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SUMMARY

The numerical simulation of seismic wave propagation in realistic heterogeneous media,
as sedimentary basins, is a key element of seismic hazard estimation. Many numerical
methods in two dimensions are based on unstructured triangular meshes and explicit
time schemes. However, the presence of thin layers and tangential stratigraphic contacts
in sedimentary basins entails poorly shaped mesh elements: some triangle heights are
extremely small compared to the edge lengths, which requires small time steps in the
simulations and thus leads to prohibitive computation times. We compare manual and
automatic geological model simplification techniques to modify problematic areas of the
domain, so as to improve the quality of the triangulated mesh. We modify the shape
and the connectivity between rock units in the basin, with the objective to reduce the
computation time without significantly changing the physical response of the geological
medium. These simplification techniques are applied in an investigation of site effects
in the lower Var valley, a densely urbanized area located near the city of Nice (South-
East of France). Numerical simulations of plane wave propagation in a heterogeneous
2D profile are carried out with a discontinuous Galerkin finite element method. Five
simplified meshes are generated and the impacts of the simplifications are analyzed in
comparison to the reference model. We compare the time solutions and the transfer
functions obtained on the surface of the basin. The results show that the simplifica-
tion procedures, in particular automatic modifications of the model, yield a significant
performance gain, with a ratio higher than 55, while having a negligible impact on the
ground motion response.
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Introduction

Seismic hazard assessment and in particular the estimation
of ground motion at local scale are essential for mitigation
policies. Indeed, seismic waves are modified, often ampli-
fied, by local geological and geotechnical conditions. These

variations are known as site effects and are of two differ-
ent types: lithological site effects in the case of resonance of
seismic waves in shallow geological layers and topographical
site effects in presence of irregular topographic features (?).
Such a resonance amplifies some frequencies of the waves at
the surface and extends the ground motion duration, which
potentially increases the seismic impact on buildings and
people. These phenomena have been widely studied for over
sixty years (?). In this work, we focus on lithological site ef-
fects. Some results regarding the impacts of the topography
on the ground motion can be found in ????) or the review
proposed by ?), to only cite a few.

Lithological site effects in alluvial basins and sedimen-
tary valleys have first been highlighted from recordings dur-
ing strong and destructive events. For example, the Mi-
choacán earthquake in Mexico (September 19, 1985) resulted
in more than 5 000 deaths and three billion US$ in damage
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in Mexico City, although the epicenter was located at more
than 350 km from the city. The site effects within the origi-
nal lake basin on which the city is built explain this dramatic
toll (??). Another example is the Loma Prieta earthquake
that struck the San Francisco Bay area (October 17, 1989)
and caused 63 deaths, nearly 3 800 injuries and an estimated
six billion US$ in property damage. Measurements of the
aftershocks in the alluvium-filled Santa Clara valley proved
the role of surface waves generated at the basin edges in the
peak velocities and displacements at some sites in the valley
(?). Almost all recent destructive earthquakes have brought
additional evidence of the impact of site effects. Many highly
populated areas are located along river valleys or on alluvial
basins, hence the importance of an accurate estimation of
these effects.

Ground motion modeling has become a major compo-
nent of seismic hazard assessment thanks to the constant im-
provement of physical models, numerical methods and com-
putational resources. It is particularly useful in areas of low
or moderate seismic hazard where ground motion data are
limited. It requires a relevant geological model of the region
of study, which is usually inferred from subsurface data such
as geophysical images and borehole data. However, sedimen-
tary basins often display sharp lithological and petrophysi-
cal discontinuities, owing to the presence of gaps at multiple
scales during the depositional history (??). The geometry of
the discontinuities to be accounted for in numerical model-
ing is, therefore, determined by the interfaces between rock
units at some relevant scale based on geological and physical
considerations (?). However, choosing which geological fea-
tures can be represented by effective properties and which
features should be handled explicitly is challenging (??). The
homogenization theory (?) offers a way to rigorously address
this problem for seismic wave propagation. It is based on
series expansions of both the displacement and the stress
fields. Unfortunately, in the current state of knowledge, the
solution provided by this theory in the presence of an irreg-
ular free surface topography is limited to the order 0, which
can lead to a poor accuracy, especially for long-travelling
surface waves (?).

Numerical studies of the seismic response of 2D and 3D
sedimentary basins, considering different types of idealized
geometries and some variable parameters, made it possible
to explain qualitatively the seismic observations as well as
the influence of some data such as the shape of the inter-
face and the velocity contrast between the bedrock and the
softer basin sediments (??????). From a quantitative point
of view, however, simplified models do not necessarily allow
to reproduce the observed amplification levels or the high
spatial variability of the ground motion. Consequently, many
numerical applications have studied the seismic response of
more realistic 2D and 3D basin or valley models (????),
some of which have benefited from a very detailed subsoil
characterization (???????). As compared to simple models,
complex, non-symmetrical basin shape and heterogeneity in
the sedimentary part generate a greater variability of the
motion at the surface and locally stronger amplifications,
closer to what is observed on recorded data. In almost all
cases, there are significant differences between the response
of the 2D or 3D model at some points of the surface and the
corresponding 1D case (i.e., the case of horizontally strati-
fied layers or 1D soil column); this illustrates the limitations

of simple “1D” approximations to produce reliable estima-
tions in such configurations. Comparisons between simula-
tions using 1D, 2D and 3D models at a same location lead
to more nuanced conclusions (???). In particular, the differ-
ences between the response of 2D and 3D models are some-
times quite small, only quantitative, especially in elongated
basins and valleys. Given the amount of data necessary to
build an accurate 3D model as well as the computational
cost of a 3D simulation, the study of the response of a 2D
cross-section with a detailed subsoil description can then be
a good compromise.

Many different numerical methods can be used for the
simulation, among which we can cite the discrete wavenum-
ber method (DWM, e.g. ?), the boundary element method
(BEM, e.g. ????), the finite difference method (FDM, e.g.
????), the finite element method (FEM, e.g. ???), the
pseudo-spectral method (PSM, e.g. ?), the spectral ele-
ment method (SEM, e.g. ????????) and the discontinuous
Galerkin method (DGM, e.g. ?????). All these techniques
require a proper spatial discretization of the geological inter-
faces (i.e., a mesh) in order to accurately account for their
effects on wave propagation. In the common case where un-
certainties exist about the geometry of geological structures,
this discretization should be computed on several possible
geological models for the rigorous assessment of the non-
linear effects of geological uncertainties on the simulated
wavefield (?). However, when the geometry of the interfaces
is complex, obtaining even a single deterministic mesh can
be a difficult task and the computation of wave propagation
can be extremely costly. In particular, when the interfaces
are close one to another, involving tangential contacts and
thin geological layers, the mesh required in the finite-element
type methods (FEM, SEM or DGM) can be challenging to
generate. This mesh may contain a large number of elements
and a few elongated elements, which results in prohibitive
computational cost. Indeed, most of the methods are based
on explicit time schemes, so the global time step of the sim-
ulation is the minimum local value in each mesh element.
This value depends on the element size, the local compres-
sional wave velocity (VP ) and the interpolation degree of the
method.

To deal with this difficulty, the DGM enables the so-
called p-adaptivity, which consists in using a non-uniform
polynomial degree distribution to relax constraints on the
time-step in small elements (????). This method is all the
more efficient when associated to non-conforming meshes,
as explored for finite-element type methods (????), but the
coupling between the coarse and fine non-conforming ele-
ments in this context can prove to be very complex, in par-
ticular for 3D meshes based on tetrahedra. Another solution
for dealing with complex geometry consists in implement-
ing hybrid methods to benefit from the advantages of one
method in a given part of the space domain (e.g., the flex-
ibility of the DGM where a complex geometry is involved)
and of another method in the rest of the domain (e.g., the
efficiency of the SEM where hexahedra can be easily han-
dled). Hybrid methods include BEM-DWM (e.g. ?), FEM-
BEM (e.g. ?), FEM-FDM (e.g. ?), tetrahedral-hexahedral
FEM (e.g. ?), FEM-SEM (?) and DGM-SEM (?). Most of
these methods call for hex-dominant meshes, which can be
challenging to generate (???).

In combination with any of the above solutions, a slight
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simplification of complex geometrical features is a possible
strategy to make ground motion modeling tractable. For ex-
ample, ?) apply a smoothing to cross-sections extracted from
a 3D engineering-geological model, and ?) regularize the in-
terfaces between materials of a 2D model by using spline
functions to facilitate the generation of a triangular mesh.
Such simplifications are probably widely used even when
they are not mentioned. Whereas they probably have a lim-
ited impact for low frequencies, they may introduce inaccu-
racies in the solution for high frequencies. When performed
manually, they may also involve decisions from the opera-
tors which are not necessarily documented. Moreover, man-
ual and local mesh simplifications are cumbersome, so they
cannot be efficiently applied to a large number of stochastic
structural models reflecting geological uncertainties.

