by Bulaevski [39] and consists in the analyt-
ical calculation of the susceptibility in the Hartree-Fock
approximation. He calculated the magnon dispersion of
coupled dimers and in the low temperature approxima-
tion he provided a simple two-parameter form of the sus-
ceptibility:

χs(T ) = Nag
2µ2
B

kBT
.α(δ) exp

(
−∆B(δ)J1

kBT

)
(3)

With J1 = J(1 + δ), in cgs units and with g ≈ 2 the
pre-factor is close to 0.375. α is the amplitude factor
and ∆B .J1 is the gap.Despite its simplicity, this model
shows remarkably good agreement with modern numeri-
cal approach for large dimerization (δ > 0.5)[38, 53] but
the agreement becomes progressively worse as δ decreases
and break down for δ < 0.1. In the latter case, the rea-
son is that the magnon dispersion minimum is not at
k = 0 [53]. Independently of the range of validity of δ in
the Bulaevski’s model, one should use eq. (3) with cau-
tion. First of all, Bulaevski’s approach is essentially a
low-temperature one; the dimerization parameter δ and
the energy gap ∆ are independent of temperature. This
is, of course, not fulfilled in the entire range of existence
of the spin-Peierls state. Orignac et al. [55] showed that
∆(T ) = ∆(0) for T < 0.5TSP. The second point to take
care of is that the two parameters α (the amplitude) and
∆ (the spin gap) are not independent. Rather, both are
functions of δ, tabulated in Ref. [37, 39]. The latter fact
has been often neglected, leading to an incorrect use of
the Bulaevski model [14, 43, 56].

An example of determination of the dimerization pa-
rameter δ by different methods using χESR for (o -
DMTTF)2I is given in Fig. 4. The model labeled ”Bu-
laevski free amplitude (Bul. FA)” corresponds to eq. (3)
with α(δ) replaced by α, which is now a free parameter
independent of δ, while ∆B(δ) remains a function of δ.
It is clear that this model is incorrect and should not be
used but it was applied in the past to extract the dimer-
ization parameter of spin-Peierls systems[12, 43, 57] and
had certainly provided an overestimated δ as we will se in
the following. The fit labeled ”Bulaevski” is eq. (3) with
only δ as a free parameter as it should be used. Finally,
”Johnston et al. ” is a direct numerical calculation of
the susceptibility using TMRG with only δ as a free pa-
rameter. ”Johnston et al. ” use the Padé approximant
and the coefficients provided in Table I of Ref.[38] and
does not suffer of the approximation made by Bulaevski
for his analytical description (3) At first sight Bul. FA
seems a better fit, but a closer look at low temperature on
the log-log scale (Fig. 4 inset) detects an important dis-
crepancy with the data. On the contrary, the two other
models used, correctly show a very good agreement with
experimental data for T < 40 K. At higher temperature
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the dimerization δ(T ) decreases and the models cannot
be used in the current form any more.

Table II. Dimerimzation parameter δ(T = 0) extracted from
three different models: Bulaevski free amplitude (Bul. FA)
correspond to eq. (3) with α left as a free parameter, Bu-
laevski model is (3) with δ is the only fit parameter and the
Johnston et al. model. (see text for details)

Bul. FA Bulaevski [39] Johnston et al. [38]

(o -DMTTF)2Cl 0.17 0.088 0.083
(o -DMTTF)2Br 0.14 0.085 0.080
(o -DMTTF)2I 0.18 0.10 0.096

Let us note a large overestimation of δ in the Bul. FA
fit while Bulaevski and Johnston et al. fits produce
rather consistent values of δ, those of Bulaevski being
slightly higher.

The relation between the magnetic gap ∆ and the
dimerization parameter δ is a central problem in un-
derstanding the microscopic properties of dimerized
spin chains. It has been intensively studied in the past,
following the development of modern analytical (like
bosonization) or numerical (DMRG) approaches. It was
shown [58] that the critical behavior ∆ ∼ δ2/3 [59] must
be corrected to ∆ ∼ δ2/3/| ln δ|1/2 [60]. Note the absence
of prefactors in the early developments in the field. More
recently numerical developments have led to quantitative
description of the spin gap, like ∆/J = 2δ3/4 by Barnes
et al. [53], ∆/J = 1.94δ0.73 by Papenbrock et al. [61],
and the elegant analytical solution proposed by Orignac
[62] ∆/J = 1.723δ2/3. The validity of all these formulas
depends on the range of δ, for δ ∼ 0.1 the agreement lies
within 5%.

The particularity of spin-Peierls systems is to have a
temperature-dependent gap. Far below the transition
temperature the gap is independent of temperature and
the method presented above is sufficient to estimate ∆.
However, for 0.5TSP <∼ T < TSP the gap has to be
treated more carefully. Here we treat the temperature
dependence of the spin gap ∆(T ) following Johnston et
al. [38]. Proceeding from the temperature dependence
of the exchange constant found in III A 1, see the inset
of Fig. 3(b), we extrapolate Jeff (T ) towards lower tem-
peratures and evaluate it just above TSP. Let us denote
this value by J∗SP ). We obtain J∗SP ' 600 K for (o -
DMTTF)2Cl and (o -DMTTF)2Br and J∗SP ' 670 K for
(o -DMTTF)2I. Then δ(T ) is computed using the fit func-
tion for the alternating-exchange chain (see Table II of
Ref. 38) by finding the root for δ at each experimen-
tal point. Finally, the temperature dependence of the
spin gap ∆(T) is computed using the Barnes et al. [53]
relation, ∆(T ) = 2δ3/4J∗SP .

