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Introducing simple models of social systems

Learning to model social systems can foster critical thinking about the applications of mathematical methods to social issues and also lead to professional opportunities. I introduce an intriguing simple model proposed by Thomas Schelling to understand urban segregation. It shows that even when individual agents seek mixed neighborhoods, they can collectively create a segregated city that makes everyone unhappy. The model can be presented as a simple role-playing game or by a computer program. At a more advanced level, the methods of statistical physics provide a way to calculate equilibrium states corresponding to segregated configurations. I also discuss why physics inspired models have difficulties in understanding the complex dynamics of real social systems.

I. INTRODUCTION

Many physicists have contributed to the emerging field of computational social science [START_REF] Lazer | Computational social science[END_REF] by studying simple models of social systems (for reviews, see Refs. 2-4). Social networks and digital devices provide trajectories which leave digital trails, just as particles in a bubble chamber leave trails of their trajectories, creating an abundance of data that forms the basis for mathematical approaches to social systems. Social modeling is also an essential component of the work by the Intergovernmental Panel on Climate Change. Integrated assessment models [START_REF]An introduction to Integrated Assessment Models can be found at[END_REF] try to understand how human behavior influences climate change and how to reduce emissions in an efficient way. Teaching about simple social models, both at the undergraduate and graduate levels, helps develop intuition about social systems and fosters critical thinking about their analysis by formal methods.

In this paper, I discuss an intriguing and popular model proposed by the economist Thomas Schelling in the late 1960's and then widely studied by scientists from many fields, including physicists. As discussed in Sec. II, Schelling's segregation model [START_REF] Schelling | Dynamic models of segregation[END_REF] shows that even when individual agents seek mixed neighborhoods, they can, collectively, end up creating a segregated city that makes everyone unhappy. In Sec. III, I present two ways of introducing the model, starting with a simple role-playing game in which students directly experience the increase in segregation as they individually aim at a more mixed neighborhood. The second approach is a simulation that helps explore and understand the model's main features in a systematic way. Section IV explains how statistical physics can go beyond simulations to calculate the equilibrium states corresponding to segregated configurations. In the final epistemological section I argue that, although simple models are useful for physical systems, their usefulness is more limited for social systems. In short, they might be useful for improving our thinking and intuition, but they do not help answer many questions about real social systems, because social systems cannot be meaningfully manipulated in laboratories.

II. THE SCHELLING SEGREGATION MODEL

At the end of the 1960's, Thomas Schelling addressed an important question: How can we explain "segregation by color" in the United States? Our intuition suggests that the overall state of a city reflects the characteristics of individuals. If people wanted to live in mixed environments, neighborhoods should spontaneously bring together people of different types. Instead, Schelling argued that "the interplay of individual choices [. . . ] is a complex system with collective results that bear no close relation to individual intent." Perhaps an overall segregated state could be achieved by individuals seeking diversity.

To test his intuition, he modeled the city as a chessboard, with each square representing a dwelling, which can be occupied by a red or green agent, or be empty. Each day, an agent is chosen at random and is offered a random empty dwelling. The agent calculates whether this movement increases its satisfaction. If it does, it moves; if not, it stays put. Then, another agent and another empty square are chosen at random, and the process is repeated.

To complete the creation of this virtual city, we need to specify how the agent's satisfaction (or utility in economists' jargon) depends on the color composition of its neighborhood. For computational simplicity, Schelling chose an elementary satisfaction function, equal to zero up to a threshold concentration of opposite-color neighbors, and equal to one above. I choose here utility functions leading agents to strictly prefer mixed neighborhoods, with as many reds as greens, to segregated ones, making the result more striking as we will find in the following. A simple example is given in Fig. 1 (a more complex is studied in Sec. IV C).

Our intuition tells us that, because individuals move to improve their satisfaction, and satisfaction is highest when neighborhoods are mixed, the city should approach mixing.

The appeal of this virtual city is that it shows that this intuition is incorrect, and that the dynamics leads to a segregated city, where most inhabitants are dissatisfied (see Fig. 2). I suggest that readers stop here and take a moment to understand the origin of the apparent paradoxical result before I provide an explanation.