To overcome these issues, ?) proposed an automatic
simplification technique based on exclusion areas and dis-
cussed the impact of this simplification on simulated wave-
field in a quantitative way. In the present study, we propose
to combine and compare a manual simplification strategy
with the automatic method of ?) using the 2D model of a
real site, and we investigate the effects of these simplifica-
tions in terms of computational cost and solution accuracy.
The 2D model we choose for our study is a cross-section
from the lower Var valley, of which a 3D detailed model was
recently finalized by ?). The site effect estimation study we
carry out is standard and applicable to other sites. Our 2D
wave propagation simulations are performed using a DGM
solver (?), but the simplification method which is proposed
can be applied before other numerical simulation methods
based on a triangular discretization.

The paper is organized as follows. In section 1, we
present the application site and the available data, the ini-
tial 2D cross-section and the various components of the nu-
merical method. Section 2 briefly explains and illustrates the
simplification methods and details the five models generated
from the initial one. The results are presented in section 3;
first, the study of site effects using the initial model and
then the comparison between the results obtained with sim-
plified models. The computation times, as well as time and
frequency solutions are compared.

1 METHODS AND MODELS

1.1 Initial data

The lower Var valley is the site chosen to apply and illustrate
the method. This site, located west of the city of Nice (south-
east France), is a highly urbanized fluvial sedimentary basin.
It is an area in strong economic development which hosts the
second largest French airport. Because it stands near the
Ligurian margin and the Alps, this region presents a moder-
ate but regular seismic activity. It is one of the rare areas in
metropolitan France where the return period of earthquakes
of magnitude greater than 4.5 is shorter than 10 years (e.g.
?). Several site specific studies have shown site effects in the
city of Nice and the lower Var valley, its western boundary
(?). For that reason, it is important to continue evaluating
the seismic risk in this region.

A 3D subsurface model of the valley has been recently fi-
nalized by ?). This model is based on the compilation of sev-

Figure 1. Extract of the lower Var valley map. The studied

profile is located near the prefecture of Alpes-Maritimes county
(CADAM).

eral years of geotechnical and geophysical studies and inte-
grates data from several hundred borehole log-stratigraphies
and ambient vibration measurements. These various data
were combined in the GDM software (?) to build and con-
strain the 3D model of the lower Var valley, by interpolating
the different interfaces between rock units. The result is a
model describing the elevation of the geological interfaces
and the geomechanical properties at depth on a regular grid
with a 10m resolution in both horizontal directions. The
cross-section we investigate corresponds to a West-South-
West/East-North-East profile at the level of the prefecture
of Alpes-Maritimes county (CADAM), as depicted in Fig-
ure ??. The profile crosses the alluvial basin of the lower
Var valley and connects from west to east the two cities of
Saint-Laurent-du-Var and Nice.

The geometry of the cross-section is directly extracted
from the 3D model. Its direction being not aligned with the
model grid, the depth of the interfaces in our profile is known
every 11.25 meters over 212 points. The total extension of
the cross-section is about 2.37 kilometers.

The different materials which compose the geological
section are presented in Figure ?? and are derived from
the analysis of ?). An average value for the S-wave veloc-
ity, assumed as constant in each layer, is assigned to each
rock unit according to the combination of different types of
available data (geological knowledge, borehole data, VS pro-
files from inversion at some locations in the valley). Values
for VP are deduced from the relationship VP =

√
3VS . For

simplicity, a single value of density is defined in the basin:
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Layer description Code Geology ( f / 50000 geological map) Vp (m.s- 1 ) Vs (m.s- 1 )

1 Anthropogenic deposits 600 240

2 1080 435

3 Deltaic alluvium 875 350

4 Muddy deposits and pro-delta 675 270

5 Recent alluvium, fluvial deposits 1080 435

6 875 350

7 675 270

8 1125 450

9 1250 500

Bedrock. R 2234 1290

Filling, concrete.
Topsoil.

Sand, pebbles, gravels. Recent alluvium

Fine sand. Silty sand or
clay sand.

Silt, clay
(sometimes muddy).

 
 
 

Pliocene, Cretaceous, Jurassic, Trias

Deltaic alluvium

Muddy deposits and pro-delta

Ancient alluvium, fluvial deposits

Ancient alluvium, fluvial deposits

Sand, pebbles, gravels.

Sand, pebbles, gravels.

Silt, clay
(sometimes muddy).

Fine sand. Silty sand or
clay sand.

Coarse sand.

 

Figure 2. Nature and properties of the materials which compose

the subsurface of the lower Var valley. Modified from ?).

ρbasin = 1900 kg/m3. The bedrock density is also consid-
ered as constant: ρrock = 2100 kg/m3. In the basin, the
shear wave velocities corresponding to the different types of
alluvium vary between 240 and 500m/s. The contrast with
the bedrock (VS = 1290m/s) is relatively high.

1.2 Reference model (M1)

An initial mesh that will serve as a reference is generated
from the raw data of the 3D model. The geological inter-
faces between materials, as well as the top and the base of
the basin, are first constructed by linking the data points
of the regular grid. The obtained lines are then smoothed
using cubic splines. The top topography corresponds to the
upper boundary of the numerical domain. The bottom of
the cross-section has a constant depth of 123 meters. In the
lateral direction, the homogeneous bedrock is extended ar-
tificially (Figure ??). The extension aims to gradually bring
the two sides of the model to the same constant thickness
(elevation fixed at 65 meters) so that periodic conditions on
the lateral boundaries can be applied. In summary, the fi-
nal model dimensions are 3 700 meters by 188 meters, the
basin having a lateral extension of about 1 300 meters and
a maximum depth of about 50 meters (Figure ??).

A first triangulated unstructured mesh of the geologi-
cal section was generated using the mmg2D software∗ (??).
The target mesh element sizes were set to 1 meter in the
basin and 4 meters in the bedrock far from the basin. In the
bedrock, the size of the mesh elements gradually increases
from 1 meter close to the basin interface to 4 meters. Within
the basin, the interfaces between the materials are honored
by the mesh. This mesh contains elongated triangles with
small angles located at tangential contacts and in thin layers
within the basin. Due to their small height, one can expect
that these triangles have an influence on the time step and
therefore the computational time of the simulations.

∗https://www.mmgtools.org/

1.3 Wave propagation simulations

The study of the seismic response of the 2D profile is carried
out by considering the P-SV wave propagation of a vertical
shear plane wave, from the depth to the surface through
the heterogeneous basin. Simulations are performed with
the discontinuous Galerkin finite element method (DGM)
described in ?), for which we give the key elements be-
low. The medium is supposed to be viscoelastic. The elas-
todynamic equations written in velocity-stress formulation
are coupled to the GMB model (Generalized Maxwell Bod-
ies) introduced by ?) using three mechanisms. The medium
properties are supposed to be constant in each element of the
triangular finite element mesh which requires the interfaces
between the different geological materials to be represented
as mesh boundaries. The spatial interpolation is local to each
element and based on first order Lagrange polynomials. A
centered flux is applied at the interfaces between adjacent
mesh elements. Time integration uses a leap-frog scheme.

In the absence of information regarding attenuation in
the different materials, the values of the quality factors QP

and QS are assumed to be frequency independent and are
estimated as one tenth of the P - and S-wave velocities re-
spectively, as frequently done in site effect studies where
no other constraint on intrinsic attenuation is available (?).
Refined relationships for the quality factors can be applied
from ?). A periodicity condition is prescribed on the lateral
boundaries for a more accurate propagation of the plane
wave in the bedrock. A free surface condition is set at the
topography. The shear incident plane wave is introduced at
the base of the model via an upwind boundary flux (balance
condition between incident and outgoing waves), following
the technique described in ?). In this way, unlike when gen-
erating a plane wave by a line of point sources, the incident
wave does not depend on the mesh in the bedrock, which is
a necessary condition for an accurate comparison between
the different model solutions. In this study, one propagates
a wave whose horizontal velocity pattern is presented in Fig-
ure ?? (left). According to the normalized Fourier spectrum
of Figure ?? (right), the energy is maximum up to 15Hz
and then decreases up to 25Hz. The minimum wavelength
λmin = Vs/fmax, for fmax = 25Hz, is equal to 10 meters
in the basin and 51 meters in the bedrock; the element size
(i.e., maximum 1 meter in the basin and 4 meters in the
bedrock) is therefore sufficient. The duration of the simula-
tion is T = 4 seconds, the time after which the wave energy
is dissipated.