The temperature dependence of the alternation pa-
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Figure 5. Temperature dependence of (a) the dimeriza-
tion parameter δ and (b) the spin gap ∆ for (o -DMTTF)2I
(blue squares), (o -DMTTF)2Br (orange circles) and (o -
DMTTF)2Cl (green diamonds). The dashed lines represent
the values estimated at T = 0 K (see Table II). The inset
is the reduced temperature dependence (τ = T/TSP ) of the
reduced dimerization parameter δ̃ = δ(T )/δ(0).

rameter δ(T ) and the corresponding spin gap ∆(T ) for
(o -DMTTF)2I, (o -DMTTF)2Br and (o -DMTTF)2Cl is
given in Fig. 5. The method used to extract δ(T )
is explained in Ref.[38] and summarized here: for each
value of the susceptibility χc(T ) we solve the equation
χJ(δ, J, T ) = χc(T ) for non-vanishing value of χc. Where
χJ(δ, J, T ) is the susceptibility provided by the Johnston
et al. model. Knowing J from the Sec. III A 1 we obtain
δ as function of temperature. The dashed lines corre-
spond to the values of δ and ∆ at T = 0 K taken from
Fig. 4 and Tab. II. We notice that for T < 0.75TSP the
dashed lines are the asymptotes of δ(T ) and ∆(T ). It
is worthwhile noticing that the method described above
is valid when the susceptibility is non zero. This is the
reason why no value can be provided below about 25 K.
We show that below 0.75TSP, δ and ∆ are independent
of temperature and can be estimated by their values at
T = 0 K values. Above 0.75TSP the dimerization parame-
ter δ(T ) and the spin gap ∆(T ) decrease as T approaches
TSP, but they do not vanish at T =TSP. The data in Fig.



7

5 clearly show the existence of spin dimerization fluctu-
ations and a spin pseudogap above TSP for the three (o -
DMTTF)2X compounds of about 20% and 30% of δ(0)
and ∆(0), respectively. The fluctuation effects above TSP
seem to persist at high temperature and show a pretran-
sitional effect of the lattice confirming the observation
reported by X-ray diffusion scattering [27]. Precursor ef-
fects above TSP have been reported in both organic [63]
and inorganic [64, 65] spin-Peierls systems. Fig. 5(a)
inset shows the variation of the reduced dimerization pa-
rameter δ̃ = δ(T )/δ(0) as function of the reduced temper-
ature τ = T/TSP . Once renormalized, the dimerization
parameters of (o -DMTTF)2Cl, (o -DMTTF)2Br and (o -
DMTTF)2I present a universal thermal behavior.

Using the Barnes et al. formula [53], the temperature
dependence of δ, and the exchange coupling at low tem-
perature J∗SP , we calculate the temperature dependence
of the gap (see Fig. 5(b)). Above TSP a pseudo-gap
of about 50 K is clearly visible and tend to reduce as
T increases. Below TSP the gaps open up and become
temperature-independent below 0.75TSP, reaching 180 K
for (o -DMTTF)2Cl and (o -DMTTF)2Br and 230 K for
(o -DMTTF)2I.

B. Electronic Interaction

Let us now turn to the discussion of the low-
temperature behavior. When the systems enter in the
spin-Peierls phase, the tetramerization of the DMTTF
molecule stacks occurs. We have shown above that
this transition is continuous. Below about TSP/2 (o -
DMTTF)2X can be considered stabilized since the ∆
and δ are temperature independent. In a perfect and
infinite system, the ground state is non-magnetic (S =
0) and no ESR signal should be observed. However
in the section III A we have shown the existence of a
weak signal corresponding to some 10−4.at−1 impuri-
ties. One of the strengths of ESR is the possibility to
separate the magnetic contribution (extrinsic or intrin-
sic) and it was shown in previous studies[12–14] that
the ESR signal observed at very low temperature comes
from spin chain defects. By itself, the defect is non-
magnetic and is a break in the transnational symmetry
like a chain-end or a stacking fault of the alternation
parameter. These topological defects were extensively
studied theoretically[8, 9, 30, 66, 67] and observed by
magnetometry[68], NMR [69] and EPR [13, 70, 71].

ESR signal of the defects in (o -DMTTF)2Br is pre-
sented in Fig. 6(a). It is recorded at T = 5 K, which
is far below TSP. The signal contains the expected line
of the spin chain defect as it was reported previously
[12, 72], but more surprisingly, one can clearly see two
shoulders on both sides of the central line. The satellite
signal is only visible in (o -DMTTF)2Br. To separate and
quantify the different contributions, we used to following
procedure:

The blue line is the best fit using the derivative of a

Lorentzian eq. (S1) of the central line. To get an accurate
fit of the central line, the points close to the shoulders
have been removed from the fit procedure. Then, we have
subtracted this fit, in order to remove the contribution
of the central line from the original ESR signal. This
method shows with a good accuracy the position of the
satellite lines (black arrows) since the central line does
not perturb anymore the position of the satellites. The
angular dependence of the g-factor of the central line is
reported in figure Fig.6(b). For comparison, the g-factor
anisotropy of the uniform spin chain measured at room
temperature is also presented. The angular dependence
of the g factor can be well described by the following
relation for a g tensor with uniaxial symmetry.

g(θ) =
√
g2
‖ cos2 θ + g2

⊥ sin2 θ , (4)

Within the error limit of 10−5 the g tensors at both
temperatures are identical. However, it is important to
notice that the low temperature signal cannot be at-
tributed to the infinite chain, which is fully dimerized
at this temperature, but is rather attributed to defects
in the dimerized chain. The same angular dependence is
observed in (o -DMTTF)2Cl and (o -DMTTF)2I.

The presence of the satellite lines is more intriguing.
Such a structure is often attributed to the triplet sig-
nal [71, 73] of the dimer but this should be visible at a
temperature close to the gap. However here we are at a
much lower temperature and the excited state of the infi-
nite spin-Peierls chain must be depopulated: at T = 5 K
the relative content of spins in the first excited state for
∆Br = 180 K is 10−16 (see Fig. 5). As a consequence,
we can exclude that the satellites come from the excited
state of the spin-Peierls chains.

