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Abstract 

The	dynamic	thermal	behaviour	of	the	buildings	can	be	represented	by	thermal	networks.	These	

oriented	weighted	graphs	are	graphical	representations	of	the	set	of	equations	of	heat	transfer	

by	 conduction,	 convection,	 radiation	 and	 advection.	 Techniques	 for	 linearizing	 the	 models,	

especially	 the	 radiative	 heat	 exchange,	 are	 shown.	 Being	 linear	 (or	 linearized)	 models,	 the	

thermal	 networks	 can	be	described	by	 a	 set	 of	matrices	 and	 vectors.	An	original	method	 for	

assembling	the	thermal	networks	by	merging	specified	nodes	is	introduced.	The	advantage	of	

assembling	over	coupling	is	that	the	obtained	model	represents	a	single	set	of	equations	which	

can	 be	 analysed.	 Then,	 it	 is	 shown	 how	 to	 transform	 thermal	 networks	 into	 state-space	

representation.	

	

1 Introduction 

Dynamic	models	are	widely	used	for	optimization	of	energy	consumption	in	buildings,	both	in	

design	and	operation	phase.	A	vast	literature	exists	on	modelling	and	software	implementation	

for	thermal	simulation	of	buildings	based	of	physical	laws	of	energy	and	mass	transfer	(Clarke,	

2001;	EnergyPlus,	2015;	TRNSYS	17,	2009).		

	

The	design	of	control	systems	requires	thermal	models	of	the	building.	Linear	Time	Invariant	

(LTI)	models,	such	as	state-space	representations,	transfer	functions	or	zero-pole-gain	models,	

are	widely	used	 for	 this	aim.	However,	obtaining	LTI	models	 for	 the	 thermal	behaviour	of	he	

buildings	is	difficult	for	two	reasons.	First,	buildings	are	complex	objects	modelled	by	a	set	of	

partial	 differential	 equations	 and	 nonlinear	 functions	 that	 describe	 the	 heat	 transfer	 by	

conduction,	 convection	 and	 radiation	 and	 energy	 transport	 by	 advection.	 For	 the	 range	 of	

variables	 involved	 in	heat	 transfer	occurring	 in	buildings,	 these	 equations	 can	be	 considered	

linear	or	are	locally	linearizable.	The	problem	is	to	obtain	the	models	for	a	whole	building	by	

using	 the	 models	 of	 the	 components.	 Second,	 the	 models	 used	 in	 heat	 transfer	 are	 thermal	

networks,	while	the	models	used	in	control	theory	are	LTI	models.	The	problem	is	to	transform	

models	with	hundreds	of	parameters	from	thermal	networks	to	LTI	representation.	

	

This	chapter	deals	with	these	two	problems.	It	presents	two	algorithms,	one	for	assembling	the	

thermal	 circuits	 and	 another	 for	 extracting	 the	 state-space	 representation	 from	 the	 thermal	
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circuit.	Although	the	examples	are	given	for	thermal	models	of	buildings,	the	two	algorithms	are	

of	general	interest.	

	

2 Thermal networks 

There	are	three	forms	of	heat	transfer:	conduction,	convection	and	radiation.	Heat	is	also	carried	

by	mass	 flow	 or	 advection.	 	 Heat	 transfer	 can	 be	modelled	 by	 thermal	 circuits	 or	 networks	

composed	 of	 nodes	 and	 branches.	 The	 nodes,	 which	may	 have	 capacities,	 are	 connected	 by	

conductances.	 There	 are	 two	 type	 of	 sources	 in	 the	 thermal	 networks:	 temperature	 (on	 the	

branches)	and	heat	flow	rate	sources	(connected	to	nodes).		

	

	
Figure	1	Sources	of:	a)	temperature;	b)	heat	flow	rate.	

	

2.1 Heat sources 

2.1.1 Temperature sources 

A	temperature	source	(Figure	1a)	represents	a	difference	of	temperature	on	a	branch	which	does	

not	change	with	the	flow	rate	crossing	the	branch.	In	the	case	of	buildings,	typically	they	model:	

- outdoor	air	which	does	not	change	its	temperature	with	the	temperature	of	the	surfaces	

of	the	buildings;	

- temperature	of	the	ground	at	a	depth	at	which	it	is	not	influenced	by	the	building;	

- adjacent	spaces	that	have	their	temperature	controlled	by	thermostats.	

	

2.1.2 Heat flow rate sources 

A	heat	flow	rate	source	(Figure	1b)	represents	a	thermal	energy	rate	that	does	not	change	with	

the	temperature	node	in	which	it	is	entering.	In	the	case	of	buildings,	typically	they	model:	

- +
!!
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- solar	(or	short	wave)	radiation	on	the	surfaces	of	the	building;	

- electrical	power	from	household	appliances	which	is	transferred	to	the	indoor	air	through	

convection;	

- heat	transferred	through	convection	from	occupants	to	the	indoor	air.	

	

The	solar	(or	short	wave)	radiation	in	a	building	is	entering	through	the	windows,	touches	some	

surface	of	the	indoor	walls	and	then	it	is	multi-reflected.	This	heat	flow	rate	is	modelled	by	heat	

flow	rate	 sources.	For	 finding	 the	values	of	 these	 sources,	 let	us	 consider	 radiation	exchange	

between	 opaque,	 diffuse,	 grey	 surfaces	 in	 an	 enclosure	 formed	 by	𝑗 = 1… 	𝑛 	surfaces	𝑆! 	with	

reflection	coefficient	𝜌! .	The	view	factors	between	the	surfaces	are		𝐹"! .	The	direct	irradiance	of	

each	surface	is	𝐸!#.	The	total	thermal	flux	received	by	the	surface	𝑆" 	directly	and	after	reflection	

is			

𝑆"𝐸" = 𝑆"𝐸"# +,𝐹!"𝑆!𝜌!𝐸!

$

!%&

 (1)	

	

By	using	the	reciprocity	relation	for	view	factors,	𝐹"!𝑆" = 𝐹!"𝑆! ,	equation	(1)	becomes:	

𝐸" −,𝐹"!𝜌!𝐸!

$

!%&

= 𝐸"# (2)	

	

The	set	of	equations	(2)	can	be	written	in	matrix	form	

.

1 − 𝜌&𝐹&& −𝜌'𝐹&' … −𝜌$𝐹&$
−𝜌&𝐹'& 1 − 𝜌'𝐹'& … −𝜌$𝐹'$
… … … …

−𝜌&𝐹&$ −𝜌'𝐹'$ … 1 − 𝜌$𝐹$$

/ .

𝐸&
𝐸'
…
𝐸$

/ =

⎣
⎢
⎢
⎡𝐸&

#

𝐸'#
…
𝐸$#⎦
⎥
⎥
⎤
 (3)	

or	

(𝐈 − 𝐅𝛒)𝐞 = 𝐞𝟎 (4)	

where 

𝐈 = .

1 0 … 0
0 1 … 0
… … … …
0 0 … 1

/ ; 𝐅 = .

𝐹&& 𝐹&' … 𝐹&$
𝐹'& 𝐹'& … 𝐹'$
… … … …
𝐹&$ 𝐹'$ … 𝐹$$

/ 	; 𝛒 = .

𝜌& 0 … 0
0 𝜌' … 0
… … … …
0 0 … 𝜌)

/  (5)	

and the vectors 
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𝐄 = .

𝐸&
𝐸'
…
𝐸$

/ 	; 𝐄𝟎 =

⎣
⎢
⎢
⎡𝐸&

#

𝐸'#
…
𝐸$#⎦
⎥
⎥
⎤
 (6)	

 

The vector of irradiance of the surfaces is then 

𝐄 = (𝐈 − 𝐅𝛒)*𝟏	𝐄𝟎 (7)	

	

Then,	the	heat	flow	rate	source	for	each	surface	𝑆" 	is	𝑞" = 𝐸"𝑆" .	

	

Calculating	the	view	factors	𝐹"! 	may	be	complicated	(Bergman,	et	al.,	2011).	A	simple	but	rough	

estimation	for	rooms	with	planar	surfaces	is		

𝐹"! ≅
𝑆!

∑ 𝑆,,-!
; 	𝐹"" = 0	 (8)	

which	 complies	 with	 the	 summation	 rule	 of	 view	 factors,	∑ 𝐹"!$
!%& = 1 ,	 but	 not	 with	 the	

reciprocity	relation,	𝐹"!𝑆" = 𝐹!"𝑆! .	Another	simplified	estimation,	

𝐹"! ≅
𝑆!

∑ 𝑆,,
	 (9)	

complies	with	the	summation	rule	and	with	reciprocity	relation	but	results	in	𝐹"" ≠ 0.	