The explanation of the paradox is that when an agent chooses to move, it takes into account only the change of its own satisfaction. Thus, when a red agent leaves a predominantly green neighborhood to move to a mixed one, thereby increasing its own utility, it penalizes all its former neighbors (greens or reds), because the former place is now more dominated by greens. Its new neighbors are also unhappy, because their neighborhood is now slightly red. The overall utility decreases because the losses of these many agents (old and new neighbors) are not compensated by the gain made by the mover. Because the dynamics is governed by "selfish" individuals, this particular gain inexorably leads to a situation where everyone is unhappy. Note that segregation is not observed when the utility function is symmetric, for example by setting u(ρ) = 0 for ρ ≥ ρ 2 = 0.65 in Fig. 1. However, symmetry means that agents do not "see" the color of other agents (because it plays no role in their worldview, i.e., their utility function), which makes any analogy with racial segregation questionable. 

III. IMPLEMENTING THE SCHELLING MODEL A. A simple role-playing game

A striking way to understand Schelling's model is to implement it in the classroom. The class is divided into two groups, each wearing sports' bibs or clothes of the same color.

Chairs are then placed in rows to form a square or a rectangle. Students are assigned random seats to start and then the teacher chooses a student and an empty chair randomly, either intuitively or by using dice or a simple random number generator. The student then calculates her/his change in satisfaction and decides whether to move to the empty chair or not. When the utility is identical at both the initial and suggested locations, the student can either choose to stay or to move. I recommend using a simple satisfaction function, with only three levels, as in Fig. 1. For example, if the closest four neighbors are taken into account to compute the utility, it is 0 when there is either zero or one student of the same color in the neighborhood, 1/2 when there are strictly more than two, and 1 when there are exactly two. These numbers have to be proportionally adapted for seats on the square borders which have fewer neighbors, when there are empty chairs in the neighborhood of the student, and when the teacher includes the closest eight neighbors (instead of four) to calculate the satisfaction. The details do not change the final segregated state. In practice, the minimal size for a meaningful game is a 5 × 5 square (for about twenty students and five empty chairs).

As students move and see others become their neighbors or leave, they will realize that, even when each of them prefers mixed neighborhoods, they collectively reach a segregated configuration, where most are unhappy, because they end up being surrounded by too many students wearing the same color. The personal experience of decreasing satisfaction as students wearing the same color leave their neighborhood when it is not mixed enough, to join a more balanced place, helps students understand the origin of the apparent paradox, which is difficult to understand, even for experienced scientists, when they are shown only simulation results.

B. A NetLogo simulation program

NetLog is a free, simple, and popular multi-agent programmable modeling environment which runs on almost any current computer. 7 I provide a program [START_REF]> and runs smoothly with NetLogo-4.1.3 version[END_REF] to simulate the Schelling model to explore different dynamics as a function of the model parameters, either for large or small systems (see Figs. 2 and3). The graphical interface allows users to vary the initial configuration and the model parameters: satisfaction functions, city size, proportion of empty slots, neighborhood size, percentage of green/red agents, initial configuration and temperature (see Sec. IV). It also displays the evolution of the average utility and a quantitative segregation indicator.