The angular dependence of the satellites in (o -
DMTTF)2Br is presented in Fig. 7. Fig. 7(a) shows
a series of fit residues obtained by the method presented
in Fig. 6(a). The circles present the resonance field of
the central line. We can see that the center of gravity of
the satellites follows the angular dependence of the cen-
tral line (circles). As a consequence, the satellite signal
is related to the defects of the spin chains. Using the well
resolved angular dependence of the satellite signals of (o -
DMTTF)2Br, we extract the line separation as a function
of the static field orientation (Fig. 7(b)). The error bars
are due to the difficult fitting of the central line when the
satellites are not clearly resolved as it is the case near the
magic angle (∼ 54◦). The data in Fig. 7(b) are fitted to
an Ising-like anisotropy expression, d(3 cos2 θ − 1), with
d = 4.2± 0.3 G. It important to mention that the satel-
lite signal was not resolved for (o -DMTTF)2Cl at any
angle but the linewidth of the central lines have shown
the same anisotropy at low temperature [14]. Moreover
the satellites were not reported in [14], certainly because
of saturation which prevented them for being resolved.
Intriguingly, neither the satellites nor a clear linewidth
anisotropy is observed in (o -DMTTF)2I.
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Figure 6. (a) Example of ESR signal of (o -DMTTF)2Br at T = 5 K and magnetic field H‖c. The central line has been fitted
using a derivative of a lorenzian (blue line). The residue of the fit is presented by the green line where the arrows point the two
satellite signals. (b) Angular dependence of the g-factor of the central line of defects in the spin chain measured at T = 5 K
and of the uniform spin chain line measured at T = 300 K. The green line is the best fit using eq. (4) with g‖ = 2.0019 and
g⊥ = 2.0098

Such angular dependence can be attributed to a dipole-
dipole interaction between chain defects or to a S = 1
entity like a triplon (singlet-triplet excitation) which is
split by an axial anisotropy. A pair of spins of chain
defects coming from the random distribution of the dis-
order is unlikely. Indeed, the probability to find a pair
of impurities with the concentration reported in Tab. I
is very small. For example, using the concentration of
defects in (o -DMTTF)2Br (6.6×10−4) and assuming a
simple cubic lattice, the probability of finding a random
pair is 3.9×10−4 [74] while the intensity of ESR signal
of the satellites leads to a probability of nearly 3 orders
of magnitude bigger. Random pair defects were recently
observed by ESR on the quasi-two-dimensional organic
(BEDT-TTF)2Cu[N(CN)2]I [75] but the concentration of
defects were substantially higher (1%) which leads to a
probability of pair existence of 5%.

Another explanation comes directly from the 1D na-
ture of (o -DMTTF)2X. Fig. 8 shows the local structure
of spins induced by a break in the translational symme-
try (empty circle). We consider only chains with a non-
dimerized spin spins on the left-hand side (blue spins).
On the other side of the defect, there is also a chain
(red spins). If the latter chain starts with a strong link
(J1 = J(1 + δ)), only the unpaired spin from the left side
chain contribute to the signal. However, if the right side
chain starts with a weak link (J2 = J(1−δ)) the unpaired
spins of the two finite chains are close and can interact
together with an effective coupling JP . In this scenario,
the probability of having a pair of interacting magnetic
solitons rises to 50% of the total number of solitons and
is independent of the concentration of defects [37].

To prove the triplet origin of the satellite lines we per-
formed Rabi oscillation sequence of the ESR lines. This
pulse-ESR sequence is made of 3 pulses, le first pulse
induces a coherent rotation of the spins around the mi-

crowave field axis and the next 2 pulses generate a Hanh
echo with an intensity proportional to the magnetization
at the end of the first pulse. By adding the time dimen-
sion to each field point of the ESR line (Fig. 6)(a) it is
possible to probe the nature of the spin transition even
if the ESR is not resolved[76].

Fig. 9 shows the Rabi oscillations of the defect signals
in (o -DMTTF)2Br at T = 5 K and H0‖c. Like in CW-
ESR, the microwave frequency is fixed. Here in addition
the static fieldH0 is fixed during the time of the sequence.
For H1

0 = 3458 G the central ESR line is probed, while
for H2

0 = 3454 G we probe one of the satellite lines. The
two lines have clearly different dynamics. For H1

0 (H2
0 ),

the microwave field amplitude dependence is presented in
the inset with red circles (blue squares). The dashed line
is the Rabi frequency dependence expected for a spin
S = 1/2 and the dashed dot line for the one of a spin
S = 1 using the equation [77]:

νS=1
R =

√
S(S + 1)− Sz(Sz + 1)× νS=1/2

R . (5)

Sz is the level in which the Rabi oscillation starts,
for S = 1/2, Sz = −1/2 and for S = 1, Sz = −1
and 0. In the absence of a fit parameter, we found
νR(H2

0 ) =
√

2νR(H1
0 ) confirming the S = 1 nature of the

satellite lines. A field sweep Rabi oscillation sequence is
presented in Fig. 9(b). This figure presents the contour-
plot of the Rabi frequency distribution for H0‖c and is
made of the fast Fourier transform (FFT) of the Rabi
oscillations obtained from Fig. 9(a) while changing the
static field. The dashed (dash doted) line shows where
the Rabi frequency of a spin S = 1/2 (S = 1) is expected.
This method shows without ambiguity the triplet nature
of the satellite lines with a slight anisotropy d = 4 G. In
the case of no or too weak coupling between the mag-
netic solitons proposed in Fig. 8(b) the Rabi frequency
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Figure 7. Angular dependence of the satellites of (o -
DMTTF)2Br at T = 5 K. (a) Angular dependence of the
fit residue. The circles show the resonance field of the central
line. (b) Field separation of the satellites. The plain line is
the best fit to an Ising-like expression d(3 cos2 θ − 1).
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Figure 8. Schematic representation of the spin configuration
around a non-magnetic defect in the middle of the chain. (a)
When on one side of the defect there is an unpaired spin and
on the other side the spin is paired with its neighbor, only
the unpaired spin contributes to the ESR signal. (b) When
on both sides of the defect the spins are unpaired, an effective
coupling occurs leading to a triplon.

should have been the one for S = 1
2 . Let us discus the

cases of (o -DMTTF)2Cl and (o -DMTTF)2I. CW-ESR
has shown no satellite lines, no matter what the tem-
perature and the orientation were. The field sweep Rabi
oscillation measurement shows no signature of a S = 1 in
(o -DMTTF)2I but exhibits the Rabi frequency mode of
S = 1 for (o -DMTTF)2Cl (see SI). In the latter the ESR
satellite lines are unresolved in the field dimension (this
is the reason why they were undetected by CW-ESR)
but are resolved in the frequency dimension (see Supple-
mentary Materials [37]).This confirms the presence of a
triplon state in (o -DMTTF)2Cl, assumed in Ref. [14].
It is intriguing that (o -DMTTF)2I has shown no sign
of paired solitons, contrary to (o -DMTTF)2Br and (o -
DMTTF)2Cl. A possible explanation is that in (o -
DMTTF)2I the pinned soliton is not strictly at the end of
the chain. Our model uses only explicit alternation, with
no spin lattice relaxation. However, it has been shown
theoretically by Hansen et al. [30] that if one takes the
magneto-elastic coupling into account the magnetic soli-
ton can be located either near the edges of the chain or
can be repelled toward the interior. In the latter case no
soliton pair can be formed.