	

2.2 Heat resistances (or conductances) 

The	three	modes	of	heat	transfer	(conduction,	convection	and	radiation)	and	the	heat	advection	

can	be	modelled	by	thermal	resistances	or	conductances	(Figure	1).		
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Figure	 2	 Conductances	 in	 heat	 transfer	 and	 energy	 advection:	 a)	conduction;	 b)	convection;	

c)	radiation;	d)	advection.	

2.2.1 Conduction 

Thermal	conduction	is	the	heat	diffusion	in	solids	in	the	direction	of	the	temperature	gradient	

(Figure	1a).	Fourier	law,	the	equation	relating	the	thermal	heat	flow	rate	in	a	direction	𝑥,	𝑞. ,	to	

the	temperature	gradient,	𝑑𝜃/𝑑𝑥,	in	the	direction	𝑥	is:	

𝑞. = −𝜅𝑆
𝑑𝜃
𝑑𝑥	 (10)	

where	𝑆	is	the	area	of	the	surface	perpendicular	to	the	heat	flow	rate	𝑞. .	The	minus	sign	shows	

that	heat	transfer	is	from	high	to	low	temperature.		

	
Figure	3	Steady	state	thermal	conduction:	a)	stream	tube;	b)	thermal	network	model.	

Let	us	consider	stationary	conduction	in	a	stream	tube	in	a	homogenous	and	isotropic	material	

without	internal	heat	sources	(Figure	3a).	Since	the	heat	flow	rate	𝑞	is	conserved,	Fourier	law	in	

section	𝑠	of	the	streamline	is		

(")

$! $"

%#$ = %!"

$! > $" $! = $% > $" = (&)&

$% %#' = %!"M
ov

in
g 

flu
id

(*)

Convection

%!" =
+
,- $! −$"

%!" = ℎ- $! −$"

0!(; 	$!; -!

0"(; 	$"; -"

3!"

3"!

%)$ = %!"

%!" = 44(33!"-!($! −$")
								= 44(+3"!-"($! −$")

(6)
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%,$ = %!"
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𝑞 = −𝜅𝑆
𝑑𝜃
𝑑𝑠 	 (11)	

where	 the	 conductivity	 𝜅 = 𝜅(𝑠) 	and	 the	 area	 surface	 𝑆 = 𝑆(𝑠) 	depend	 on	 the	 curvilinear	

coordinate	𝑠.	By	separating	the	variables,	equation	(11)	becomes:		

𝑞
𝑑𝑠
𝜅𝑆 = −𝑑𝜃	 (12)	

	

By	integrating	the	equation	(12)	from	𝑠#	to	𝑠,	the	temperature	variation	with	the	distance,	

𝑞J
𝑑𝑠
𝜅𝑆

/!

/"
= −J 𝑑𝜃

0!

0"
	 (13)	

can	be	written	as		

𝑞𝑅 = 𝜃# − 𝜃	 (14)	

where		

𝑅 = J
𝑑𝑠
𝜅𝑆

/

/"
	 (15)	

is	the	thermal	resistance	of	the	stream	tube	between	𝑠#	and	𝑠.	

	

If	there	are	internal	sources,	the	variation	of	the	heat	flow	rate	along	the	curvilinear	coordinate	

𝑑𝑠	is	

𝑑𝑞 = 𝑝	𝑑𝑉	 (16)	

where 𝑑𝑉 is the infinitesimal volume. If 𝑑𝑠 → 0, then 𝑑𝑉 = 𝑆	𝑑𝑠 + 𝑑𝑆	𝑑𝑠. By integrating equation 
(16)  between 𝑠# and 𝑠, ∫ 𝑑𝑞1

1"
= ∫ 𝑝	𝑆	𝑑𝑠/

/"
, it becomes : 

𝑞(𝑠) = J 𝑝	𝑆	𝑑𝑠
/

/"
+ 𝑞# (17)  

 

The	flow	rate	getting	out	through	the	surface	𝑆&	is:	

𝑞& = J 𝑝	𝑆	𝑑𝑠
/!

/"
+ 𝑞# (18) 

where	𝑞# 	is	 the	 heat	 flow	 rate	 entering	 through	 the	 surface	𝑆# .	 Substituting	 (18)	 in	 (11),	we	

obtain	after	integration	
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𝜃& = J
1
𝜅𝑆 PJ −𝑝	𝑆	𝑑𝑠′

/

/"
R 𝑑𝑠

/!

/"
− 𝑞#J

1
𝜅𝑆 𝑑𝑠

/!

/"
+ 𝜃# (19) 

	

By	substituting	in	(19)	the	expression	of	thermal	resistances	given	by	equation	(15),		

𝑅# = J
𝑑𝑠
𝜅𝑆

/!

/"
	 (20)	

we	obtain	

𝜃& = −J
1
𝜅𝑆 PJ 𝑝	𝑆	𝑑𝑠′

/

/"
R𝑑𝑠

/!

/"
− 𝑅#𝑞# + 𝜃# (21) 

	

Equations	(18)	and	(21)	can	be	represented	by	the	thermal	circuit	presented	in	Figure	3b	where	

the	heat	rate	low	source	is	

𝑓& = J 𝑝	𝑆	𝑑𝑠
/

/"
 (22) 

and	the	temperature	source	is	

𝑏# = J
1
𝜅𝑆 PJ 𝑝	𝑆	𝑑𝑠′

/

/"
R𝑑𝑠

/!

/"
 (23) 

	

Equation	(23)	can	be	integrated	by	parts.	By	noting	𝑢 ≡ ∫ 𝑝𝑆𝑑𝑠/!
/"

	and	𝑣2 ≡ &
34
	,	the	integration	by	

parts	∫𝑢𝑣′𝑑𝑠 = 𝑢𝑣 − ∫𝑢′𝑣𝑑𝑠	of	equation	(23)	becomes	

𝑏# = −XJ 𝑝𝑆𝑑𝑠

/!

/"

YXJ
1
𝜅𝑆 𝑑𝑠

/!

/"

Y + J 𝑝𝑆 XJ
1
𝜅𝑆

/

/"

𝑑𝑠′Y𝑑𝑠

/!

/"

 (24) 

	

By	substituting	 in	 (24)	 the	expressions	of	𝑅	given	by	equation	 (15)	and	𝑅# 	given	by	equation	

(20),	we	obtain:	

𝑏# = −𝑅# J 𝑝	𝑆	𝑑𝑠

/!

/"

+ J 𝑅	𝑝	𝑆	𝑑𝑠

/!

/"

 (25) 

	

With	these	notations,	equation	(18)	becomes	

𝑞& = 𝑞# + 𝑓& (26) 

and	equation	(21)	becomes	
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𝜃# − 𝜃& + 𝑏# = 𝑅#𝑞# (27) 

where		

𝑒# = 𝜃# − 𝜃& + 𝑏# (28) 

is	the	difference	of	temperature	across	the	thermal	resistance	𝑅#.	

	

2.2.2 Convection 

Convection	implies	heat	transfer	in	fluids	(Figure	1b).	If	steady	state	is	considered,	Newton’s	law	

of	convection	is	used,	which	is	a	phenomenological	simplification	having	an	expression	similar	

to	Fourier	law:	

𝑞 = ℎ𝑆(𝜃# − 𝜃&) (29) 

where	ℎ	is	the	convective	coefficient	determined	experimentally	(Bergman,	et	al.,	2011).	Typical	

values	of	the	heat	convection	coefficient	are	ℎ" = 8	W/m'K	inside	and	ℎ5 = 25	W/m'K	outside	

the	building	(Clarke,	2001).	

	

2.2.3 Long wave radiation 

Long	wave	radiation	exchange	is	between	two	surfaces	that	are	facing	each	other	and	that	have	

different	temperatures	(Figure	1c).	The	radiative	heat	flow	rate	between	two	black	body	surfaces	

𝑖	and	𝑗	is	(Bergman,	et	al.,	2011)	

𝑞"! = 𝑆"𝐹"!(𝑀"
5 −𝑀!5) (30) 

where		

	 𝑆" 	is	the	area	of	surface;	

	 𝐹"! 		 -	view	factor	between	surface	𝑖	and	surface	𝑗;	

	 𝑀"
5	and	𝑀!5		-	the	black	body	radiant	emittance	of	the	surfaces	𝑖	and	𝑗,	respectively.	