The medium response is recorded at 148 receivers
placed on the model surface every 25 meters. We particularly
focus on six of them, referred as R1 to R6 in Figure ??. R1
and R6 are located outside the basin, and R2, R3, R4 and
R5 are on the basin topography at variable elevations. Re-
ceiver R3 corresponds to the location of the CADAM (the
administrative center of the Alpes-Maritimes county). We
are interested in the time evolution of the horizontal Vx and
vertical Vz components of the ground motion velocity as well
as the transfer functions. The transfer function or standard
spectral ratio (SSR) at a site is the spectral ratio of the hori-
zontal velocity, i.e., the ratio in the frequency domain of the
computed velocity at the site by the equivalent velocity at a
flat surface of a rocky homogeneous medium. The standard
spectral ratio technique is widely applied to the analysis

https://www.mmgtools.org/
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R1

R2 R3 R4 R5

R6SW NE

200 m
20 m

Figure 3. 2D geological section of the basin of the lower Var valley. The position of the 6 receivers is indicated on the profile: R1 and
R6 are located outside the basin; R2, R3, R4 and R5 at the basin surface. R3 corresponds to the position of the CADAM on Figure ??.

Vertical exaggeration = 3.

of seismological recordings to better quantify the amplifi-
cations of a site relative to a reference (???). These ratios
give indications on the level of amplification and the associ-
ated frequencies by normalizing with respect to the source.
For these reasons, numerical applications on real sites are
interested in transfer functions.

Because the solver is explicit in time, the global time
step of the simulation must be chosen so as to guarantee
computational stability. It writes

∆t = min
i

∆ti = min
i

[
1

2p+ 1

Hmin/i

VP/i

]
, (1)

where the index i refers to the mesh element i, p is the
spatial interpolation degree (here p = 1), Hmin/i and VP/i

are respectively the minimum height and the compressional
velocity VP of element i. The time discretization therefore
depends on the smallest ratio between the minimum height
of triangles and the corresponding P-wave velocity. Because
of poor quality triangles, the minimum height can be much
smaller than the target element size imposed during the
mesh construction, yielding a very small time step. To in-
crease the time step and consequently decrease the compu-
tational cost, we propose to apply different techniques for
simplifying the geometry of the cross-section. We compare
five simplified models whose meshes have improved quality
elements (Section ??).

2 MODEL SIMPLIFICATION

2.1 Overview of the simplification method

In this section, we shortly present the method for automat-
ically simplifying 2D models we use in this study. Following
the terminology of ?), these models consist of Surfaces (rock
units) bounded by Lines (interfaces such as horizons and
faults), which terminate or branch at Corners. The objec-
tive of the simplification is to decrease simulation time by re-
ducing the number of mesh elements and by increasing their
quality. In our case, computation time is much related to the
smallest triangle height. Complex areas are thus those where
Surfaces are thin, Lines are short or branch with small an-
gles. The simplification is achieved by removing these small
geometric features given some prescribed tolerances.

The automatic simplification method used in this study
(?) takes as input two geometrical parameters: the minimal
accepted distance between interfaces and the minimal ac-
cepted angle between interfaces. These two parameters are

used as criteria to define invalid features of the model, in
other words the areas where the two criteria are not verified.
These criteria may be different from one model interface to
another, but in this study, they are assumed to be the same
everywhere in the model.

To detect invalid areas and features, all the 2D model
interfaces, typically the lines between media and the con-
tact points between these lines, are thickened similarly to
the morphological dilation as defined in mathematical mor-
phology (????). These dilations, called exclusion zones (?),
are associated to each model entity and are defined using
input geometrical criteria. If these exclusion zones overlap,
the area where the overlap occurs does not fulfill input geo-
metrical criteria and thus is considered invalid.

The geometrical analysis of model validity is based on
exclusion zones. Exclusion zones are compared by pairs: each
pair of intersecting exclusion zones are translated into an
edge in an invalidity graph. Additional information are set
on the invalid edge associating two model entities, mainly
to localize with precision invalid areas.

Finally, the detected invalid features are repaired by
choosing between two strategies. The first one uses expan-
sion and only results in geometrical modification of model
interfaces (Fig. ??-left). As a consequence, the topology of
the model (i.e., the set of adjacency and incidence relations
between Surfaces, Lines and Corners) is not modified. The
second strategy is based on contraction that modifies both
the geometry and the topology of the model by collapsing
some model entities into lower dimensional entities (e.g.,
Lines into Corners, or Surface subsets into Lines, Fig. ??-
right). This strategy first operates topological modifications
by applying a graph editing step to remove invalidity edges,
and then reconstructs the repaired geometry of the geolog-
ical model. After the simplification of the model interfaces,
the model is remeshed. In this work, we use mmg2D for
remeshing the simplified geometry. A more detailed descrip-
tion of this technique can be found in ?).

2.2 Simplified models

We generated five simplified versions, noted M2 to M6, of the
reference cross-section (M1). The objective is to increase the
minimal height of the triangles. The ambition is to reduce
the computation time of the simulations. Special attention
is therefore paid to thin layers and tangential contacts in
the cross-section (Figure ??). All the meshes corresponding
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Figure 4. Time evolution of the horizontal velocity (left) and normalized Fourier spectrum (right) of the incident plane wave.

to the various models are provided in .msh format as sup-
plementary material, freely available on GitHub (see ??).

To more easily link a model to the type of simplifica-
tion used, we introduce the following notations: Sm(M) and
Sa(M) denote respectively the manual or automatic simplifi-
cation of the model M. Moreover, we distinguish by the addi-
tional notations *,t and *,g the simplifications which modify
the topology from those which modify only the model ge-
ometry.

Two groups of simplified models are defined: first the
models M2, M3 and M4, which are modified with a manual
simplification, and second the models M5 and M6 which are
exclusively based on automatic simplifications as presented
in Sec. ??. Table ?? gives information on which method is
employed with parameter values for each simplified model.
For all models, meshing target sizes are the same: 1 meter
in the basin and 4 meters in the bedrock, which yields sim-
ilar numbers of mesh elements for all the models. Table ??
summarizes for each model the number of model entities
(Corners, Lines and Surfaces) as well as the number of mesh
elements.

Model M2, named Sm,t(M1), comes from a manual sim-
plification of the reference model. The simplifications in-
volve several local editing steps based on visual criteria of
the model complexity. The thinnest layers are removed lo-
cally or entirely, decreasing the number of model surfaces
(Table ??). Moreover, tangential contacts between inter-
faces are enlarged to reduce small angles. Then, smooth-
ing operations are performed on interface Lines. The small-
est triangle height Hmin is enlarged by a factor 8.2, from
Hmin = 2.77× 10−3 m for M1 to 2.27× 10−2 m.

Model M3, or Sa,g(M2), is simplified from model M2
by applying the automatic method (?) using the expansion
strategy (Sec. ??). We arbitrarily chose relatively large pa-
rameters for the exclusion zones, as model M2 was already
relatively far from model M1. The smallest triangle height
Hmin is enlarged by a factor of 63.5 with respect to the refer-
ence model (from Hmin = 2.77× 10−3 m to 1.76× 10−1 m)
corresponding to an enlargement factor of about 7.7 com-
pared to model M2. Model M3 is the simplified model in
which the smallest triangle height has been enlarged the
most.

Model M4 (Sm,t(M2)) is also obtained from model M2,
by removing the interface between layers 8 and 9 (Fig-
ure ??), which have similar rock properties and locally have
a small thickness. These layers are the deepest of the basin,
located between receivers R2 and R4. The velocity proper-
ties of material 8 are chosen for the merged entity. The small-
est triangle height Hmin is enlarged by a factor of 12.1 com-
pared to the reference model (from Hmin = 2.77 × 10−3 m
to 3.35×10−2 m), a factor of 1.5 with respect to model M2.

Model M5, also named Sa,t(M1), is generated directly
from model M1 by applying the automatic method presented
in ?) using the contraction strategy. For this model, we chose
relatively small simplification parameters (exclusion zones
equal to 18% of the average edge size) to preserve geomet-
ric accuracy. The automatic processing had to be launched
two times to remove all the small components remaining as
artifacts in the model (for example, areas of length smaller
than 0.5 meters). Indeed, two small components (thin layers)
were still remaining after the first simplification run, partic-
ularly where the model M1 shows several and close small
features. The second run, with same parameters, eliminated
these artifacts without altering already simplified features
in the model. The smallest triangle height Hmin is enlarged
by a factor of 31.4 compared to the reference model (passing
from Hmin = 2.77× 10−3 m for M1 to 8.71× 10−2 m).