Finally, we propose an estimation of the coupling be-
tween the pairs of magnetic solitons.

We have presented in Sec. III A an estimation of the
density of defects based on the Curie law. A more sensi-
tive presentation is provided by the product of the sus-
ceptibility with the temperature χT . In the case of the
susceptibility strictly follows the Curie law, the product
χT is a constant at any temperature (this is the case
of (o -DMTTF)2I in Fig. 10). However, if some spins
S = 1

2 solitons form pairs with a non-negligible coupling
constant (JP ), χT is no more temperature independent.
A naive description would be to simply considered 2 spins
S = 1

2 coupled by exchange JP . In this case the suscep-
tibility is described by the Bleaney and Bowers equation
[78]. However the microscopic structure and the N-body
nature of the soliton pairs presented in Fig. 8 is more
complex and necessitates DMRG and QMC calculations,
briefly described in Appendic C. It appears that the en-
ergy spectrum of a pair of solitons is made of a singlet
(S=0) ground state separated from the first excited state
(triplet S=1) by a small gap ∆S and then the quasi con-
tinuum by a large gap ∆. If T � ∆ we can consider only
the low lying levels : singlet-triplet. The difference with
the trivial case of two coupled spins is that the gap is
no more the direct coupling between the two neighbor-
spins but is renormalized by the exchange couplings in
the chain. QMC shows that at low enough temperature,
the susceptibility of the soliton pair can be described by
the Bleaney and Bowers formula including the gap ∆S

and DMRG calculations show that ∆S = 0.35JP .

Consequently, we fit χtotT for (o -DMTTF)2Br and (o -
DMTTF)2Cl using a weighted sum of a single and paired
solitons:
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Figure 9. (a) Rabi oscillations of the strongly correlated defects of (o -DMTTF)2Br at T = 5 K and H0‖c. The microwave
frequency is fixed and the field is set at H1
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three-pulse sequence presented in the main text for H0‖c.
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the three systems X=Br, I and Cl, obtained from cw-ESR
measurements with H‖c. The dashed lines are the best fits
to eq. (6)

χT =

 n

2
(

1 + 1
3e

∆S
kT

) + (1− n)3
8

 . (6)

with χT in emu.mol−1K units (in number of mole of
defects) n the ratio of S = 1

2 solitons forming dimers and
∆S the gap between the singlet and the first triplet (we
assume that g = 2 for simplicity). Fig. 10 shows the
best fit using n = 0.56 and ∆S = 20.3 K (JP = 59.7 K)
for (o -DMTTF)2Br and n = 0.44 and ∆S = 16.7 K
(JP = 49.1 K) for (o -DMTTF)2Cl. The values of n are
coherent with the model of a defect in the middle of the
chain (see Fig. 8) and the effective coupling JP is rather
large and could lead to a long-distance entanglement [79].

The microscopic origin of JP remains unclear and is be-
yond the scope of this article. The Ising-like anisotropy
observed in Fig. 7 can be explained by two origins: (i)
the symmetric anisotropic exchange interaction which is
consequence to the spin orbit and can be estimated by
d =

(
∆g
g

)2
JP ∼ 5 G which is in agreement with our

value of d. However, it is not clear if this formula derived
for uniform superexchange interaction remains valid for
pairs of solitons. (ii) The direct dipole-dipole interac-
tion: the soliton should not be treated as a point dipole
but rather as a distribution of local magnetization (see
Appendix C). In this way we find d = 4.0 G (see Sec.
D for details) in good agreement with the experimental
result.

IV. CONCLUSION

In conclusion, we have presented an ESR study of (o -
DMTTF)2Cl, (o -DMTTF)2Br and (o -DMTTF)2I single
crystals. At low temperatures, these three compounds
are organic gapped spin chains. In the high temperature
regime they can be treated as isotropic Heisenberg an-
tiferromagnetic uniform spin chains, provided that one
takes into account the temperature variation of the ex-
change coupling due to the contraction of the crystal-
lographic cell. We have quantified the temperature de-
pendence of the spin gap ∆ and dimerization parameter
δ and shown the existence of a pseudo gap above TSP.
Angular and temperature dependent CW-ESR measure-
ments have revealed the presence of magnetic solitons
pinned to spin chain defects. The observation of field
sweep Rabi oscillations as well as temperature depen-
dent ESR susceptibility provides evidence of two dif-
ferent kinds of strongly correlated defects. These are,
firstly, single magnetic solitons of spin S = 1

2 in the three



11

100 150 200 250 300
Temperature (K)

6.95

7.00

7.05
c

la
tt

ic
e

pa
ra

m
et

er
(Å
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Figure 11. Temperature variation of the lattice parameter c
(chain direction) for (o -DMTTF)2I and (o -DMTTF)2Br.

systems. Secondly,there are pairs of exchange-coupled
solitons in (o -DMTTF)2Br and (o -DMTTF)2Cl, whose
thermally activated S=1 state (triplon) is responsible for
the clearly visible second Rabi frequency. Unlike in 2D
and 3D media, the density of soliton pairs in a 1D sys-
tem is large - about one-half of the solitons are paired -
and interdependent to the concentration of defects. As a
consequence, it is possible to coherently manipulate these
quantum objects which could be of interest in the field
of quantum information processing.
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Appendix A: Temperature expansion of the lattice

Data collection for (o -DMTTF)2I was performed on
an APEXII Bruker-AXS diffractometer equipped with a
CCD camera and a Cryostream 700 (Oxford Cryosys-
tems). Sets of 3 ω-scans (6◦/scan, 0.5◦/frame) were
taken every 5 K, the values of the unit cell parameters
used are the refined values obtained after data reduc-
tion with the Bruker SMART program. Data collection
for (o -DMTTF)2Br was measured on a Rigaku Oxford
Diffraction SuperNova diffractometer from 300 K down
to 100 K every 50 K. In both systems the principal lattice
variation is c, with a 2% difference between high and low
temperature, while a and b change as little as 0.3% (See
SI).