	

By	using	Stefan	–	Boltzmann	law,	

𝑀 = 𝜎𝑇6 (31) 

where	𝜎	is	 Stefan	–	Boltzmann	constant	and	𝑇	is	 the	 temperature	of	 the	 surface	expressed	 in	

kelvin,	equation	(30)	becomes	

𝑞"! = 𝑆"𝐹"!𝜎(𝑇"6 − 𝑇!6) (32) 

	

The	two	temperatures	𝑇"6	and	𝑇!6	may	be	linearized	around	a	mean	value	𝑇f,	

𝑇"6 = 𝑇f6 + 4𝑇f)(𝑇" − 𝑇f)		 (33) 
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and	

𝑇!6 = 𝑇f6 + 4𝑇f)(𝑇! − 𝑇f)		 (34) 

	

By	subtracting	equation	(34)	from	(33),	we	obtain	

𝑇"6 − 𝑇!6 = 4𝑇f)(𝑇" − 𝑇!)		 (35) 

	

The	exact	value	of	the	mean	value	𝑇f	can	be	obtained	from	the	equivalence	of	equation	(35)	with		

𝑇"6 − 𝑇!6 = (𝑇"' + 𝑇!')(𝑇" + 𝑇!)(𝑇" − 𝑇!)		 (36) 

as	

𝑇f = h&
6
(𝑇"' + 𝑇!')(𝑇" + 𝑇!)

# 		 (37) 

	

Substituting	(37)	in	(32),	we	obtain	the	linear	expression	of	the	heat	flow	rate:	

𝑞"! = 𝑆"𝐹"!𝜎4𝑇f)(𝑇" − 𝑇!) (38) 

where	 𝑆"𝐹"!𝜎4𝑇f) 	may	 be	 considered	 as	 a	 thermal	 conductance.	 For	 15	°C < 𝜃 < 30	°C ,	 i.e.	

288.15	K < 𝑇f < 303.15	K ,	 the	 value	 of	𝜎4𝑇f) 	is	 about	5	W/m'K ,	 more	 exactly	5.41 < 𝜎4𝑇f) <

6.31	W/m'K.	

	

The	radiosity	of	a	surface	represents	the	radiative	fluxes	leaving	an	opaque,	diffuse,	grey	body	

surface	

𝐽" = 𝜀𝑀"
5 + 𝜌"𝐸" (39) 

where		

	 𝜀"𝑀"
5 	is	 the	 emitted	 radiant	 flux,	 with	𝜀" 	the	 emissivity	 and	𝑀"

5 	the	 black	 body	 radiant	

emittance	of	the	surface	𝑖;	

𝜌"𝐸" 	–	the	reflected	radiant	flux,	with	𝜌" 	the	reflectivity	and	𝐸" 	the	incident	radiant	flux	on	

the	surface.		

	

The	 radiative	 exchange	 between	 two	 opaque,	 diffuse,	 grey	 surfaces	 may	 be	 expressed	 by	 a	

equation	similar	to	(30):	

𝑞"! = 𝑆"𝐹"!(𝐽" − 𝐽!) (40) 

	

Following	the	same	reasoning	as	before,	the	linear	expression	of	(40)	is	
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𝑞"! = 𝑆"𝐹"!4𝜎𝑇f)(𝐽" − 𝐽!) (41) 

where	𝑇f	is	given	by	(37).		

	

	
Figure	 4	 Radiation	 networks	 and	 their	 transformation	 to	 thermal	 networks:	 a)	 an	 example	 of	

radiation	network;	b)	same	network	as	in	(a)	but	arranged	to	have	a	source	of	emittance	on	branch;	

c)	 thermal	 network	 of	 the	 radiation	 network	 from	 (b)	 –	 the	 sources	 and	 the	 conductances	 are	

changed.		

An	example	of	transforming	a	radiative	network	into	a	thermal	network	is	given	in	Figure	4.	The	

conductances	for	the	radiation	network	are:	

𝐺& =
7!

&*7!
𝑆&;	𝐺' = 𝐹&'𝑆&;	𝐺) =

7$
&*7$

𝑆';	𝐺6 = 𝐹&)𝑆&;	𝐺8 = 𝐹')𝑆'	 (42) 

	The	oriented	incidence	matrix	𝐀,	the	conductance	matrix	𝐆,	and	the	vector	of	inputs	𝐛	are:	

𝐀 =

⎣
⎢
⎢
⎢
⎡
1 0

−1 1
0 1

−1 0
0 −1⎦

⎥
⎥
⎥
⎤
;		𝐆 =

⎣
⎢
⎢
⎢
⎡
𝐺& 0 0 0 0
0 𝐺' 0 0 0
0 0 𝐺) 0 0
0 0 0 𝐺6 0
0 0 0 0 𝐺6⎦

⎥
⎥
⎥
⎤

;	𝐛 =

⎣
⎢
⎢
⎢
⎡
𝑀&
5

0
𝑀'
5

−𝑀)
5

−𝑀)
5⎦
⎥
⎥
⎥
⎤

	 (43) 

respectively	(see	section	3.2	for	their	definition).	The	radiosities	𝐣 ≡ [𝐽& 𝐽']9 	are	given	by:	

𝐣 = (𝐀9𝐆𝐀)*&𝐀9𝐆𝐛	 (44) 

(see	4.1	for	details).	

	

The	radiative	network,	in	which	the	unknowns	are	radiosities,	can	be	transformed	into	a	thermal	

network,	in	which	the	unknowns	in	the	nodes	are	temperatures,	by	using	the	transformations	

for	emittances	and	radiosities	

𝑀5 = 𝜎𝑇6	and	𝐽 = 𝜎𝜃6	 (45) 

where	𝑇	is	a	temperature	source	and	𝜃	is	an	unknown	temperature.	The	conductances	for	the	

temperature	network	become	

𝐺& =
7!

&*7!
𝑆&𝜎4𝑇f) ;	 𝐺' = 𝐹&'𝑆&𝜎4𝑇f) ;	 𝐺) =

7$
&*7$

𝑆'𝜎4𝑇f) ;	 𝐺6 = 𝐹&)𝑆&𝜎4𝑇f) ;	 𝐺8 =

𝐹')𝑆'𝜎4𝑇f)	
(46) 

- +
!! 1 2 321 + -

!"

-+ -+

4 5

!# !#

- +
'! 1 2 321 + -

'"

-+ -+

4 5

'# '#

- +
!! 1 2 321 + -

!"

-+
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!#
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2.2.4 Advection 

Energy	advection	is	the	transport	of	energy	by	a	mass	flow	rate	entering	and	leaving	a	control	

volume	(Figure	1c).	For	example,	this	is	the	case	of	energy	transported	by	air	in	ventilation.	The	

heat	flow	rate	transported	is:		

𝑞&' = �̇�𝑐(𝜃& − 𝜃')	 (47) 

where	�̇�	is	the	mass	flow	rate	and	𝑐	is	the	heat	capacity	of	the	fluid.	

	

	

Table	1	Values	of	airflow	rates	in	air	changes	per	hour	as	a	function	of	the	position	of	the	window	

(Recknagel,	et	al.,	2007)table	1.12.1-4	

Position	of	the	window	 Air	changes	per	hour	

Closed	windows,	closed	doors	 0	to	0.5	

Tilt	window,	closed	jealousy	 0.3	to	1.5	

Tilt	window,	no	jealousy	 0.8	to	4.0	

Half-opened	window	 5	to	10	

Full-opened	window	 9	to	15	

Windows	and	French-windows	fully	opened	 about	40	

	

	

	

	

The	mass	flow	rate	is	calculated	from	the	volumetric	flow	rate	�̇�:	

�̇� = 𝜌�̇�		 (48) 

where	𝜌 	is	 the	 fluid	 density.	 The	 volumetric	 flow	 rate	�̇� 	is	 obtained	 from	 hydraulic	 or	 aeraulic	

calculations.	The	 infiltration	(or	the	airtightness)	of	 the	building	 is	measured	by	blower	door.	 It	

may	 expressed	 in	 “air	 changes	 per	 hour”	 which	 represents	 the	 number	 of	 volumes	 of	 air	

contained	by	the	building	which	are	vehiculated	 in	an	hour.	Some	indicative	values	are	given	 in	

Table	3.	Typical	values	for	airflow	per	person	are	given	in		

Table	2	
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Table	2	Typical	values	of	airflow	rate	per	person	(Recknagel,	et	al.,	2007)	§3.5.1.1.2	

Typical	situations	 Volumetric	airflow	

m)/h	per	person	

Theatre,	concert,	cinema,	exhibition	halls,	supermarkets,	museums,	

gyms	

20	

Restaurants,	rest	area,	conference	rooms,	classrooms,	auditorium		 30	

Office	rooms	 40	

Open	office	rooms	 60	

	

	

2.3 Heat capacities 

The	heat	capacity	𝐶	of	a	control	volume	is	the	amount	of	heat	𝑄	that	needs	to	be	added	in	order	

to	increase	the	temperature	of	Δ𝜃:			