To improve the elements with small height in M5, the
model M6 (also Sa,g(M5)) is generated from the model M5
by applying a second automatic simplification step using
the expansion strategy (as for the generation of M3 from
M2). In this case, we use the same geometric tolerance but
a larger angle, as this makes it possible to thicken some
layers in areas where three or more horizons were initially
too close. The smallest triangle height Hmin is enlarged
by a factor of 53.4 compared to the reference model (from
Hmin = 2.77× 10−3 m to 1.48× 10−1 m). As the parameter
values for models M5 and model M6 are smaller than those
used to generate M3 from M2 (Table ??), both models are
geometrically closer to the reference model. The model M6,
resulting from two simplifications, cannot be further than
0.36 m from the reference model M1.

2.2.1 Geometric model comparison

A random sampling of the models is performed to locate and
estimate the amount of modifications introduced by both
manual and automatic simplifications. For each pair of mod-
els, ten million points are randomly drawn in the basin area.
The models are not sampled through a regular grid because
the spacing required to capture the smallest changes would
be of the order of 1 mm, which would be prohibitive. The
percentage of points that sample two different materials in
two distinct models gives an approximation of the level of
spatial differences between two models (Table ??). This spa-
tial difference indicator is not applied to compare model M4
to other models, because M4 has been generated by remov-
ing an interface between two layers, which is not the same
kind of modifications as all the other ones. The number of
points was chosen to be large enough to ensure the statistical
robustness of the percentage computation.

The differences of the modified models to the initial
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(a)

(b)

Strategy 2 : ContractionStrategy 1 : Expansion

Figure 5. Illustration of the two automatic simplification strategies on a small geometric feature due to a fault (a) or a thin layer (b).

From the initial model (center column), the expansion strategy (left) preserves the model connectivity whereas the contraction strategy

(right) allows for topological changes during model simplification. Modified from ?).

Table 1. Summary of applied methods and parameters used to generate simplified models. For model notation, Sm(M) and Sa(M) refer

respectively to manual and automatic simplifications applied to the model M. Addition indices *,t and *,g distinguish modifications in

the topology from modifications of the geometry only. When the automatic method (?) is employed, simplification parameters are given
in the right part.

Simplified model Model notation Automatic method Other method Applied strategy Minimal distance Minimal angle

M2 Sm,t(M1) � X (manual) � � �

M3 Sa,g(M2) X � Expansion 0.6 m 15o

M4 Sm,t(M2) � X (unit merging) � � �

M5 Sa,t(M1) X � Contraction 0.18 m 5o

M6 Sa,g(M5) X � Expansion 0.18 m 10o

Table 2. Model and mesh characteristics for models M1 to M6; the correspondence between the model numbers and the simplifications

methods can be found in Table ??. The number of mesh elements (triangles) is comparable for all models. For each mesh, the minimum
triangle height Hmin is given, pointing out the quality of the worst mesh element. Enlargement ratio is the ratio between the value of

Hmin of the current model and that of the reference model (M1).

Model M1 M2 M3 M4 M5 M6

Nb. of Corners 39 30 30 28 38 38

Nb. of Lines 61 44 44 41 56 56

Nb. of Surfaces 23 15 15 14 19 19

Nb. of vertices 112 007 110 434 112 123 110 112 111 294 111 294

Nb. of triangles 221 089 217 943 221 326 217 304 219 675 219 675

Hmin (m) 2.77 ×10−3 2. 27 ×10−2 1. 76 ×10−1 3.35 ×10−2 8. 71 ×10−2 1.48 ×10−1

Enlargement ratio 1 8.2 63.5 12.1 31.4 53.4
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R2 R3 R4 R5SW NE

M1

5 m

10 m

M2

5 m

10 m

M3

5 m

10 m

2 m

2 m

2 m

2 m

2 m

2 m

2 m

2 m

2 m

2 m

2 m

2 m

M6

5 m

10 m

M5

5 m

10 m

M4

5 m

10 m

Figure 6. Detailed view of the reference model (M1) and the five simplified models (M2 to M6; the correspondence between the model
numbers and the simplifications methods can be found in Table ??). For figures in the left side, black lines correspond to the interfaces

in the reference model whereas colors correspond to materials in the simplified model (vertical exaggeration = 2). The black square on
M1 locates the detailed views on the right column; black ellipsoids helps to see changes. For figures in the right side, mesh elements are

shown on a detailed view without vertical exaggeration. See Figure ?? for legend.
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R2 R3 R4 R5

R2 R3 R4 R5 R2 R3 R4 R5

R2 R3 R4 R5

R2 R3 R4 R5 R2 R3 R4 R5

Differences between M1 and M2

Differences between M1 and M3

Differences between M1 and M5

Differences between M1 and M6

Differences between M2 and M3

Differences between M5 and M6

Figure 7. Localization of modified areas between pairs of models; the correspondence between the model numbers and the simplifications
methods can be found in Table ??. Left : Differences between the reference model and the simplified models. Right : Differences between

a model and the one from which it is derived. The red dots represent the points, among those randomly drawn in the basin, located in

different materials. 100,000 points are randomly drawn in the basin for illustrating this figure, except for the comparison between M5
and M6 in which 10,000,000 points are used (100 times more). Vertical exaggeration = 5.

Table 3. Estimation of differences between the models M1, M2,
M3, M5 and M6. Values represent the percentage of incorrect rock

units among ten million randomly sampled points.

M1 M2 M3 M5 M6

M1 – 1.32 1.40 1.12 ×10−1 1.14 ×10−1

M2 (Sm,t(M1)) – – 1.37 ×10−1 1.21 1.21

M3 (Sa,g(M2)) – – – 1.33 1.33

M5 (Sa,t(M1)) – – – – 2.20 ×10−3

M6 (Sa,g(M5)) – – – – –

model M1 are more abundant for the model M2, and con-
sequently for model M3, than for models M5 and M6 (Fig-
ure ??, Table ??). Differences between M1 and M2 exist on
almost all the interfaces in the basin. This is due to the man-
ual modifications applied to some interfaces of the reference
model and to the smoothing operations. The highest density

of changes (emphasized by a high density of red dots) is near
the edges of the basin and at depth where the layers are the
finest in the reference model. The differences between M1
and M5 are mainly localized near the tangential contacts in
the basin and the thinnest layers, which illustrates the local
and minimal nature of the modifications performed by the
automatic simplification method. Most of the differences lie
in the North-East end of the basin and at the bottom of the
basin just below receiver R3.

The comparisons between M2 - M3 and M1 - M5 re-
veal some isolated points located at interfaces in the basin
far from areas of geometrical complexity (Figure ??). These
points are caused by the remeshing step. During this process,
the interfaces are slightly modified, involving changes about
10−3 meters large, which is very small compared to the scale
of simplifications. However, these changes fall within observ-
able variations between two models. They could, therefore,
have an impact on numerical simulations, although they
are very small in comparison to geometrical simplifications.
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Since the generation of M6 from M5 does not involve a
remeshing of the model Lines and Surfaces, the differences
are comparatively very small (Table ??) and they are lo-
cated at the enlarged tangential contacts only.

3 RESULTS

In this section, we first present a study of the wave amplifica-
tion in the lower Var valley basin obtained with the reference
model M1. Then, we analyze the effects of the model sim-
plifications on the numerical simulations. We first consider
the base case with attenuation, and then analyze results for
a simplified elastic case with no attenuation. We focus on
two aspects: the reduction in computation time induced by
the simplifications and the modifications of the numerical
results due to these simplifications.

3.1 Site effects study using the reference model
M1

In Figure ??, we present the numerical results of the ver-
tical propagation of a shear plane wave, for all the surface
receivers. For better visibility, the seismograms of both ve-
locity components are plotted up to 2. s. The position of
receivers R1 to R6, located at respective abscissas of −1002,
−400, −200, 125, 400 and 1201m, is represented by red
squares in the figures. On the seismograms (Figure ??-a-b),
trapped waves inside the basin are observed, due to the ma-
terial property contrast between the bedrock and the basin.
The multiple reflections and refractions in the different lay-
ers of the basin generate complex patterns and non-zero ver-
tical ground velocity values in the x-interval [−600, 700] cor-
responding to the basin location. In Figure ??-c, we plot the
transfer functions of the horizontal velocity at the surface,
that is the spectral (Fourier) velocity ratio as a function of
the frequency at each receiver. These ratios are calculated
with respect to the reference surface response of a flat ho-
mogeneous bedrock. The spectra come directly from time
solutions up to 4 s; no filtering was applied in this study.
Strong amplifications, with values up to 5 in the basin, are
observed at a fundamental resonance frequency between 2
Hz and 5 Hz depending on the depth of the interface of high-
est velocity contrast. Large amplifications are also noticed
at higher frequencies (between 10 and 15Hz) at receivers
located in the eastern part of the basin.