IV. SOLVING SCHELLING'S SEGREGATION MODEL

To check the robustness and generality of the results, it is important to go beyond the simulations and show that segregation is the stable stationary configuration. Statistical physics provides the tools to find the global equilibrium state and to calculate the probabilities of different configurations such as those in Fig. 2. [START_REF] Grauwin | Competition between collective and individual dynamics[END_REF] Two ideas are needed to connect the microscopic and macroscopic levels. The first is the addition of noise in the decision rule for moving to avoid being blocked in uninteresting states because no agent can find a location that strictly improves its satisfaction. This noise is interpreted as a temperature in physics, and in economics, as the effect of features that are not explicitly included in the utility function, but that still affect the decision to move in real settings (for example, urban facilities and friends). [START_REF] Mcfadden | Conditional logit analysis of qualitative choice behavior[END_REF] The second idea is to introduce bounded neighborhoods (Fig. 4), that is, non-overlapping city blocks such that each block can be treated as a single entity with a utility function that depends on the number of each type of agent within the block. [START_REF] Grauwin | Competition between collective and individual dynamics[END_REF] The bounded neighborhoods provide a means for building a city state function as a sum of individual block functions which depend only on the number of agents in each block. In the following, I summarize the nature of the analytical solution to the Schelling model for the case of agents of a single color (vacant cells play the role of the other color), with a specific form of the utility function. I refer the reader to Refs. 9 and 11 for a more detailed solution of the general case of a two-color population with arbitrary utility functions, for which the approach is similar but more cumbersome.

A. Defining the city: agents and utility function

The city is divided into Q non-overlapping blocks, each containing H locations or cells (see Fig. 4). A microscopic city configuration is given by the occupation status of each of the HQ locations. The city can also be described at a coarse-grained level, by giving the number of agents n q (or the density ρ q = n q /H ≤ 1) in each block q (q = 1 . . . Q). The total number of agents is conserved so that Q -1 Q q=1 ρ q = ρ 0 . I assume that all agents share the same utility function u(ρ). Thus, the utility within a block q depends only on the density of the agents ρ q in that block. The total utility is given by U = H q ρ q u(ρ q ). Note that coarse-grained configurations are degenerate, because for a given value of ρ q > 0, there are many different microscopic configurations. At each iteration, an agent and a vacant cell in another block are chosen at random. The agent moves into this empty cell with probability

P (∆u) = 1 1 + e -∆u/T , ( 1 
)
where ∆u is the change in the utility if the chosen agent moves and T is the temperature.

In this way the set {ρ q } varies as the system evolves.

B. Finding the stationary state I now show how to find the stationary probability distribution Π(x) of the microscopic configuration x. We know from statistical physics [START_REF] Callen | Thermodynamics and an Introduction to Thermostatistics[END_REF] that if there exists a state function L(x) that governs the transition probabilities P (∆u), then the dynamics satisfies detailed balance and the distribution of the stationary probability distribution Π(x) is given by

Π(x) = 1 Z e F (x)/T , (2) 
where Z is the partition function, F (x) = L(x) + T S(x), and the entropy S for large H is given by the standard expression

S(x) = H q s(ρ q ), (3) 
with

s(ρ) = -ρ ln ρ -(1 -ρ) ln(1 -ρ). (4) 
The key to solving the Schelling model is to define a link function L(x) such that ∆u = ∆L, thereby linking individual behavior (∆u) to collective behavior (∆L). It is simple to check that, for bounded neighborhoods,

L(x) = H q ℓ q , (5) 
with

ℓ q = Nq nq=0 u(n q /H), (6) 
satisfies the condition ∆u = ∆L. [START_REF] Grauwin | blocks is that the neighbors of an agent's neighbors are also its own neighbors[END_REF] L may be interpreted as the cumulative effect of the individual utilities gained by agents as they progressively enter the city from a reservoir at u = 0. An analogy can be drawn between L and the energy of a capacitor that is progressively charged from q = 0 to some q = Q, because the energy required to increase its charge increases as q increases. Here, the utility gained by an agent entering the city increases as the city fills up (u > 0, by definition).

In this interpretation, segregation arises because agents do not collectively maximize their total satisfaction U , but the state function F . This state function generalizes the concept of free energy to systems driven by individual dynamics.