𝐶 = lim
:0→#

ΔQ
Δ𝜃	

(49) 

	

For	a	homogeneous	object	of	mass	𝑚	having	the	specific	heat	𝑐,	

𝐶 = 𝑚𝑐	 (50) 

	

From	equation	(49),	the	flow	rate	entering	the	body	is	

𝑞 = 𝐶�̇�	 (51) 

	

	

	

3 Assembling of thermal networks 

Buildings	 are	 systems	 composed	 of	 elements	 such	 as	 walls,	 windows,	 doors,	 etc.	 connected	

through	 heat	 and	 mass	 transfer.	 Therefore,	 the	 models	 of	 whole	 buildings	 are	 obtained	 by	

combining	 the	models	of	 individual	 components.	Two	 important	methods	 for	obtaining	 large	

models	are	coupling	and	assembling.	In	coupling,	the	system	of	equations,	which	is	obtained	from	

the	models	of	each	element,	is	solved	iteratively	(Clarke,	et	al.,	2007;	El	Khoury,	et	al.,	2013;	Ma	
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&	 Le,	 1992).	 For	 example,	 building	 energy	 software	 tools	 use	 iterative	methods	 to	 solve	 the	

coupled	equations:	EnergyPlus	uses	Gauss-Seidel	 successive	substitution	or	Newton-Raphson	

method	 (Ficher,	 et	 al.,	 1999;	 EnergyPlus,	 2015),	 TRNSYS	 uses	 successive	 substitutions	 and	

Powell’s	method	(TRNSYS	17,	2009),	ESP-r	solves	independently	the	domain	equations	and	then	

the	coupling	(Clarke,	et	al.,	2007),	IDA	ICE	uses	a	modular	approach	(Sahlin,	1996).		

	

The	 assembling	 of	models	 is	 very	 different	 of	 coupling.	While	 in	 coupling	 the	models	 of	 the	

elements	are	separate,	in	assembling	the	complex	model	is	a	system	of	linear	equations,	at	least	

at	a	certain	moment	during	an	iterative	solving	procedure.	Assembling	is	an	important	reason	

for	 the	 use	 of	 models	 such	 as	 transfer	 functions	 in	 thermal	 modelling	 of	 buildings.	 More	

generally,	input-output	linear	time	invariant	(LTI)	models,	such	as	state-space,	transfer	function,	

zero-pole-gain	models	 (MathWorks,	2017)	or	 two-port	networks	 (Piotrowska	&	Chochowski,	

2013;	Ghosh,	2005;	Chen,	et	al.,	2013;	Maillet,	et	al.,	2000)	may	be	connected	to	obtain	a	new,	

more	complex,	model.	The	model	obtained	by	assembling	has	the	advantage	that	can	be	analysed	

(e.g.	 find	 the	 eigenvalue	 and	 the	 time	 constants,	 the	 static	 gain,	 stability,	 controllability,	

observability,	identifiability,	etc.).	However,	these	techniques	are	not	applicable	to	networks	or	

circuits	 that	model	 transport	phenomena	 in	which	 the	connections	are	done	by	conservation	

laws	 (such	 as	 conservation	 of	 mass,	 energy,	 momentum,	 electrical	 charge,	 etc.).	 The	 usual	

technique	used	for	network	models	is	coupling.		

	

Circuits,	networks,	or	bond	graphs	are	widely	used	for	modelling	transfer	phenomena	(Karnopp,	

et	al.,	1990;	Strang,	2007).	The	method	of	thermal	networks	(or	circuits)	is	present	in	almost	any	

primer	on	heat	transfer.	The	heat	conduction	equation,	introduced	by	Fourier,	has	been	used	for	

about	two	centuries	to	describe	diffusion	phenomena	in	dynamical	physical	systems.	Ohm	work	

on	 electricity	 was	 inspired	 by	 Fourier’s	 heat	 conduction	 model;	 he	 considered	 the	 flow	 of	

electricity	as	being	exactly	analogue	to	the	flow	of	heat.	Fick	also	used	an	analogy	with	Fourier	

equation	for	transient	diffusion	of	solutes	in	liquids.	Models	influenced	by	the	diffusion	equation	

are	used	for	diffusion	of	gases,	Brownian	motion,	 flow	in	porous	materials,	random	walk,	etc.	

(Narasimhan,	1999).	Therefore,	it	is	important	to	have	a	procedure	for	assembling	the	networks	

(or	the	circuits).		

	

There	 are	well	 established	 algorithms	 for	 assembling	models	 represented	 by	 finite	 elements	

(Nikishkov,	2010;	Cueva-Zepeda	&	Avalos-Garcia,	2006;	Ramabathiran	&	Gopalakrishnan,	2014).	
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However,	for	thermal	networks	the	solution	is	obtained	by	solving	iteratively	the	set	of	equations	

of	the	elementary	models	(Ruiz-Calvo,	et	al.,	2016).		

	

This	section	proposes	a	data	structure	for	thermal	networks	and	an	assembling	procedure.	Then,	

aspects	of	software	implementation	are	discussed.	The	example	is	given	for	a	very	simple,	yet	

relevant,	network	on	which	the	procedure	can	be	checked	by	hand.	

	

3.1 Defining the problem of circuit assembling 

Given	a	number	of	thermal	circuits,	𝑇𝐶&, 𝑇𝐶', … , 𝑇𝐶$	and	knowing	that	some	of	their	nodes	are	in	

common,	find	the	assembled	circuit	𝑇𝐶.	A	simple	example	is	given	in	Figure	5.	There	are	four	

thermal	circuits,		𝑇𝐶&, 𝑇𝐶', 𝑇𝐶), 𝑇𝐶6,	having	in	common	some	of	their	nodes:	the	node	5	of	𝑇𝐶&	is	

common	with	the	node	1	of	𝑇𝐶',	the	node	2	of	𝑇𝐶'	is	common	with	node	2	of	𝑇𝐶)	and	the	node	3	

of		𝑇𝐶'	is	in	common	with	the	node	2	of	𝑇𝐶6	(Figure	5b).	Find	the	model	of	the	assembled	circuit	

𝑇𝐶	shown	in	Figure	5a.	

	

From	conservation	of	energy,	it	results	that	if	there	is	a	flow	source	in	the	node	of	the	assembled	

circuit	𝑇𝐶,	it	needs	to	be	the	sum	of	the	sources	in	the	respective	nodes	of	each	circuit	𝑇𝐶, .	For	

example,	the	flow	source	in	the	node	5	of	the	assembled	circuit	from	Figure	5a	is	the	sum	of	flow	

sources	present	in	node	5	of	𝑇𝐶&	and	the	flow	source	present	in	node	1	of	𝑇𝐶'.	Since	the	thermal	

capacity	 is	 proportional	 to	mass,	 from	 the	 conservation	 of	 mass,	 it	 results	 that	 if	 there	 is	 a	

capacity	in	a	node	of	the	assembled	circuit,	it	needs	to	be	the	sum	of		



		

16	

	

	
Figure	5	Example	of	the	problem	of	assembling	thermal	circuits:	given	four	circuits,	assemble	

them	knowing	the	common	nodes.	a)	Assembled	circuit.	b)	Four	disassembled	circuits.	c)	

Assembling	matrix.	d)	Algebraic	description	of	each	disassembled	circuit.	
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the	capacities	in	the	respective	nodes	of	each	circuit	𝑇𝐶, .	For	example,	the	capacity	in	node	5	of	

the	assembled	circuit	from	Figure	5a	is	the	sum	of	capacities	present	in	node	5	of	𝑇𝐶&	and	in	node	

1	of	𝑇𝐶'	shown	in	Figure	5b.	

	

To	 exemplify	 the	 procedure,	 we	will	 use	 a	 toy	model	 representing	 a	 building	 formed	 by	 an	

insulated	 concrete	 wall	 and	 a	 glass	 wall.	 The	 room	 is	 ventilated	 and	 its	 air	 temperature	 is	

controlled	by	a	P-controller.	 	Auxiliary	load	is	added	to	the	room	(Figure	6).	The	toy	model	is	

used	 to	 show	 specific	 aspects	 of	 the	 assembling	 procedure,	 not	 for	 the	 correctness	 of	 the	

modelling.	

	

	

	

	
Figure	6	Toy	model	used	for	example	

	

	
Figure	7	Model	for	components	to	be	assembled	
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We	would	like	to	construct	separate	models	for	concrete	wall,	glass	wall,	ventilation,	and	room	

air	(Figure	7)	and	to	assemble	them	into	one	model	(Figure	6).	