The solutions obtained at the six receivers R1 to R6 are
described in Figure ??. For R1 and R6, which are located
outside the basin, the time evolution of the two ground ve-
locity components (Figure ??-left-center) is roughly twice
the amplitude of the incident signal (as expected at the free
surface), and the transfer functions (Figure ??-right) are
constant and close to 1. In contrast, the basin effects are
visible from R2 to R5. A clear amplification of the horizon-
tal velocity is observed, especially in R4 and R5 (with a
Peak Ground Velocity (PGV) equal to 3.0 × 10−2 m.s−1)
and non-zero values of the vertical velocity are observed. We
also notice an increase of the duration of the seismograms:
they are about three times longer than the incident signal.
Moreover, the transfer functions show an amplification up
to 4 at about 2Hz for R2 and R3, which correspond to the
thickest part of the basin, and at higher frequencies for R4

(3Hz) and R5 (4Hz) as the sediment thickness reduces.
Several significant amplification peaks at higher frequencies
(between 10 and 22Hz) are also observed at R3, R4 and
R5. The fundamental frequency computed in R3 is in accor-
dance with the results of SSR (Standard Spectral Ratios)
and HVSR (Horizontal over Vertical Spectral Ratios) ob-
tained by ?) at the CADAM, which both provide a first
frequency peak at 1.8Hz. These are typical characteristics
of site effects in sedimentary basins.

3.2 Comparison of computation times

The computation time necessary for the simulation of the
plane wave propagation in the reference model M1 until 4
seconds is greater than 12 days (300 hours, Table ??) with a
classic desktop computer. Indeed, the time step ∆t is chosen
equal to 10−7 seconds to verify the stability criterion given
in Eq.(??). In our simulations, the time step is controlled by
the smallest ratio in the entire mesh between the minimum
height of a triangle and the local value of the P-wave veloc-
ity. The solver used in this study is not parallelized because
the computation times are usually reasonable for 2D appli-
cations. The model M1, generated from raw data, is only
used here to serve as a reference when comparing with the
simplified models.

When the simplified models are used, the computation
times decrease from 28 hours for model M2 to slightly more
than 4 hours for model M3 (Table ??). Automatic cross-
section simplifications take only a few seconds and remesh-
ing adds no more than a few minutes on a standard desktop
computer, so geometric processing time is negligible. Over-
all, the gain in computation time is considerable for all the
simplified models, the CPU time ratio varying between 10
and 73 depending on the model. From the comparison of
computation times, we can draw the following conclusions:

• Starting from the reference model, the application
of automatic simplifications (generation of M5) results in
smaller computation times than the simplifications by hand
(generation of M2); the ratio between the calculation times
of M5 and M2 is greater than 3.

• The application of additional automatic simplifications
based on the expansion of thin layers and tangential con-
tacts (models M3 and M6) leads to an additional gain in
computation time; both models M3 and M6 correspond to
the fastest computations.

• The simple merger of two layers in a specific area (gen-
eration of M4 from M2) reduces the computation time by
half. However, this simplification method is generally not
optimal and must be applied with care, as it removes an
entire interface so it affects areas that have no impact on
the calculation time and that could be kept intact (e.g., the
thickest part of layer 9, far from the edges; see Figure 5).
Conversely, it does not modify the rest of the model, leaving
unchanged areas that can have a strong influence on com-
putational performance.
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R2 R3 R4 R5

0,2 m

Figure 8. Consequence of the remeshing on the differences between the models M1 and M5. The differences are illustrated here by

red dots. The outlines in black correspond to the interfaces in model M1; the colors correspond to the materials in model M5. Vertical
exaggeration = 5.

(a)

(b)

(c)

R1
R2R3 R4 R5

R6SW    NE

Figure 9. Vertical propagation of a shear plane wave in the ref-

erence model M1. Solutions at all surface receivers. The abscissa

represents the position at the surface, the basin corresponding to
the range [-600;700]. (a) Time evolution of the horizontal velocity

Vx (m.s−1). (b) Time evolution of the vertical ground velocity Vz

(m.s−1). (c) Transfer functions of the horizontal ground velocity
as a function of frequency. Spatial sampling: a receiver every 25

meters. Frequency sampling: 0.1 Hz.

3.3 Comparison of simulation results

3.3.1 Time evolution of horizontal and vertical
components of ground motion

In Figures ?? and ??, we present the error between the seis-
mograms in M1 and in the various simplified models, for
the two ground velocity components. These figures are con-

structed simply by making the difference, at each receiver
and for each time step, of the solutions in the two mod-
els that are compared. As previously for better visibility,
we chose to show comparisons between models until 2s. For
all the simplified models and the two velocity components,
we notice that the main errors are related to the reflected
waves inside the basin. For Vx, the highest errors (observed
in models M2, M3 and M4) are localized at the basin edges,
especially at the North-East end (around x = 500), which
corresponds to the areas most modified during simplifica-
tions (Figure ??). However, smaller but significant errors
are present on the entire basin surface.

The analysis of the errors with respect to the reference
model M1 makes it possible to separate the models into
two groups, the first composed of models M2, M3 and M4,
and the second containing M5 and M6. These two groups
correspond to the different simplification strategies (Sec-
tion ??). The maximum error on the horizontal component
of the ground velocity fields is about 2.0×10−3 m.s−1 for the
models in the first group, and lower than 8.4 × 10−4 m.s−1

for the models in the second group (Table ??). Note that
the PGV of the horizontal component at the surface is
3.3×10−2 m.s−1. The maximum error on the vertical compo-
nent varies between 2.0×10−3 and 2.8×10−4 m.s−1 depend-
ing on model group. Nevertheless, the error is approximately
twice larger for models M2 to M4 than for models M5 and
M6 (Table ??).

In Figures ?? and ??, we plot the time evolution of
horizontal and vertical velocity components at the six re-
ceivers, obtained for models M3 and M6 in comparison to
the reference M1. Models M3 and M6 are those for which the
computation times are the shortest (4 hours and 6 minutes,
and 5 hours and 26 minutes, respectively). We first observe
that the three solutions are very close to each other. Sec-
ond, the general behavior of the difference (blue curves) is
the same for the two velocity components. Discrepancies are
mainly visible not on the direct wave but further on the re-
flections. However, the difference is larger between M1 and
M3 than between M1 and M6. When comparing M1 and
M3, the highest errors are observed at the four receivers lo-
cated on the basin surface (R2 to R5) while the comparison
between M1 and M6 shows negligible errors for R2, R3 and
R4. This proves that automatic and localized simplifications
have, in this study, a low impact far from the modifications.
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Figure 10. Vertical propagation of a shear plane wave in the reference model M1. Solutions at the six surface receivers R1 to R6.
Left: Time evolution of the horizontal ground velocity Vx (m.s−1). Center: Time evolution of the vertical ground velocity Vz (m.s−1).

Right: Transfer functions of the horizontal ground velocity as a function of frequency.

3.3.2 Transfer functions

In Figure ??, we present the errors on the transfer functions
of the horizontal velocity at the surface between M1 and the
simplified models. As for time solutions, this figure is con-
structed simply by making the difference, in each receiver
and at each frequency step, of the solutions corresponding
to the two models that are compared. No significant differ-
ence on the values of the fundamental frequencies and of the
magnitude of highest amplifications is observed. We find the
same groups of models (M2 to M4 on the one hand, and M5

and M6 on the other hand) as for ground velocities: differ-
ences on the transfer functions are also lower for models M5
and M6 than for models M2 to M4. The maximum error on
transfer functions is about 0.4 for models M2 to M4, and
0.3 for models M5 and M6 (Table ??, upper part). These
maximum error values are very close, but the differences are
widely distributed for models M2 to M4 while they are con-
centrated around R5 and beyond 15Hz for M5 and M6. This
difference between models is clear when the error is calcu-
lated up to 15Hz i.e., for frequencies corresponding to the
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Horizontal velocity Vx on model M1

Difference between M2 and M1

Difference between M3 and M1

Difference between M4 and M1

Difference between M5 and M1

Difference between M6 and M1

Figure 11. Differences of the horizontal velocity Vx at the surface in M1 and in the five simplified models; the correspondence between
the model numbers and the simplifications methods can be found in Table ??. The abscissa refers to the location along the profile, the

ordinate is the time. For comparison with error levels, the maximum of |Vx| for the model M1 is 3.31 × 10−2 m.s−1. Note that for

visualization purposes, the color scales are adapted to extremum values and therefore differ according to the models.