Appendix B: DFT Calculations

All theoretical calculations were based on the Density
Functional Theory (DFT) and were performed with the
ORCA program package [80]. To facilitate comparisons
between theory and experiments, X-ray crystal struc-
ture of (o -DMTTF)2Br was used. Our DFT molecular
model was built considering two dimethetyltetrathiaful-
valene units together with 8 bromine counter-ions. This
model was then optimized while constraining the posi-
tions of all heavy atoms to their experimentally derived
coordinates. Only the positions of the hydrogen atoms
were relaxed because these are not reliably determined
from the X-ray structure. Geometry optimization as well
as electronic structure calculations were undertaken us-
ing the hybrid functional B3LYP [81, 82] in combination
with the TZV/P [83] basis set for all atoms, and by taking
advantage of the resolution of the identity (RI) approxi-
mation in the Split-RI-J variant [84] with the appropri-
ate Coulomb fitting sets [85]. Increased integration grids
(Grid4 and GridX4 in ORCA convention) and tight SCF
convergence criteria were used in the calculations. In
all cases, empirical dispersion corrections (D3) were in-
cluded [86]. The Heisenberg isotropic exchange coupling
constants J were evaluated from single point calcula-
tions based on the Broken Symmetry (BS) approach[87–
89] using the B3LYP functional and the TZV/P basis
set. The Yamaguchi formula[90] was used to estimate
the exchange coupling constants J based on the Heisen-
berg–Dirac–van Vleck Hamiltonian.

We used three distances between the centers of gravity
of the two (DMTTF)2 molecules: 7.06Å corresponding
the X-ray value at room temperature, 6.92Å correspond-
ing the X-ray value at 100 K and a contraction of 2%
(see Fig. 11) and 7.20Å corresponding to a fictitious di-
latation of 2% with room temperature cell.

Table III.

d (Å) JDFT (cm−1)

RX at 300K (RT) 7.06 736
RX at 100K (RT-2%) 6.92 648
Fictitious (RT+2%) 7.20 832

The exchange coupling values obtained by DFT over-
estimate the experimental values which is not surprising
since we use a simple dimer model. It is more interest-
ing to notice that a small variation of the inter molecular
distance (here 2%) induces a variation of about 13% of
JDFT as observed experimentally.
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Appendix C: DMRG and QMC

In order to explain the electron spins interactions in
the spin-Peierls phase we perform Density Matrix Renor-
malization Group (DMRG) and Quantum Monte Carlo
(QMC) simulations using the python ALPS toolkit [34].
We consider two magnetic structures corresponding to
the model presented in Fig.8 : (i) two dimerized 31-spin
chains linked by JP and (ii) one dimerized 31-spin chain
linked by JP to a dimerized 32-spin chain, represented,
respectively, by H62

SP and H63
SP . In all calculations we use

the alternation parameter δ = 0.08 (close to the exper-
imental value Tab. II) and the exchange coupling J =
1.

H62
SP =

−15∑
i=−1

[J(1 + δ)S2i−1.S2i + J(1− δ)S2i.S2i+1]

+ JPS−1.S+1

+
15∑
i=1

[J(1− δ)S2i−1.S2i + J(1 + δ)S2i.S2i+1] (C1)

H63
SP =

−15∑
i=−1

[J(1 + δ)S2i−1.S2i + J(1− δ)S2i.S2i+1]

+ JPS−1.S+1

+
15∑
i=1

[J(1 + δ)S2i−1.S2i + J(1− δ)S2i.S2i+1]

+ J(1 + δ)S31.S32 (C2)

Fig. 12(a) shows the first fifty eigenvalues of H62
SP and

H63
SP calculated for JP /J = 0.1. In both cases an im-

portant gap of energy of about ∆/J = 0.30 between the
ground state and the quasi-continuum exists and this gap
is directly related to the dimerization parameter δ by
∆/J = 2δ3/4. In the case N = 62 we can see a smaller
gap of ∆S/J = 0.035 between the ground state and the
first excited one. Fig. 12(b) shows the effect of JP /J on
the gap ∆S/J . The relation is linear and we extract a
slope of 0.35.

We used the Quantum Monte Carlo method to calcu-
late the susceptibility of H62

SP as a function of temper-
ature from 0.005 J to 0.5 J, which, taking J = 600 K
from experimental data (see Sec. III A 1) corresponds to
T = 3 K to 300 K . For this purpose we use the QMC
algorithm ”looper” which shows the best performance
for Heisenberg models. The susceptibility χ shown on
the figure 12(c) was calculated for JP = 60 K. In the
low temperature regime (T < 50 K) the susceptibility
matches with the Bleaney-Bowers formula [78] with a
gap of ∆S = 21 K. The B-B formula is the analytical
form of the susceptibility for two spins 1/2 coupled by
an isotropic exchange. Here we have two spins 1/2 made
of tens of spins coupled by JP and we showed by DMRG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0 N=62 N=63
(a)

0.0 0.2 0.4 0.6 0.8 1.0
Jeff/J

0.0

0.1

0.2

0.3

∆
s
/J

(b)
DMRG - δ = 0.08
∆S = 0.35JP

0 50 100 150 200
Temperature (K)

0.0

0.1

0.2
χ

(c)
BB ∆s = 21 K
QMC JP = 60K

Figure 12. (a) Energy spectra of a dimerized spin chain con-
taining a defect in the middle of the chain (according to model
in Fig. 8). For even number of spins the Sz = 0 are shown,
while for odd number of spins the Sz = 1

2 are presented. Cal-
culation are performed by DMRG. (b) Variation of the first
gap ∆S of the pair of solitons between the ground state and
the first excited state as function of the effective coupling JP .
(c) Susceptibility of the pair of solitons using JP = 60 K cal-
culated by QMC. At low enough temperature the susceptibil-
ity can be described by the Bleaney and Bowers formula but
with a renormalized gap (solid curve). At high temperatures
the quasi-continuum is populated and the system cannot be
treated as a pair of spins 1

2
.