	

3.2 Algebraic description of the thermal circuits 

A	 circuit	 is	 a	 weighted	 oriented	 graph	 with	 node	 representing	 temperatures,	 branches	

representing	heat	flows,	and	the	weights	representing	the	thermal	conductances.	Some	nodes	

have	thermal	capacities,	but	not	all	of	them.	Some	branches	have	temperature	sources	and	some	

nodes	 have	 flow	 sources,	 but	 not	 all	 of	 them.	 The	 sources	 represent	 the	 inputs	 (i.e.	 the	

independent)	 variables	 of	 the	 model.	 The	 temperatures	 of	 the	 nodes	 and	 the	 flows	 in	 the	

branches	represent	 the	unknowns	 for	which	the	problem	is	solved.	Usually,	only	some	of	 the	

temperatures	of	the	nodes	and/or	flow	in	the	branches	are	of	practical	interest	and	represent	

the	output	of	the	model.	If	the	heat	flow	rate	of	a	branch	is	considered	as	an	output,	then	the	

temperatures	in	the	nodes	of	the	branch	need	to	be	found;	the	flow	in	the	branch	is	calculated	as	

the	product	between	the	conductance	and	the	difference	of	temperatures.		

	

A	thermal	circuit	may	be	described	by	three	matrices	and	three	vectors.	The	matrices	are:	

1) 𝐀 	is	 an	 oriented	 incidence	 matrix	 with	 the	 number	 of	 rows	 equal	 to	 the	 number	 of	

branches	and	the	number	of	columns	equal	to	the	number	of	nodes	of	the	thermal	circuit.	

The	elements	of	matrix	𝐀	are:	

𝑎"! = �
0						if	the	heat	flow	rate	𝑖	is	not	connected	to	the	node	𝑗	
−1			if	the	heat	flow	rate	𝑖	leaves	the	node	𝑗
1						if	the	heat	flow	rate	𝑖	enters	the	node	𝑗

	 (52)	

	

2) 𝐆	is	a	diagonal	matrix	of	conductances	of	dimension	equal	to	the	number	of	rows	of	𝐀,	i.e.	

the	number	of	branches	or	the	number	of	conductances.	The	elements	of	matrix	𝐆	are:		

𝑔"! = �𝑅"
*&	for	𝑖 = 𝑗

0						for	𝑖 ≠ 𝑗	 (53)	

	 Note	that	each	branch	needs	to	have	a	conductance.	

3) 𝐂	is	a	diagonal	matrix	of	capacitances	of	dimension	equal	to	the	number	of	columns	of	𝐀,	

i.e.	the	number	of	nodes	of	the	thermal	circuit.	The	elements	of	matrix	𝐂	are:		

𝑐"! = �𝐶" 	for	𝑖 = 𝑗
0			for	𝑖 ≠ 𝑗	 (54)	
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Note	that	not	all	nodes	have	a	thermal	capacity.	Since	the	thermal	capacity	is	proportional	

to	mass	and	the	mass	proportional	to	volume,	a	node	representing	a	surface	will	always	

have	a	zero	capacity.	

The	vectors	are:	

1) 𝐛	is	a	vector	indicating	the	branches	which	have	temperature	sources.	Its	size	is	equal	to	

the	number	of	rows	of	matrix	𝐀,	i.e.	the	number	of	branches.	Its	elements	are:		

𝑏" = �1	if	there	is	a	temperature	source	on	branch	𝑖
0	otherwise

	 (55)	

	

2) 𝐟	is	a	vector	indicating	the	nodes	which	have	a	heat	flow	rate	sources.	Its	size	is	equal	to	

the	number	of	columns	of	matrix	𝐀,	i.e.	the	number	of	nodes.	Its	elements	are:	

𝑓" = �1	for	flow	source	in	node	𝑖0	otherwise 	 (56)	

	

3) 𝐲	is	a	vector	indicating	the	temperature	that	are	considered	as	outputs.	Its	size	is	equal	to	

vector	𝐟.	Its	elements	are:			

𝑦" = �1	for	temperature	of	node	𝑖	as	output	variable
0	otherwise

	 (57)	

	

Any	thermal	circuit	𝑇𝐶	can	be	described	by	the	list	of	arrays:	{𝐀, 𝐆, 𝐂, 𝐛, 𝐟, 𝐲}	(Figure	5d).	

	

3.3 Numbering the thermal circuits 

The	 construction	 of	 the	 list	 of	 arrays	 {𝐀, 𝐆, 𝐂, 𝐛, 𝐟, 𝐲} 	requires	 the	 numbering	 of	 circuits.	 In	

principle,	the	numbering	of	the	nodes	and	branches	can	be	done	arbitrarily.	Once	the	numbering	

of	the	elementary	circuits	is	done,	the	numbering	of	the	assembled	circuit	is	automatic.	

3.3.1 Numbering elementary circuits 

The	 connections	 between	 nodes	 are	 indicated	 by	 the	 oriented	 incidence	 matrix	𝐀 .	 Since	

numbering	becomes	tedious	for	large	circuits,	the	following	rules	may	be	adopted	(Figure	5b):	

- number	the	nodes	in	order	(from	left	to	right	or	from	right	to	left;		

- number	the	branches	in	increasing	order	of	nodes	and	orient	them	from	the	lower	to	the	

higher	node.	Note:	reference	temperature	is	node	0.	
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As	an	example,	for	the	thermal	circuit	𝑇𝐶&	(red	in	Figure	5b),	the	branches	are:	

1st	node	 2nd	node	 Branch	

0	 1	 1	

1	 2	 2	

2	 3	 3	

3	 4	 4	

4	 5	 5	

	

For	𝑇𝐶'	(blue	in	Figure	5b),	the	branches	are:	

1st	node	 2nd	node	 Branch	

1	 2	 1	

1	 3	 2	

2	 3	 3	

	

For	𝑇𝐶)	(green	in	Figure	5b	the	branches	are:	

1st	node	 2nd	node	 Branch	

0	 1	 1	

1	 2	 2	

	

For	𝑇𝐶6	(violet	in	Figure	5b),	the	nodes	have	the	same	numbers:	

1st	node	 2nd	node	 Branch	

0	 1	 1	

0	 1	 2	

	

Table	3	Local	and	global	indexing	of	nodes	

Thermal	circuit	 TC1	 TC2	 TC3	 TC4	

Local	node	index	 1			2			3			4			5	 1			2			3	 1			2	 1	

Global	node	index	 1			2			3			4			5	 5			6			7	 8			6	 7	

	

	



		

21	

	

3.3.2 Numbering the assembled circuit 

When	assembling	the	thermal	circuits,	some	nodes	are	put	in	common.	Therefore,	the	number	of	

nodes	in	the	assembled	circuit	will	be	smaller	than	the	sum	of	the	nodes	of	elementary	circuits.	

The	number	of	branches	will	not	change.	The	nodes	and	the	branches	of	the	assembled	circuit	

will	be	in	the	order	of	assembling	(Figure	5a,	Table	3).			

	

The	assembling	of	the	circuits	is	indicated	by	the	assembling	matrix.	Each	row	of	this	matrix	has	

four	elements	that	indicate	two	nodes	that	will	be	put	together:	

- number	of	circuit	1,	

- node	of	circuit	1,	

- number	of	circuit	2,	

- node	of	circuit	2.	

For	our	example,	the	assembling	matrix	is:	

𝐀𝐬𝐬 = �
1 5 2 1
2 2 3 2
2 3 4 1

�	 (58)	

	

The	description	of	 the	 assembled	 circuit,	 given	by	 the	 list	𝑇𝐶 = {𝑇𝐶&, … , 𝑇𝐶"}	of	 list	 of	 arrays	

𝑇𝐶" = {𝐀" , 𝐆" , 𝐂" , 𝐛" , 𝐟" , 𝐲"}	(Figure	5c),	and	the	assembling	matrix	𝐀𝐬𝐬	contain	all	 the	necessary	

information	for	obtaining	the	assembled	circuit.	

	

3.4 Assembling the circuits 

The	analysis	(or	the	direct	problem)	of	a	thermal	circuit	𝑇𝐶" 	is	to	solve	for	𝐪" 	and	𝛉" 	the	equation:	

¡
𝐆𝒊*𝟏 𝐀"
−𝐀𝒊𝑻 𝐂"𝑠

¢ £
𝐪"
𝛉"¤ = ¥𝐛" 	𝐟"

¦	 (59)	

or	find	𝐮" 	from	equation:	

𝐊"𝐮" = 𝐚" 	 (60)	

where	

𝐊" = ¡
𝐆𝒊*𝟏 𝐀"
−𝐀𝒊𝑻 𝐂"𝑠

¢ ; 𝐮" = £
𝐪"
𝛉"¤ ; 𝐚" = ¥𝐛" 	𝐟"

¦	.	