14

Table 4. Parameters of the time discretization and computation cost of the wave propagation simulations in models M1 to M6; the

correspondence between the model numbers and the simplifications methods can be found in Table ??. ∆t is the time step. The number

of iterations corresponds to a simulation until 4 seconds. All the simulations are performed on a classic desktop computer, with a Intel
Core I7 2.70 GHz. The smallest height and the extension ratio are also reported.

Model M1 M2 M3 M4 M5 M6

∆t (s) 7.29 ×10−7 7.63 ×10−6 5.26 ×10−5 1.45 ×10−5 2.56 ×10−5 4.00 ×10−5

Nb. iterations 5 480 000 524 000 76 000 276 000 156 000 100 000

CPU time (s) 1.08 ×106 1.01 ×105 1.48 ×104 5.28 ×105 3.03 ×104 1.96 ×104

CPU time 300h 28h 10min 4h 6min 14h 46min 8h 24min 5h 26min

CPU time ratio 1 10.6 73.0 20.5 35.7 55.1

Hmin (m) 2.77 ×10−3 2.27 ×10−2 1.76 ×10−1 3.35 ×10−2 8.71 ×10−2 1.48 ×10−1

Extension ratio 1 8.2 63.5 12.1 31.4 53.4

flat part of the incident velocity spectrum (Table ??, lower
part); the error value is divided by three for M5 and M6
compared to the case up to 25Hz. For the models M2 to
M4, the relative error varies between 7.5 and 5.8%, while
it is only 2.2 − 2.3% for models M5 and M6. For all mod-
els, beyond 15Hz, the highest differences are found at high
frequencies and low values of amplification; this artificially
generates large percentages of relative error whereas the ab-
solute error is rather low.

In Figure ??, we compare the transfer functions of the
horizontal ground velocity, for the six receivers, obtained in
models M3 and M6 and in the reference model M1. Again,
the three solutions are very close one to another. As pre-
viously, the difference is also higher for M1 - M3 than for
M1 - M6. In particular, differences between M3 and M1 are
visible for frequencies higher than 2−3 Hz at receivers R2 to
R5 while the error between M6 and M1 is negligible for all
receivers at the basin surface up to 15 Hz, which corresponds
to the interval where the spectrum of the incident velocity is
maximum. Automatic simplifications therefore have, in this
study, a very small influence on the study of site effects.

3.4 Additional case without attenuation

To enhance and better see the effects of the geometric simpli-
fications, we realized a second set of simulations considering
that the medium is fully elastic. For this new series, we kept
the same solver and exactly the same conditions as in the
viscoelastic case simply by setting to zero the number of
mechanisms of the GMB model; the system to be solved is
then reduced to the linear elastic one. As previously, the final
simulation time is 4. s; the reduction in computation time is
around 15% compared to the previous case. In this section,
we are mainly interested in the differences on the time solu-
tions and the transfer functions between the model M1 and
the other models. Concerning the figures, we limit ourselves
to seismograms of the horizontal velocity and comparisons
at receivers R4 and R5 which had the largest horizontal ve-
locity amplification in the case with attenuation.

3.4.1 Comparison of models on time solutions

Figure ?? shows the error between the seismograms in M1
and in the various simplified models, for the horizontal
ground velocity component. In this case, comparisons be-
tween models are shown over the duration of the simula-
tion, i.e., until 4 s. On both seismograms, the trapped waves
inside the basin are clearly visible up to 4 s. For all the sim-
plified models, we observe the same trend as before but the
differences are amplified by the absence of attenuation in
the medium. The main errors are related to the reflected
waves inside the basin; they are particularly visible for the
first family of models (M2 to M4). For models M5 and M6,
note that the color scales correspond to much lower values.

The maximum errors on both components of the ground
velocity fields are approximately the double of those ob-
tained in the case with attenuation. For the horizontal veloc-
ity component it is about 3.0×10−3 m.s−1 for the models M2
to M4, and 1.0× 10−3 m.s−1 for the second group of models
(Table ??). For the vertical component, the error is about
3.6×10−3 for the first family of models and 5.6×10−4 m.s−1

for M5 and M6.
In Figure ??, the time evolution of horizontal velocity

component is plotted at two receivers, R4 and R5, obtained
for models M3 and M6 in comparison to the reference M1.
The difference between models M3 and M6 is clear. Errors
appear for the model M3 from the first reflections and main-
tain a similar amplitude throughout the simulation. On the
other hand, they are of very low level for the model M6.

3.4.2 Comparison of models on transfer functions

In Figure ??, we present the transfer functions of the hori-
zontal velocity at the surface and the associated errors be-
tween M1 and the simplified models. First of all on the trans-
fer functions, we observe strong values (up to 16) of amplifi-
cations beyond 10Hz. Up to 15Hz, these values result from
successive constructive waves trapped in the heterogeneous
basin that have not been attenuated. Beyond 20Hz, strong
amplifications can also come from the division by small val-
ues of the reference Fourier spectrum. The errors between
models are visible for all models beyond 10Hz. We find the
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Table 5. Maximum errors (m.s−1) on horizontal and vertical velocity components at the surface. Correspondence between the model

numbers and the simplifications methods can be found in Table ??.

Model M2 M3 M4 M5 M6

Max. Vx error 1.86 ×10−3 1.84 ×10−3 1.80 ×10−3 8.38 ×10−4 8.36 ×10−4

Max. Vz error 2.06 ×10−3 2.09 ×10−3 1.98 ×10−3 2.86 ×10−4 2.85 ×10−4

same groups of models as previously: the level of error is
twice as high for the first group compared to the second.
The values of these errors are presented in the Table ??.
By comparing models up to 25Hz, the error on the transfer
functions is about 2 for models M2 to M4 and reduces to
8.0×10−1 for models M5 and M6. This corresponds to more
than 20% error for the first group of models and less than
10% for the second, at frequencies higher than 18Hz. When
the errors are analyzed up to 15Hz, the error is reduced to
3 − 4% for the models M5 and M6, i.e., twice the value of
the first set of simulations.

In Figure ??, the transfer functions of the horizontal
ground velocity, for R4 and R5, obtained in models M3 and
M6 and in the reference model M1 are compared. For this
particular case, the error is only multiplied by two for a bet-
ter visibility. The three solutions are close one to another
but differences are visible between M3 and M1 for frequen-
cies higher than 6 Hz while the error between M6 and M1 is
negligible. This additional series of simulations without at-
tenuation confirms that automatic simplifications produce
solutions closer to the reference model with a significant re-
duction in computation time.
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Vertical velocity Vz on model M1

Difference between M2 and M1

Difference between M3 and M1

Difference between M4 and M1

Difference between M5 and M1

Difference between M6 and M1

Figure 12. Differences of the vertical velocity Vz at the surface in M1 and in the five simplified models; the correspondence between
the model numbers and the simplifications methods can be found in Table ??. The abscissa refers to the location along the profile, the

ordinate is the time. For comparison with error levels, the maximum of |Vz | for the model M1 is 1.36 × 10−2 m.s−1. Note that for

visualization purposes, the color scales are adapted to extremum values and therefore differ according to the models.
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Figure 13. Time evolution of the horizontal velocity recorded at six surface receivers, comparison between models M1 and M3 (left)

and M1 and M6 (right); the correspondence between the model numbers and the simplifications methods can be found in Table ??. The
full black lines correspond to the reference M1, the red dashed lines to the simplified model. The difference between the two solutions,

multiplied by a factor of ten, is in blue.
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Comparaison M1 - M3 Comparaison M1 - M6  

Figure 14. Time evolution of the vertical velocity recorded at six surface receivers, comparison between models M1 and M3 (left) and

M1 and M6 (right); the correspondence between the model numbers and the simplifications methods can be found in Table ??. The
full black lines correspond to the reference M1, the red dashed lines to the simplified model. The difference between the two solutions,

multiplied by a factor of ten, is in blue.
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Wave amplifications on model M1

Difference between M2 and M1

Difference between M3 and M1

Difference between M4 and M1

Difference between M5 and M1

Difference between M6 and M1

Figure 15. Differences between transfer functions of the horizontal velocity Vx at the surface obtained between M1 and all simplified

models; the correspondence between the model numbers and the simplifications methods can be found in Table ??. The abscissa

corresponds to the location along the profile, the ordinate is the frequency. For comparison with error levels, the maximum amplification
for the M1 model is 5.55. Note that for visualization purposes, the color scales are adapted to extremum values and therefore differ

according to the models.
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Table 6. Maximum errors with respect to model M1 on the transfer functions of the horizontal ground velocity The correspondence

between the model numbers and the simplifications methods can be found in Table ??. The location and the frequency corresponding to

this maximum are given together with the relative error (in %). The maximum amplification for the M1 model is 5.55.