∆S = 0.35JP . The B-B formula give a fair description :
21 K/60 K = 0.35 if the gap ∆S is renormalized by 0.35.

Appendix D: Dipolar field

In order to evaluate the dipole-dipole contribution to
the anisotropy parameter d, we adopted a spin distribu-
tion around the defect as shown in Fig. 13, all sites being
equally spaced with a period of a = 7 Å. The values of
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Figure 13. Local magnetization computed by DMRG of a pair
of solitons in a triplet state, S = 1, Sz = 1 pinned to a defects
in site 0.

the magnetic moments were taken from our previous cal-
culation with the DMRG code of Ref. [34]:

µ1 = 0.57µB, µ2 = −0.28µB, µ3 = 0.49µB,
µ4 = −0.26µB, µ5 = 0.36µB, etc.

with µ−i = µi. The dipole-dipole sum,

d = 4
µBa3

N∑
i=1

N∑
j=1

µiµj
(i+ j)3 , (D1)

converges rapidly as N → ∞. The final result, d = 4.0
G, is obtained with N ≥ 5. But even a quick estimate
with N = 1 produces a value that is only 10% too high,
d = µ2

1/2µBa
3 = 4.4 G. Both theoretical estimates agree

within 5% with the value deduced from the experimental
data of Fig. 7(b), d = 4.2 G.
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Jacques Friedel, 17, 332 (2016).

[22] J.-P. Pouget, P. Alemany, and E. Canadell, Mater. Horiz.
5, 590 (2018).

[23] S. Bertaina, J. H. Shim, S. Gambarelli, B. Z. Malkin, and
B. Barbara, Phys. Rev. Lett. 113, 109902 (2014).

[24] C.-E. Dutoit, A. Stepanov, J. van Tol, M. Orio, and
S. Bertaina, J. Phys. Chem. Lett. 9, 5598 (2018).

[25] A. Abderraba, R. Laversanne, E. Dupart, C. Coulon,
P. Delhaes, and C. Hauw, J. Phys. Colloques 44, C3
(1983).
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33, 1886 (1986).
[61] T. Papenbrock, T. Barnes, D. J. Dean, M. V. Stoitsov,

and M. R. Strayer, Phys. Rev. B 68, 024416 (2003).
[62] E. Orignac, Eur. Phys. J. B 39, 335 (2004).
[63] C. Rovira, J. Tarrés, J. Llorca, E. Molins, J. Veciana,

S. Yang, D. O. Cowan, C. Garrigou-Lagrange, J. Amiell,
P. Delhaes, E. Canadell, and J. P. Pouget, Phys. Rev. B
52, 8747 (1995).

[64] P. Fertey, M. Poirier, M. Castonguay, J. Jegoudez, and
A. Revcolevschi, Phys. Rev. B 57, 13698 (1998).

[65] D. Smirnov, P. Millet, J. Leotin, D. Poilblanc, J. Ri-
era, D. Augier, and P. Hansen, Phys. Rev. B 57, R11035
(1998).

[66] S. Fujimoto and S. Eggert, Phys. Rev. Lett. 92, 037206
(2004).

[67] S. Fujimoto and S. Eggert, J. Phys. Soc. Jpn. 74, 36
(2005).

[68] T. Ami, M. Crawford, R. Harlow, Z. Wang, D. Johnston,
Q. Huang, and R. Erwin, Phys. Rev. B 51, 5994 (1995).

[69] Y. Utz, F. Hammerath, R. Kraus, T. Ritschel, J. Geck,
L. Hozoi, J. van den Brink, A. Mohan, C. Hess,
K. Karmakar, S. Singh, D. Bounoua, R. Saint-Martin,
L. Pinsard-Gaudart, A. Revcolevschi, B. Büchner, and
H.-J. Grafe, Phys. Rev. B 96, 115135 (2017).

[70] A. I. Smirnov, V. N. Glazkov, L. I. Leonyuk, A. G.
Vetkin, and R. M. Eremina, J. Exp. Theor. Phys. 87,
1019 (1998).

[71] C. Coulon, P. Foury-Leylekian, J.-M. Fabre, and J.-P.
Pouget, Eur. Phys. J. B 88, 85 (2015).

[72] J. Zeisner, O. Pilone, L. Soriano, G. Gerbaud, H. Vezin,
O. Jeannin, M. Fourmigué, B. Büchner, V. Kataev,
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Supplementary Information
Electron spins interaction in the spin-Peierls phase of the organic spin chain

(o -DMTTF)2X (X = Cl, Br, I)

ESR SPECTRA

The data presented in the manuscript have been obtained by least-square fitting using this equation:

IESR = A

(
Γ cosφ

Γ2 + (H −H0)2 + (H −H0) sinφ
Γ2 + (H −H0)2

)
(S1)

where A is directly proportional to the spin susceptibility. H0 is the resonance field which using the relation
gµBH0 = hν give us the g factor. Γ is the half width at half maximum and φ the dispersion angle. Γ and φ where
mostly identical than the ones reported with a high accuracy in Ref. [27].
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Figure S1. Examples of ESR spectra recorded for (o -DMTTF)2Br at 5K, 140K and 300K. The blue line is the best fit using
eq. (2) of the main text or (S1).

Fig. S1 present some examples of data and fit curves. Note the large variation of magnetic field scale with the
temperature.

It is also important noticing the difficulty to observe the satellite lines which tend to saturate easily and so can
become unresolved if the microwave power is to large (see Fig S2).
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Figure S2. Microwave power dependence of ESR signal is (o -DMTTF)2Br at 7K.

ANALYSIS OF SUSCEPTIBILITY

Figure S3 presents the corrected susceptibility of (o -DMTTF)2Cl as a function of temperature. The spin chain is
uniform above TSP = 50 K. In this temperature range we used the method described in the section III.A.1 of main
text to evaluate Jeff (T ) presented in the inset of figure S3 . For T < TSP the Spin-Peierls transition occurs and the
gapless uniform spin chains become progressively dimerized and gapped spin chains. The EPR susceptibility is in a
good agreement with DC susceptibility from previous SQUID measurements [27].