	

Let’s	note	the	dissembled	block	vectors	𝐮> , 𝐚> 		and	matrix	𝐊>:	
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𝐮> = �
𝐮&
…
𝐮$
�	;			𝐚> = �

𝐚&
…
𝐚$
�;			𝐊> = �

𝐊& 𝟎 𝟎
𝟎 ⋱ 𝟎
𝟎 𝟎 𝐊$

�	

	

There	is	a	disassembling	matrix	𝐀> 	which	transforms	the	assembled	vectors	(i.e.	the	block	vector	

of	elementary	circuits)	into	disassembled	vectors:		

𝐮> = 𝐀>𝐮;		𝐚> = 𝐀>𝐚;	 (61)	

	

The	assembled	matrix	and	vectors	are	obtained	by	using	disassembling	matrix	𝐀>:	

𝐊 = 𝐀>9𝐊>𝐀> 	 (62)	

	

𝐮 = 𝐀>9𝐮> 	 (63)	

	

𝐚 = 𝐀>9𝐚> 	 (64)	

	

The	elements	of	the	assembled	circuit,	𝐀, 𝐆, 𝐂, 𝐛, 𝐟, 𝐲,	are	then	obtained	from:	

𝐊 = ¥𝐆
*𝟏 𝐀

−𝐀𝐓 𝐂𝑠
¦ ; 𝐮 = £𝐪𝛉¤ ; 𝐚 = £𝐛𝐟¤		 (65)	

	

3.5 Algorithm 

3.5.1 Obtaining the global indexes of the assembling matrix 

In	order	to	 indicate	the	common	nodes	of	the	circuits,	 it	 is	convenient	to	give	the	assembling	

matrix	𝐀𝐬𝐬,	of	which	an	example	is	given	in	equation	(58),	with	4	elements	on	each	line:		

1. number	of	the	1st	circuit,	

2. local	number	of	the	node	of	the	1st	circuit,	

3. number	of	the	2nd	circuit	

4. local	number	of	the	node	of	the	2nd	circuit.		
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Figure	8	The	disassembling	matrix:	rows	correspond	to	disassembled	circuits;	columns	correspond	

to	assembled	circuits.		

We	need	to	obtain	an	assembling	matrix	𝐀𝐬𝐬	of	two	columns	of	global	disassembled	nodes	that	

are	put	in	common.	For	our	example	(Figure	5):		

- the	node	5	of	𝑇𝐶&	is	put	in	common	with	the	node	1	of	𝑇𝐶',	which	has	the	global	value	5 +

1 = 6	(5	=	number	of	nodes	of	𝑇𝐶&	,	1	=	local	index	in	𝑇𝐶');		

- the	node	2	of	𝑇𝐶'	(global	value	5 + 2)	 is	put	 in	common	with	the	node	2	of	𝑇𝐶)	(global	

value	5 + 3 + 2 = 10,	where	5	=	number	of	nodes	of	𝑇𝐶&,	3	=	number	of	the	nodes	of	𝑇𝐶',	

2	local	index	in	𝑇𝐶));	
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- the	node	3	of	𝑇𝐶'	(global	value	5 + 3 = 8)	is	put	in	common	with	the	node	1	of	𝑇𝐶6	(global	

value	5 + 3 + 2 + 1 = 11,	where	5	=	number	of	nodes	of	𝑇𝐶&,	3	=	number	of	the	nodes	of	

𝑇𝐶',	2	=	number	of	nodes	in	𝑇𝐶),	1	=	local	index	in	𝑇𝐶6);	

From	

𝐀𝐬𝐬𝐗 = �
1 5 2 1
2 2 3 2
2 3 4 1

�	 (66)	

we	obtain:	

𝐀𝐬𝐬 = �
5 6
7 10
8 11

�	 (67)	

	

The	information	on	the	number	of	branches	and	nodes	for	each	thermal	circuit	𝑇𝐶, 	is	taken	from	

the	length	of	vector	𝐛.	

	

3.5.2 Obtaining the disassembling matrix 

There	disassembling	matrix	𝐀> 	transforms	the	assembled	vectors	into	dissembled	vectors	(i.e.	

the	block	vector	of	elementary	circuits):		

𝐮> = 𝐀>𝐮;		𝐚> = 𝐀>𝐚;	 (68)	

	

The	assembling	implies	that	some	of	the	nodes	are	merged:	their	number	decreases	and	their	

“global”	index	changes.	

	

First,	create	a	block	matrix	that	keeps	the	indexes	of	the	temperature	nodes:	

	
Then	add	the	columns	that	merge:	
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Eliminate	the	columns	that	correspond	to	the	eliminated	nodes	to	obtain	

	
	

The	branches	(flows)	keep	their	global	number.	The	disassembling	matrix	is	then	obtained	from	

the	block	matrix	(Figure	9	a)	by	re-arranging	the	rows	in	order	correspond	to	the	vector	(Figure	

9	b):	[𝐪&9 𝛉&9 𝐪'9 𝛉'9 𝐪)9 𝛉)9 𝐪69 𝛉69]9 	

	

3.5.3 Algorithm for the dissembling matrix 

Having	the	disassembling	matrix	𝐀>,	the	assembling		

𝐊 = 𝐀>9𝐊>𝐀> 	 (69)	

needs	the	matrix	𝐊> 	which	is	a	block	matrix		

		𝐊> = �
𝐊& 𝟎 𝟎
𝟎 ⋱ 𝟎
𝟎 𝟎 𝐊$

�	

	

of	block	matrices	of	each	thermal	circuit	𝑇𝐶" 	

𝐊" = ¡
𝐆𝒊*𝟏 𝐀"
−𝐀𝒊𝑻 𝐂"𝑠

¢		

	

[1 5 2 1]
col5=col5+col6

[2 2 3 2]
col7=col7+col10 [2 3 4 1]

col7=col7+col10
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Figure	9	Obtaining	the	disassembling	matrix:	

a)	block	matrix	for	[𝒒&9 𝒒'9 𝒒)9 𝒒69 𝜽&9 𝜽'9 𝜽)9 𝜽69]9 	

b)	block	matrix	re-arranged	for	[𝒒&9 𝜽&9 𝒒'9 𝜽'9 𝒒)9 𝜽)9 𝒒69 𝜽69]9 	

(a)

(b)
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Algorithm	for	obtaining	the	dissembling	matrix		

	
Figure	10	Obtain	matrix	temperature	nodes	𝑨𝒅𝜽	:	a)	create	diagonal	matrix;	b)	add	the	column	of	

the	2nd	node	to	the	column	of	the	1st	node	in	merging:	[1	5	2	1]	à	col5=col5+col6;	[2	2	3	2]	à	col7	

=	col7	+	col10;	[2	3	4	1]	à	col8	=	col	8	=	col11	;	c)	delete	the	columns	of	the	2nd	node	in	merging;	

4)	obtain	matrix	𝑨𝒅𝜽	

	

	

	
Figure	11	Obtain	matrix	for	flow	branches	𝑨𝒅𝒒	

(a) (b)

(d)(c)

= =

= =
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Figure	12	Block	matrix		for		[𝒒&9 𝒒'9 𝒒)9 𝒒69 𝜽&9 𝜽'9 𝜽)9 𝜽69]9 	(first	flow	branches,	then	

temperature	nodes)	

	

	

Figure	13	Matrix	𝑨𝒅	for	[𝒒&9 𝜽&9 𝒒'9 𝜽'9 𝒒)9 𝜽)9 𝒒69 𝜽69]9after	rearranging	in	order	to	

obtain	in	the	order	of	thermal	circuits		
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3.5.4 Assembled circuits 

The	assembled	matrix	and	vector	are	obtained	by	using	the	disassembling	matrix	𝐀>:	

𝐊 = 𝐀>9𝐊>𝐀> 	 (70)	

	

The	elements	of	the	assembled	circuit,	𝐀, 𝐆, 𝐂, 𝐛, 𝐟, 𝐲,	are	then	obtained	from:	

𝐊 = ¥𝐆
*𝟏 𝐀

−𝐀𝐓 𝐂𝑠
¦ ; 𝐮 = £𝐪𝛉¤ ; 𝐚 = £𝐛𝐟¤		 (71)	

 

3.5.5 Global assembled indexes  

The	 global	 indexes	 of	 the	 assembled	 circuit	 (Figure	 13)	 result	 from	 the	 calculation	 of	 the	

dissembling	matrix	𝐀>(Figure	14).	