Model M2 M3 M4 M5 M6

Errors on transfer functions up to 25Hz

Max. error 3.89 ×10−1 4.05 ×10−1 4.14 ×10−1 2.67 ×10−1 2.68 ×10−1

Max. error (%) 17.1% 17.8% 18.7% 8.2% 8.3%

Location in x (m) 550 550 550 325 325

Frequency (Hz) 25.0 25.0 21.2 18.6 18.6

Errors on transfer functions up to 15Hz

Max. error 2.62 ×10−1 2.85 ×10−1 2.72 ×10−1 8.73 ×10−2 8.65 ×10−2

Max. error (%) 7.5% 6.0% 5.8% 2.3% 2.2%

Location in x (m) 500 150 150 350 350

Frequency (Hz) 15.0 14.4 14.4 12.6 12.6

Table 7. Maximum errors (m.s−1) on horizontal and vertical velocity components at the surface. Case of a fully elastic medium. The

correspondence between the model numbers and the simplifications methods can be found in Table ??.

Model M2 M3 M4 M5 M6

Max. Vx error 3.03 ×10−3 3.14 ×10−3 3.03 ×10−3 1.22 ×10−4 1.22 ×10−4

Max. Vz error 3.64 ×10−3 3.85 ×10−3 3.74 ×10−3 5.83 ×10−4 5.65 ×10−4

Table 8. Maximum errors with respect to model M1 on the transfer functions of the horizontal ground velocity for a fully elastic

medium. The correspondence between the model numbers and the simplifications methods can be found in Table ??. The location and

the frequency corresponding to this maximum are given together with the relative error (in %). The maximum amplification for the
model M1 is 15.06.

Model M2 M3 M4 M5 M6

Errors on transfer functions up to 25Hz

Max. error 2.35 2.06 2.15 8.07 ×10−1 7.34 ×10−1

Max. error (%) 24.9% 21.9% 22.9% 9.5% 8.6%

Location in x (m) 375 375 375 350 350

Frequency (Hz) 19.6 19.6 19.6 17.9 17.9

Errors on transfer functions up to 15Hz

Max. error 1.34 1.66 1.39 1.66 ×10−1 1.71 ×10−1

Max. error (%) 15.8% 19.6% 16.4% 3.0% 4.0%

Location in x (m) 150 150 150 525 350

Frequency (Hz) 14.1 14.1 14.1 14.3 12.3
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Comparison M1 - M3 Comparison M1 - M6 

 

 

Figure 16. Transfer functions of the horizontal velocity recorded at six surface receivers, comparison between models M1 and M3 (left)
and M1 and M6 (right); the correspondence between the model numbers and the simplifications methods can be found in Table ??. The

full black lines correspond to the reference M1, the red dashed lines to the simplified model. The difference between the two solutions,

multiplied by a factor of ten, is in blue.
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Horizontal velocity Vx on model M1

Difference between M2 and M1

Difference between M3 and M1

Difference between M4 and M1

Difference between M5 and M1

Difference between M6 and M1

Figure 17. Differences of the horizontal velocity Vx at the surface in M1 and in the five simplified models for a fully elastic medium.
Correspondence between the model numbers and the simplifications methods can be found in Table ??. The abscissa refers to the location

along the profile, the ordinate is the time. For comparison with error levels, the maximum of |Vx| for the model M1 is 3.31×10−2 m.s−1.

Note that for visualization purposes, the color scales are adapted to extremum values and therefore differ according to the models.
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Comparison M1 - M3 Comparison M1 - M6 

Figure 18. Time evolution of the horizontal velocity recorded at surface receivers R4 (top) and R5 (bottom), comparison between

models M1 and M3 (left) and M1 and M6 (right) for a fully elastic medium. The full black lines correspond to the reference M1, the red
dashed lines to the simplified model. The difference between the two solutions, multiplied by a factor of ten, is in blue.
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Wave amplifications on model M1

Difference between M2 and M1

Difference between M3 and M1

Difference between M4 and M1

Difference between M5 and M1

Difference between M6 and M1

Figure 19. Differences between transfer functions of the horizontal velocity Vx at the surface obtained between M1 and all simplified
models for a fully elastic medium. Correspondence between the model numbers and the simplifications methods can be found in Table ??.

The abscissa corresponds to the location along the profile, the ordinate is the frequency. For comparison with error levels, the maximum

amplification for the M1 model is 15.06. Note that for visualization purposes, the color scales are adapted to extremum values and
therefore differ according to the models.
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Comparison M1 - M3 Comparison M1 - M6 

Figure 20. Transfer functions of the horizontal velocity recorded at surface receivers R4 (top) and R5 (bottom), comparison between

models M1 and M3 (left) and M1 and M6 (right) for a fully elastic medium. correspondence between the model numbers and the
simplifications methods can be found in Table ??. The full black lines correspond to the reference M1, the red dashed lines to the

simplified model. The difference between the two solutions, multiplied by a factor of two, is in blue.
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4 DISCUSSION

Despite numerous experimental and numerical studies,
2D/3D basin effects are often neglected in current engineer-
ing practices: building codes continue to estimate lithologi-
cal site effects considering the vertical profile of shear wave
velocity in 1D soil columns. The quantification of the over-
amplification of the ground motion compared to the 1D case

can be included in these seismic codes through aggravation
factors (???). One of the reason why 1D responses are still
preferred in engineering practice is that 2D/3D simulations
in realistic geological models of sedimentary basins are com-
putationally demanding. In this work, we have proposed a
geometric simplification strategy to facilitate the application
of 2D numerical wavefield simulations.

Some developments, based on modifications of the space
and/or time discretization, aimed to solve the problem of
small time steps induced by strongly heterogeneous models.
The p-adaptivity, as mentioned in the introduction, allows
an increase in the time step of small mesh elements by locally
reducing the order of interpolation (e.g., ?). By coupling the
solution of independent local problems with a global prob-
lem posed on a coarse mesh, the multiscale hybrid-mixed
method (MHM) (?) handles high contrast interfaces on not-
aligned meshes. Other works relate to the approximation in
time. For example, the use of local time-stepping techniques
prevent the global time step from being the smallest value in
the mesh (???). Coupled implicit-explicit time schemes (?)
are freed from the stability criterion by applying an implicit
scheme in the smallest elements without the disadvantages
of a global implicit scheme.

As compared to these space and time modifications, our
method is non intrusive in the sense that it does not require
any modification of the numerical scheme or the seismic sim-
ulation code. However, it calls for choosing a priori a set of
geometric parameters (the size of the exclusion zones and the
minimal angle). This choice should be supported by physical
and numerical reasoning, but looking for the best compro-
mise between efficiency and accuracy cannot be achieved for
every possible case study. To go further, it would be useful to
consider not just the smallest triangle height, but the ratio
between this height and the local P-wave velocity. Taking
this velocity into account would imply local changes of the
geometric parameters of the simplification method criteria,
allowing it to focus on the areas most penalizing for the
time step. As computation accuracy may suffer from large
modifications, another perspective of this work would be to
adapt the simplification criteria in space according to the
contrasts of medium velocities inside the basin. We could
also consider reducing differences in simulation results by
adapting the magnitude of simplifications at strategic loca-
tions that may correspond to areas with a high influence
on wave propagation. To do this, it would first be necessary
to map these areas, by studying the wave paths between
the sources and the receivers, using for example ray-based
seismic illumination studies.

Overall, the above results show the interest of geometric
model simplification methods to improve the mesh quality
and thereby increase the time step and the efficiency of wave-
form simulation. For a negligible loss of accuracy (model
M6), we observe a run time factor of 55 as compared to the
run time on the reference model. Moreover, the best compu-
tational gain/accuracy ratio was observed on the model M6
obtained by a completely automatic simplification: this al-
leviates the scrutiny of several possible models by an expert
and the subjectivity of manual simplification. In the pres-
ence of geological uncertainties, one could be tempted to use
larger exclusion zones (and hence possibly allow for larger
perturbations) of a geological interface in the areas where
it is poorly constrained by observations (e.g., far from drill
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holes). This would, in our view, be an inappropriate inter-
pretation of the parsimony principle. Indeed, the existence
of structural uncertainties means that the true Earth may be
different from the particular model used for the simulation.
To approximate the nonlinear seismic response of the true
Earth, detailed models may be needed. There is no reason
whatsoever that the simplification approach used in this pa-
per could systematically compensate for inaccuracies in the
geological model. Instead, the simplification should only be
considered as a computational convenience to accelerate the
wavefield simulation. Therefore, in the presence of geologi-
cal uncertainties, we strongly recommend to use stochastic
structural modeling to sample possible structural models
(?). Simplification should then be applied on each struc-
tural model realization to compute the wavefield sensitiv-
ity to geological uncertainties (?) or to implement Bayesian
methods in an efficient way. In the Var valley case study, the
model geometry is relatively well constrained both by bore-
hole and seismic data (?), but such stochastic uncertainty
studies could be envisioned in the future.