The data from figure S4 are adapted from the Bulaevskii [39] calculations on dimerized spin chains. In the Hartree-
Fock approximation and from the hamiltonian (S2) he evaluated the temperature dependences of the susceptibilities
for different values of γ. At low temperature the analytic form x(T, γ) is a good approximation with the values α(γ)
and ∆(γ) presented in figure S4.

H =
∑
n

S2n−1.S2n + γS2n.S2n+1 (S2)

x(T, γ) = α(γ)
T

eJmax∆(γ)/T (S3)

Figure S6 regroups the same data and fit parameters as in the figure 10 of the main text. On the figure S6.b
we obtain χtot-χCurie by substracting the Curie law part of eq.(6) to χtot. For (o -DMTTF)2Cl and (o -DMTTF)2Br
χtot-χCurie follow the characteristic form of Bowers-Bleaney [78] model respectively with ∆s(Cl) = 16.7 K and ∆s(Br)
= 20.3 K. The susceptibility χtot-χCurie of (o -DMTTF)2I is approximatively equal to zero in the temperature range
[5 K, 25 K] and for this reason we think no S=1 gapped system exist in it.

An example of determination of the dimerization parameter δ by different methods using χESR for (o -DMTTF)2Br
is given in fig.S5. The model labeled ”Bulaevski free amplitude (Bul. FA)” corresponds to eq. (3) with α and ∆B
regarded as independent while ”Bulaevski” is eq. (3) with only δ as a free parameter. ”Johnston et al. ” is a direct
numerical calculation of the susceptibility using TMRG with only δ as a free parameter. At first sight Bul. FA seems
a better fit, but a closer look at low temperature on the log-log scale (Fig.S5 inset) detects an important discrepancy
with the data. On the contrary, the two other models used, correctly show a very good agreement with experimental
data for T < 40 K. At higher temperature the dimerization δ(T) decreases and the models cannot be used in the
current form any more. Let us note a large overestimation of δ in the Bul. FA it while Bulaevski and Johnston et al.
fits produce rather consistent values of δ, those of Bulaevski being slightly higher.
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Figure S3. Temperature dependence of the spin susceptibility corrected by the Curie tail of S = 1/2 defects χc of (o -
DMTTF)2Cl. The dashed lines are the theoretical values of the susceptibility using exchange constants Jeff . The plain line
is the susceptibility obtained by SQUID [27]
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Figure S4. Bulaevski calculation [39] of a dimerized chain. The intensity α and gap ∆ as function of γ= 1−δ
1+δ calculated by

Bulaevskii are presented by squares. The plain lines are polynomial fit used to interpolate data to any values of γ .
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Figure S5. (a) Temperature dependence of the spin susceptibility in the low-temperature region for (o -DMTTF)2Br. (b)
Temperature dependence of the spin susceptibility in the low-temperature region for (o -DMTTF)2Cl. Below TSP = 50 K the
susceptibility drops to the non-magnetic spin-Peierls state. The plain orange lines are the best fits using eq.(3) taking α and
∆ as two independent fit parameters. The green dashed dots and red dashed lines are the best fits for the Bulaevskii and
Johnston et al. model respectively using only δ as a fit parameter. The insets are the log-log scale of the figures, magnifying
the discrepancy of the Bulaevskii FA model at low temperature.



18

5 10 15 20
Temperature (K)

0.00

0.02

0.04

0.06

0.08
χ
to
t

(c
m

3 .
m

ol
−

1 )
(a) X = Br

X = I
X = Cl

5 10 15 20 25
Temperature (K)

0.000

0.002

0.004

0.006

0.008

0.010

χ
to
t
-χ
C
u
r
ie

(c
m

3 .
m

ol
−

1 ) (b)

X = Br
X = I
X = Cl

Figure S6. (a) Temperature dependence of the spin susceptibility in the low-temperature region for (o -DMTTF)2Br, X =
Cl, Br and I. The dashed lines are the best fit using eq.(6). (b) Difference between the susceptibility χtot and the Curie law
component in eq.(6). The dashed lines are the best fit of χtot using eq.(6) without the Curie law component.
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Figure S7. Image plot of the FFT of the Rabi oscillations of (o -DMTTF)2I for H0 // c, T = 5.8 K and hmw = 4 G.We used
the three-pulse sequence described in experimental details.
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Figure S8. Image plot of the FFT of the Rabi oscillations of (o -DMTTF)2Br for H0 // c, T = 5.4 K and hmw = 2.7 G.We
used the three-pulse sequence described in experimental details.

RABI FIELD SWEEP

The figure S7,S8 and S9 show the FFT of the Rabi oscillations on (o -DMTTF)2X (X = Cl, Br and I) sweeping the
magnetic field. We can clearly identify two different Rabi frequencies at νS=1/2

R = 7.6 MHz and νS=1
R = 11 MHz in

(o -DMTTF)2Br. The two spots attributed to S = 1 are separated by ∼ 8 G. On (o -DMTTF)2Cl the S= 1/2 system
oscillates at νS=1/2

R = 6.1 MHz and one can see a faint large spot at νS=1
R = 8.5 MHz . The figure S7 confirms that

only S = 1/2 exist in (o -DMTTF)2I only a spot at νS=1/2
R = 11 MHz is visible.
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Figure S9. Image plot of the FFT of the Rabi oscillations of (o -DMTTF)2Cl for H0 //, T = 5.5 K and hmw = 0.75 G .We
used the three-pulse sequence described in experimental details.
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Figure S10. (a) Example of ESR signal of for(o -DMTTF)2Cl and (b) (o -DMTTF)2I at T = 7 K and magnetic field H // c.
The central lines have been fitted using a derivative of a lorentzian (orange lines). The residues of the fits are represented by
the green line.

EPR SPECTRA, FIT AND RESIDUE

On the figure S10 the spectra of (o -DMTTF)2Cl and (o -DMTTF)2I are fitted with a dispersive lorentzian model
are presented. This fit is really suitable for (o -DMTTF)2Cl for every orientations and gives a very small residue. The
(o -DMTTF)2I residue is bigger because the line is not exactly lorentzian.By looking at the angular dependence ... on
the figure 7 of the main text.