	

	
Figure	14	The	relation	between	the	local	indexes	of	the	blocks	of	circuits	and	the	global	indexes	of	

the	assembled	circuit	

	

4 Transforming thermal circuits into state space representation 

Thermal	circuits	are	 linear	models	with	constant	coefficients.	However,	 in	control	 theory,	 the	

state-space	 representation	 is	widely	 used.	 The	 aim	 of	 this	 chapter	 is	 to	 transform	 a	 thermal	

circuit,	formed	by	resistors,	capacities,	temperature	sources	and	heat	flow	sources,	into	its	state	

space	representation.	The	problem	in	this	transformation	is	that	some	capacities	may	be	zero.	

	

In	this	section	we	will	use	a	very	simple	model	of	heat	transfer	through	a	wall	(Figure	15).	The	

model	is	very	simplified	(e.g.	the	number	of	meshes	in	the	wall	are	too	small)	in	order	to	keep	

the	presentation	manageable	by	hand	calculations.		
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Figure	 15	 Typical	 thermal	 circuit	 for	 heat	 balance	 method:	 a)	 usual	 representation;	 b)	

representation	in	the	form	of	typical	branches		
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Figure	16	Temperature	nodes	are	ordered	so	that	the	capacity	matrix	contains	zero-blocks	

	
Figure	17	Temperature	nodes	need	to	be	re-ordered	

	

Table	4	Parameter	of	the	thermal	network	shown	in	Figure	1	

Parameter	 Value	

Indoor	air	capacity,	𝐶%		 82 ∙ 10&	J/K	

Wall	capacity,	𝐶'( = 𝐶')		 2 ∙ 10*	J/K	

Thermal	conductance	of	the	wall,	𝑅'+(		 1.45	W/K	

Thermal	conductance	of	one	third	of	the	wall,	𝑅'(+( = 𝑅')+( = 𝑅'&+( = 3	𝑅'+(			 4.35	W/K	

Thermal	conductance	of	the	window	and	due	to	losses	by	ventilation,	𝑅,+(		 38.3	W/K	

Outdoor	convection	conductance,	𝑅-.+(	 250.0	W/K	

Indoor	convection	conductance,	𝑅-/+(	 125.0	W/K	
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Figure	18.	Obtaining	the	differential-algebraic	equations	for	the	circuit	from	Figure	17	

	

	
Figure	19.	Obtaining	the	differential-algebraic	equations	for	the	circuit	from	Figure	17	

	

4.1 Obtaining the system of differential-algebraic equations 

The	system	of	equations	corresponding	to	a	thermal	circuit	may	be	obtained	by	using	the	

Kirchhoff’s	 laws	 and	 the	 constitutive	 laws	 for	 thermal	 transfer	 (Ghiaus,	 2013;	 Strang,	
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2007).	The	steps	needed	to	obtain	the	differential-algebraic	system	of	equations	may	be	

synthetized	in	the	following	algorithm:	

1. Group	the	temperatures	according	to	the	type	of	node:	without	capacitance	(𝜃/5 ,	
𝜃/" ,	𝜃C),	and	with	capacities	(𝜃D&,	𝜃D'):		
𝛉 = [𝜃/5 𝜃/" 𝜃C 𝜃D& 𝜃D']9 	 (72)	

	

2. Write	the	matrices	describing	the	circuit	(see	an	example	in	Figure	18	and	Figure	
19	for	the	thermal	circuit	given	in	Figure	15):		

a. Transform	 the	 thermal	 circuit	 in	 an	 oriented	 graph	 by	 indicating	 the	
direction	 of	 the	 heat	 transfer	 rate	 for	 each	 branch.	 The	 directions	 are	
arbitrary	(if	the	nodes	are	numbered,	can	be	in	increasing	order	of	the	node	
numbering).		

b. Write	the	oriented	incidence	matrix	𝐀,	equation	(52),	conductance	matrix	
𝐆,	equation	(53),	and	capacitance	matrix	𝐂,	equation	(54).		

c. Write	the	vectors	of	temperature	sources	𝐛	given	by	equation	(55),	of	flow	
rate	sources	𝐟	given	by	equation	(56)	and	of	outputs	𝐲	given	by	equation	
(57).		

3. Apply	 Kirchhoff’s	 laws	 and	 the	 constitutive	 laws	 to	 obtain	 the	 differential-
algebraic	system	of	equations:		

𝐂	�̇� = −𝐀9 	𝐆	𝐀	𝛉 + 𝐀9 	𝐆	𝐛 + 𝐟	
	

	
	

By	writing	the	differences	of	temperature	according	to	equation	(28)	(equivalent	to	the	

Kirchhoff’s	voltage	law),	

𝐞 = −𝐀	𝛉 + 𝐛	 (73)	

the	balance	of	heat	rates	in	nodes	(equivalent	to	the	Kirchhoff’s	current	law),	

𝐂	�̇� = 𝐀9 	𝐪 + 𝐟	 (74)	

and	the	constitutive	laws	for	heat	transfer,	

𝐪 = 𝐆	𝐞	 (75)	

we	obtain	the	differential	algebraic	equations	describing	the	thermal	circuit:		

𝐂	�̇� = 𝐊	𝛉 +	𝐊E	𝐛 + 𝐟;	 (76)	

where	

𝐊 ≡ −𝐀9 	𝐆	𝐀	𝛉	and		𝐊E ≡ 𝐀9 	𝐆	 (77)	
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If	 the	 diagonal	 matrix	𝐂 	has	 elements	 on	 the	 diagonal	 which	 are	 zero,	 the	 system	 of	

equations	(76)	is	a	system	of	differential	algebraic	equations.	

	

4.2 Obtaining the state space representation from the thermal circuit  

If	 the	 thermal	 circuit	 contains	 nodes	without	 capacitance,	 the	matrix	𝐂 	is	 singular.	 In	

order	to	obtain	the	state	space	model,	the	equations	corresponding	to	the	nodes	without	

capacitance	need	to	be	eliminated	from	the	system	of	equations	(76)	(Ghiaus,	2013).	By	

partitioning	the	matrix	𝐂,	

𝐂 = ¥𝟎 𝟎
𝟎 𝐂F

¦	 (78)	

where	𝐂F 	corresponds	to	the	nodes	having	capacities,	the	set	of	equations	(76)	may	be	

written	as:	

¥𝟎 𝟎
𝟎 𝐂F

¦ ¡�̇�#
�̇�F
¢ = ¥𝐊&& 𝐊&'

𝐊'& 𝐊''
¦ ¥𝛉#𝛉F

¦ + ¥𝐊E&𝐊E&
¦ 𝐛 + ¥𝐈&& 𝟎

𝟎 𝐈''
¦ ¥𝐟#𝐟F

¦	 (79)	

where	

𝛉#	and	𝐟#	correspond	to	the	nodes	without	thermal	capacity;		

𝛉F 	and	𝐟F 	correspond	to	the	nodes	with	thermal	capacity;	

𝐂F 	is	the	bloc	of	the	partitioned	matrix	𝐂	for	which	the	elements	on	the	diagonal	

are	non-zero;		

𝐊&&,	𝐊&',	𝐊'&,	and	𝐊''	are	blocs	of	the	partitioned	matrix	𝐊	obtained	according	to	

the	partitioning	of	the	matrix	𝐂;	

𝐊E& 	and	𝐊E' 	are	 blocs	 of	 the	 partitioned	 matrix	𝐊E 	obtained	 according	 to	 the	

partitioning	of	the	matrix	𝐂;	

𝐈&&	and	𝐈''	are	identity	matrices.	

	

The	state	equation	of	the	state	space	model	is	

�̇�F = 𝐀4𝛉F + 𝐁4𝐮	 (80)	

where	the	state	matrix	is	

𝐀4 = 𝐂F*&(−𝐊'&𝐊&&*&𝐊&' + 𝐊'')	 (81)	

and	the	input	matrix	is	
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𝐁4 = 𝐂F*&[−𝐊'&𝐊&&*&𝐊E& + 𝐊E' −𝐊'&𝐊&&*& 𝐈]	 (82)	

	

For	the	numerical	example	of	the	thermal	circuit	shown	in	Figure	15	with	the	values	of	its	

parameters	given	in	Table	4,	the	state	variables	are	

𝛉 = [𝜃C 𝜃D& 𝜃D']9 	 (83)	

and	the	bloc	vector	of	inputs	is:	

𝐮 = [𝐛 𝐟# 𝐟F]9 	 (84)	

	

The	numerical	values	of	the	matrices	of	the	model	are:	

𝐂 =

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
0 0 0 0 0
0 0 82 ∙ 10) 0 0
0 0 0 2 ∙ 10G 0
0 0 0 0 2 ∙ 10G⎦

⎥
⎥
⎥
⎤
= ¥𝟎 𝟎

𝟎 𝐂F
¦	 (85)	

	