The simplification method we propose relies on the fact
that slight geometric model changes have a negligible im-
pact on the wavefield. This is usually the case in seismology,
such as in our Var valley case-study. However, ?) show that
a thin shallow layer below the free surface can have a strong
impact on seismic waves, especially surface waves travelling
over long distances, so that removing the layer or enlarging
it as a whole would significantly change the waveforms. The
magnitude of the allowed simplifications is extremely limited
in this case, so our method would not be efficient. Beyond
seismology, other wave phenomena would probably suffer
from slight geometric modifications, such as the Helmholtz
resonance in acoustics for instance (e.g., ?). In that case, a
small change of the size of the resonator neck would consid-
erably modify the resonance frequencies and band gaps.

In the study of site effects in sedimentary basins, com-
parison of simulations performed on a 2D cross-section with
those using a 1D column shows the significant effect of 2D
structures (?). We can reasonably extrapolate this obser-
vation to 3D models. To observe the effect of the three-
dimensional structures of basins on the ground motion, it
would be helpful to run simulations on 3D models. This
study shows that computation times can be extremely long
on two-dimensional geological cross-sections without simpli-
fications. In addition to the difficulty of generating a 3D
mesh in geometrically complex areas, computation times for
3D simulations can impractically increase. Automatic 3D
model simplifications, in combination with parallelization of
physical solver schemes, would significantly reduce compu-
tation times. However, extensions of the proposed geometric
simplification method to three-dimensional model are chal-
lenging to implement in a robust way, especially for building
the model geometry (last step). We think that the multi-
plication of geometrical configurations in 3D would lead to
an impractical number of case-by-case operations or to fail-
ure. To overcome this issue, we assume that an embedded
geometrical approach as described in ?), constrained by a
geological model topology analysis as operated here, is a
possible way forward.

In complement to geometrical approximation tech-
niques, homogenization could provide an interesting way
forward to efficiently compute wavefields in complex geo-

logical models (e.g., ?). Because it smooths heterogeneities
smaller than the minimum wavelength to be propagated in
the model, homogenization indeed prevents from handling
both small and poorly shaped elements in wave simula-
tions. In other words, the elements of the mesh of a ho-
mogenized medium are not constrained by the geological
structures; they can be sized according to the wavelength,
leading to an optimal computation cost in any wave simu-
lator. Nonetheless, the homogenization process involves an
elastostatic problem which can be solved by a classic finite
element method (????). In this context, a mesh of the ge-
ological model is required, so the homogenization can take
advantage of the automatic simplifications presented in this
paper, even though the computation cost of a static finite
element analysis is weakly sensitive to the size of the el-
ements. Most of all, the homogenization theory is not yet
able to provide an accurate solution (i.e., beyond the order
0) in the case of heterogeneities below a topographic surface.
That is one of the reasons why homogenized media have not
been used in seismic hazard assessment so far and why simu-
lations in complex geomodels will remain a continuing need
for long, asking for efficient simplification algorithms.

5 CONCLUSIONS

This work focuses on the influence of geometric simplifica-
tions of a 2D basin cross-section on wave propagation sim-
ulation in the context of a site effect study. The reference
model corresponds to a 2D section of the basin of the lower
Var valley, extracted from the 3D model of the basin re-
cently proposed by ?). This section is discretized using a
triangulated mesh in which an upgoing planar P-SV wave is
propagated using a Discontinuous Galerkin method. Differ-
ent simplification strategies (manual and automatic, modi-
fying medium connectivity or not) are applied to generate
five simplified versions of the reference model.

The results prove that the simplifications of the model
significantly reduce the computational time: simulations on
the simplified models become 10 to more than 70 times
faster. Indeed, the geometrical simplifications introduced
into the model improve the quality of the worst triangles,
directly influencing the time step and consequently the com-
putation time of the numerical simulations while preserving
the stability of numerical method. The gain in computation
time provided by the simplifications is considerable com-
pared to the loss of accuracy unavoidably caused by these
simplifications, both in the case of attenuating and purely
elastic media. Similar site effects are indeed observed for all
models: the simulations show the same amplified frequen-
cies, the same level of amplification and lengthening of the
signal duration in the basin, with a notable trend depending
on the basin depth.

In detail, however, the results show that simplified mod-
els based on the automatic method introduced in ?) have
two advantages: (1) this method automates the operations
of simplifications, which allows the use of systematic and re-
producible criteria based on geometric parameters, (2) the
simplifications are applied cautiously, by only modifying the
model locally at the level of geometrically complex zones. As
a result, numerical wave propagation simulations performed
on simplified models using this method are closer to the ref-
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erence results than those corresponding to models simplified
manually or by merging media with similar physical proper-
ties. In addition, simulations are obtained in a significantly
shorter time (between 5 and 8 hours against more than 12
days for the initial model) while automatic cross-section sim-
plification takes only few seconds. The mesh simplifications
therefore make it possible to carry out numerical simulations
which are hardly feasible in the initial model.
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Appendix A

This appendix shortly presents the 2D cross-section repair
and simplification algorithm used in this article for gener-
ating models M3, M5 and M6. Its aims is to remain short;
for more details the reader is referred to ?) and for complete
details to ?) and GitHub repository (see ??).

Algorithm 1: General algorithm for repair and
simplification of 2D geological cross-sections in-
troduced in ?); see ?) for complete details

Data: 2D cross-section Min, Edition strategy S,
Minimal distance dmin, Minimal angle αmin

Result: Repaired and/or simplified 2D
cross-section Mout

G ← ComputeInvalidityGraph (Min, dmin, αmin);
Mout ← ∅ ;
BuildModelTopology (G, S, Mout);
BuildModelGeometry (G, Mout);
return Mout

Algorithm 2: Function ComputeInvalidity-
Graph

Data: 2D cross-section Min, Minimal distance
dmin, Minimal angle αmin

Result: Invalidity graph G with nodes N are
model entities (either Corners or Lines),
and edges are either Connectivity edge Ec

or Invalidity (or Defect edge) Ed

for Entity e ∈Min do
Create a node Ne for entity e;

for Entity ei ∈Min do
for Entity ej ∈Min, ej ̸=ei do

if ej is boundary of ei ∥ei is boundary of ej
then

Add a Connectity Edge Ec between Nei

and Nej

else
Zei ← ComputeExclusionZone(ei) (see
?) for details);

Zej ← ComputeExclusionZone(ej);
if Zei ∩Zej ̸=∅ then

Add an Invalidity Edge Ed between
Nei and Nej

return G

https://github.com/ring-team/SCAROpen
https://github.com/ring-team/SCAROpen
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Algorithm 3: Function BuildModelTopology
(see ?) for details)

Data: Invalidity graph G, Edition strategy S
(Figure ??), 2D cross-section Mout to fill

Result: Modified G without Invalidity Edges Ed

anymore, Filled with topology Mout (no
geometry at this point)

for Invalidity Edges Ed of type Corner-Corner
∈G do

Modify G by fixing Ed using edge deletion or
edge contraction depending on S;

for Invalidity Edges Ed of type Corner-Line ∈G do
Modify G by fixing Ed using edge deletion or
edge split and contraction depending on S;

for Invalidity Edges Ed of type Line-Line ∈G do
Modify G by fixing Ed using edge deletion or
edge split and contraction depending on S;

for Node Ne ∈ modifiedG do
Create an Entity e in Mout for node Ne;

Algorithm 4: Function BuildModelGeometry
(see ?) for details)

Data: Invalidity graph G, 2D cross-section Mout

to fill
Result: Mout with both topology and geometry
for Corner Node Ne ∈G do

Compute Corner geometry using barycenter of
input Corners, and projection of input Lines ;

for Line Node Ne ∈G do
Compute Line geometry by co-refinement of
input Lines ;

Compute Surfaces topology from Corners and Lines
using RINGMesh (?) ;

Remesh Surfaces using mmg2D software ;
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Lévy, B., & Caumon, G., 2017. RINGMesh: A programming



32

library for developing mesh-based geomodeling applications,

Computers & Geosciences, 104, 93–100.

Peyrusse, F., Glinsky, N., Gélis, C., & Lanteri, S., 2014. A nodal
discontinuous Galerkin method for site effects assessment in

viscoelastic media Verification and validation in the Nice basin,

Geophysical Journal International , 199(1), 315–334.
Restrepo, D., Bielak, J., Serrano, R., Gómez, J., & Jaramillo,
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