PROBABILITY OF PAIRED AND SINGLE SOLITONS

In the main text we have provide an explanation of 50/50% change for having a paired or a single soliton. Here we
list all the possible configurations with: odd number of spins with the soliton on the right OR of on the left OL and
the even number of spins with strong links on the edge ES or weak links EW . Only the result around the defect is
considered. 8 configurations give a single soliton and 4 give paired solitons leading to 50/50%
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Figure S11. Angular dependence of the fit residue of (o -DMTTF)2Cl (left) and (o -DMTTF)2I (right) at 7 K. The circles show
the resonance field of the central line.

Table S1. List of the configurations. The defect is between the ”left chain” and the ”right chain”. Around the defect, the spin
chain ca be odd number of spins with the non dimerized spin on the left OL or the right OR, or even number of spins with
strong link ES or weak link EW on the edge.

Left chain Right chain Nature

EW EW Paired
EW ES Single
EW OL Paired
EW OR Single
ES EW Single
ES ES None
ES OL Single
ES OR None
OL EW Single
OL ES None
OL OL Single
OL OR None
OR EW Paired
OR ES Single
OR OL Paired
OR OR Single
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PYTHON CODE FOR JOHNSTON ET AL. SUSCEPTIBILITY

#!/ usr / bin / python
# -*- coding : utf -8 -*-

import numpy as np

def chi_J (t, a):
""" Chi_star as a function of temperature according to
Johnston et al. ( 2000 ) p. 9578 for S = 1/2 HAF chain
t ... reduced temperature ( k_B*T/ Jmax )
a ... asymmetry parameter alpha = (J2/J1) =(1- delta )/(1+ delta )
values for Nmn and Dmn parameters are taken from Table II in Johnston et al.
( 2000 ) """

delta_fit = 1. - 0.5 * a - 2. * a ** 2 + 1.5 * a ** 3
g1 = 0. 38658545
g2 = -0. 20727806
delta_0 = (1. - a) ** 0.75 * (1. + a) ** 0.25 + g1 * a * (1. - a) \
+ g2 * a ** 2 * (1. - a) ** 2
N0 = 1.
N1 = 0. 63427990 - 2. 06777217 * a - 0. 70972219 * a ** 2 + 4. 89720885 \
* a ** 3 - 2. 80783223 * a ** 4
N2 = 0. 18776962 - 2. 84847225 * a + 5. 96899688 * a ** 2 - 3. 85145137 \
* a ** 3 + 0. 64055849 * a ** 4
N3 = 0. 033603617 - 0. 757981757 * a + 4. 137970390 * a ** 2 \
- 6. 100241386 * a ** 3 + 2. 701116573 * a ** 4
N4 = 0. 0038611069 + 0. 5750352896 * a - 2. 3359243110 * a ** 2 \
+ 2. 934083364 * a ** 3 - 1. 1756629304 * a ** 4
N5 = 0. 00027331430 - 0. 10724895512 * a + 0. 40345647304 * a ** 2 \
- 0. 48608843641 * a ** 3 + 0. 18972153852 * a ** 4
N6 = 0. 00578123759 * a - 0. 02313572892 * a ** 2 + 0. 02892774508 * a \
** 3 - 0. 01157325374 * a ** 4
N71 = 2. 59870347E -7
N72 = -2. 39236193E -7
sum_Nn = N0 + N1 / t + N2 / t ** 2 + N3 / t ** 3 + N4 / t ** 4 + N5 \
/ t ** 5 + N6 / t ** 6
D0 = 1.
D1 = -0. 11572010 - 1. 31777217 * a + 1. 29027781 * a ** 2 \
+ 3. 39720885 * a ** 3 - 2. 80783223 * a ** 4
D2 = 0. 08705969 - 1. 44693321 * a + 5. 09401919 * a ** 2 \
- 10. 51861382 * a ** 3 + 8. 97655318 * a ** 4 + 5. 75312680 * a \
** 5 - 11. 83647774 * a ** 6 + 4. 21174835 * a ** 7
D3 = 0. 00563137 + 0. 65986015 * a - 1. 38069533 * a ** 2 - 0. 09849603 \
* a ** 3 + 7. 54214913 * a ** 4 - 22. 31810507 * a ** 5 \
+ 27. 60773633 * a ** 6 - 6. 39966673 * a ** 7 - 15. 69691721 * a \
** 8 + 13. 37035665 * a ** 9 - 3. 15881126 * a ** 10
D4 = 0. 0010408866 + 0. 1008789796 * a - 0. 9188446197 * a ** 2 \
+ 1. 6052570070 * a ** 3 - 0. 7511481272 * a ** 4
D5 = 0. 0000683286 - 0. 1410232710 * a + 0. 6939435034 * a ** 2 \
- 0. 9608700949 * a ** 3 + 0. 4106951428 * a ** 4
D6 = 0. 0367159872 * a - 0. 1540749976 * a ** 2 + 0. 1982667100 * a \
** 3 - 0. 0806430233 * a ** 4
D7 = -0. 00314381636 * a + 0. 01140642324 * a ** 2 - 0. 01338139741 \
* a ** 3 + 0. 00511879053 * a ** 4
D81 = 1. 25124679E -7
D82 = -1. 03824523E -7
sum_Dn = D0 + D1 * t ** -1 + D2 * t ** -2 + D3 * t ** -3 + D4 * t \
** -4 + D5 * t ** -5 + D6 * t ** -6 + D7 * t ** -7
y = 4. 69918784
z = 3. 55692695
Pade_approx = ( sum_Nn + (N71 * a + N72 * a ** 2) * ( delta_0 / t)
** y * t ** -7) / ( sum_Dn + (D81 * a + D82 * a ** 2)
* ( delta_0 / t) ** z * np.exp (( delta_0 - delta_fit ) / t)
* t ** -8)
chi_star = Pade_approx * np.exp(- delta_fit / t) / (4 * t)
return 0.3751 * 2.01 ** 2 / J * chi_star
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