𝐊 =

⎣
⎢
⎢
⎢
⎡
−254.35 0 0 4.35 0

0 −129.35 125 0 4.35
0 125 −163.30 0 0
4.35 0 0 −8.70 4.35
0 4.35 0 4.35 −8.70⎦

⎥
⎥
⎥
⎤
= ¥𝐊&& 𝐊&'

𝐊'& 𝐊''
¦	 (86)	

	

𝐊E =

⎣
⎢
⎢
⎢
⎡
250 −4.35 0 0 0 0
0 0 0 4.35 −125 0
0 0 0 0 125 38.3
0 4.35 −4.35 0 0 0
0 0 4.35 −4.35 0 0 ⎦

⎥
⎥
⎥
⎤
= ¥𝐊E&𝐊E'

¦	 (87)	

	

Substituting	these	matrices	in	equation	(81),	we	obtain	the	state	matrix:	

𝐀4 = �
−5.18 ∙ 10*6 0 5.13 ∙ 10*8

0 −4.31 ∙ 10*G 2.17 ∙ 10*8
2.10 ∙ 10*G 2.17 ∙ 10*8 −4.28 ∙ 10*8

�	 (88)	

	

The	input	matrix	𝐁4	has	11	columns,	corresponding	to	the	input	vector	

𝐮 = [𝐛9 𝐟#9 𝐟F9]9 = [𝑇5D 0 0 0 0 𝑇5H �̇�5 �̇�" �̇�CI. 0 0]	 (89)	
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The	inputs	corresponding	to	zeros	are	useless	and	can	be	eliminated.	Therefore,	from	the	

eleven	columns	of	the	input	matrix	𝐁4	it	can	be	retained	only	the	columns	corresponding	

to	inputs	1,	6,	7,	8,	and	9:	

𝐁4 = �
0 4.67 ∙ 10*6 0 1.18 ∙ 10*8 1.22 ∙ 10*8

2.14 ∙ 10*G 0 8.55 ∙ 10*J 0 0
0 0 0 1.68 ∙ 10*K 0

�	 (90)	

The	output	matrix	of	the	state-space	representation	extracts	the	output,	i.e.	the	indoor	air	

temperature	𝜃C	which	is	the	first	element	from	the	state	vector:	

𝐂4 = [1 0 0]	 (91)	

	

For	the	thermal	circuit	given	in	Figure	15,	the	feed-through	matrix	is	zero,		

𝐃4 = 𝟎	 (92)	

	

The	complete	state-space	representation	of	the	thermal	circuit	from	Figure	15,	with	the	

values	of	its	parameters	given	in	Table	4,	is	

��̇�F = 𝐀4𝛉F + 𝐁4𝛉F 	
𝜃C = 𝐂4𝛉F + 𝐃4𝐮

	 (93)	

	

with	the	values	of	the	matrices	given	by	equations	(88),	(90),	and	(91).	

	

If	the	term	𝐶C = 𝑚C𝑐C�̇�C	is	zero,	then	the	state	vector	is	

�̇� = [𝜃D& 𝜃D']9 	 (94)	

which	implies	that	the	matrices	in	equations	(85)	-	(87)	are	partitioned	correspondingly.	

In	our	numerical	example,	the	first	three	equations	need	to	be	eliminated	from	the	system	

of	equations	(76).	The	state	matrix	𝐀4,	obtained	with	the	expression	(81),	is		

𝐀4 = £−4.31 ∙ 10
*G 2.17 ∙ 10*G

2.17 ∙ 10*G −4.07 ∙ 10*G
¤	 (95)	

	

The	input	matrix	𝐁4,	obtained	with	the	expression	(82)	and	retaining	the	only	the	columns	

corresponding	to	inputs	1,	6,	7,	8,	and	9,	is:	

𝐁4 = £2.14 ∙ 10
*G 0 8.55 ∙ 10*J 0 0

0 1.89 ∙ 10*G 0 6.46 ∙ 10*K 4.95 ∙ 10*K
¤	 (96)	
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The	observation	equation	can	be	obtained	from	the	first	row	of	equation	(79)	(Ghiaus,	

2013)	

𝛉# = −𝐊𝟏𝟏*𝟏(𝐊&'𝛉F + 𝐊E&𝐛 + 𝐈&&𝐟#) 	= −𝐊𝟏𝟏*𝟏 µ𝐊&'𝛉F + [𝐊E& 𝐈&& 𝟎] �
𝐛
𝐟#
𝐟F
�¶	 (97)	

	

	

Then,	the	output	equation	is	

𝐂4 = −𝐊&&*&	𝐊&'	
(98)	

	

and	the	feed	through	matrix	is	

𝐃4 = −𝐊&&*&[−𝐊E& 𝐈&& 𝟎]	 (99)	

	

	

Keeping	 only	 the	 non-zero	 inputs	[𝑇5D 𝑇5H �̇�5 �̇�" �̇�CI.] 	from	 the	 input	 vector	𝐮		

given	by	equation	(89),	the	output	and	feed	through	matrices	for	our	numerical	example	

are:		

𝐂4 = [0 9.89 ∙ 10*']	 (100)	

	

and	

𝐃4 = [0 9.01 ∙ 10*& 0 2.27 ∙ 10*' 2.35 ∙ 10*']	 (101)	

	

	

5 Conclusions 

Thermal	networks	are	widely	used	to	model	heat	transfer.	The	phenomena	of	conduction,	

convection,	 radiation	 and	 advection	 can	 be	 linearized;	 as	 a	 consequence,	 the	 thermal	

networks,	 which	 are	 weighted	 oriented	 graphs,	 can	 be	 represented	 by	 matrices	 and	

vectors.	

	

State	space	representation	is	widely	used	in	the	analysis	and	synthesis	of	control	systems.	

Linear	 time	 invariant	 models	 may	 be	 used	 as	 local	 linearized	 models	 of	 non-linear	
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systems.	Therefore,	the	linear	algebra	representation	of	state-space	models	has	a	large	

field	of	applications.	

	

This	chapter	described	succinctly	the	modelling	of	heat	transfer	by	thermal	networks	and	

emphasized	 the	 fact	 that	 the	 temperature	 and	 heat-flow	 rate	 sources	 are	 inputs	 (or	

independent	 variables),	 the	 temperatures	 in	nodes	 and	 the	 flow	 rates	 are	 outputs	 (or	

dependent	variables),	and	the	resistances	and	the	capacities	are	parameters	of	a	model	

structure.	A	data	structure	composed	of	matrices	and	vectors	was	proposed.	The	novelty	

of	the	data	structure	 is	the	definition	of	an	output	vector	which	represents	a	subset	of	

temperatures	that	are	needed	as	observables.	

	

A	 second	novelty	 presented	 in	 this	 chapter	 is	 the	 assembling	 of	 thermal	 circuits.	 This	

technique	allows	us	to	construct	large	models	from	constitutive	blocs.	For	example,	the	

model	of	a	complex	building	may	be	obtained	by	 interconnecting	 typical	blocs	such	as	

walls,	floors,	doors,	windows,	etc.	Complex	systems	can	be	obtained	also	by	coupling	the	

equations	 of	 the	 typical	 blocs	 and	 solving	 iteratively	 the	 system	 of	 equations.	 The	

advantage	of	assembling	is	that	the	model	of	the	whole	system	is	a	single	thermal	network	

that	can	be	analysed.	The	key	point	in	assembling	is	obtaining	the	disassembling	matrix.	

An	algorithm	for	obtaining	it	is	presented.	

	

The	third	novelty	is	the	transformation	of	thermal	circuit	in	state	space	representation.	

While	examples	for	simple	circuits	are	abundant	and	other	methods	(such	as	Kirchhoff	

laws,	nodal	analysis,	etc.)	are	available,	 the	method	proposed	 is	directly	related	 to	 the	

matrix	representation	of	the	thermal	circuits.	The	principal	characteristic	of	the	method	

is	Gauss	elimination	of	the	block-matrices	and	vectors	related	to	node	temperatures	that	

do	not	have	capacities	(i.e.	that	are	not	state	variables).	

	

Assembling	thermal	circuits	and	obtaining	state-space	models	from	them	can	be	used	in	

at	 least	 two	 important	 fields.	 The	 first	 is	 Building	 Information	Modelling	 (BIM):	 each	

component	has	its	model	and	the	model	of	the	building	can	be	obtained	by	assembling	the	

models	of	components.	The	second	is	system	theory	in	which	the	state	space	is	a	suitable	

form	of	the	model	for	system	analysis	and	synthesis:	eigen-value	decomposition,	model	
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order	 reduction,	 model	 predictive	 control,	 observability,	 controllability	 and	

identifiability,	etc.	
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