In the continuous limit of large H, ℓ q becomes

ℓ(ρ) = ρ 0 u(ρ ′ )dρ ′ . ( 7 
)
As T → 0, the probability Π(x) is dominated by the configurations that maximize the sum q ℓ(ρ q ) under the constraint of a fixed ρ 0 = Q -1 Q q=1 ρ q . To perform this maximization, we can follow methods used to study phase transitions (such as liquid-vapor coexistence [START_REF] Callen | Thermodynamics and an Introduction to Thermostatistics[END_REF] ). The point is whether the stationary state is homogeneous or inhomogeneous. The homogeneous state at density ρ 0 is unstable against phase separation if there exist two densities ρ 1 and ρ 2 such that γf (ρ 1 ) + (1 -γ)f (ρ 2 ) > f (ρ 0 ). The parameter γ (0 < γ < 1) corresponds to the fraction of blocks with density ρ 1 in the two phase state, with a fraction 1 -γ having density ρ 2 .

C. Results for a specific utility function

To focus on the effects of the agents' utilities and not on entropic contributions, I now solve the model in the limit T → 0. I also set ρ 0 = 1/2 so that the optimal equilibrium ρ q = 1/2 for all blocks can be reached using the triangular utility function given in Fig. 5.

By elementary integration, we find

ℓ(ρ) =      ρ 2 (ρ ≤ 1/2) 1 2 ρ 2 + 3 2 ρ -3 8 (ρ ≥ 1/2). (8) 
For a segregated state with N s blocks of density ρ s > 1/2, (Q -N s ) empty blocks, and the constraint ρ s N s /Q = ρ 0 = 1/2, we find that the maximum value of the link function

L(ρ s ) = N s ℓ(ρ s ) is reached for a segregated state with density ρ s, max = √ 3/2 ≃ 0.87 > 1/2,
and N s, max /Q = 1/(2ρ s, max ) = 1/ √ 3 ≃ 0.58. For this density, the normalized (per agent) link function L * value is

L * max = L max /(ρ 0 HQ) = 2l s, max N s, max Q = √ 3 2 ( √ 3 -1) ≃ 0.63. (9) 
Readers can check that this value is higher than that obtained for any configuration with N blocks of density ρ ≥ 1/2 and (Q -N ) empty blocks, including the mixed configuration (ρ = 1/2, N = Q), for which L * mixed = 1/2. Thus, the system will evolve to a segregated state, and not to the mixed configuration that maximizes the global utility. The mixed equilibrium state is unstable because at T > 0 there is a nonzero probability that an agent accepts a slight decrease of its utility, and moves to another block with density ρ = 1/2.

Agents remaining in their former blocks now have a lower utility and are more likely to leave, which empties the block, because each move away further decreases the utility of the remaining agents.

Using simulations to find the stable (ρ s, max ) equilibrium of the block Schelling model is tricky, because segregated states with N blocks of density ρ > 1/2, ρ ̸ = ρ s, max are metastable, with high activation barriers to move to the state N ± 1, reflecting the difficulty of emptying or filling an entire block (an example of such a metastable state is given in Fig. 4b). States that contain a block with ρ < 1/2 are unstable.

V. SIMPLE MODELS AND SOCIAL COMPLEXITY

Due to its simplicity, the Schelling model provides a useful introduction to the modeling of social systems for physics students. After 15 years of teaching this topic to pre-doctorate students, I found that it is also important to have them realize that physicists' tools may not be adapted to the modeling of real social systems. I focus here on two main reasons and refer readers to Refs. 14 and 15 for a further discussion.

Traditional applications of statistical physics are based on a simple idea: Each particle can be characterized by a set of characteristics which remain unchanged in different situations.

This assumption is fruitful because nuclei are not affected by chemical reactions, and the same particles can collectively form a gas, a liquid or a solid, depending on an external parameter such as the temperature. Physicists are tempted to consider that the statistical physics approach to social behavior means trying to "understand regularities at large scale as collective effects of the interaction among single individuals, considered as relatively simple entities." 2 However, it is difficult to find "stable nuclei" for humans. When we try to derive internal characteristics from observed behaviors, we find that these characteristics depend on the context used to interpret the behavior. [START_REF] Jensen | Your Life in Numbers: Modeling Society Through Data[END_REF] Also, as social scientists have understood long ago, humans care about how we model them, and their behavior may change in response to model results. For example, Wilke and Bergstrom argue that when models suggest that an epidemic is likely to end soon, onerous control measures feel like overkill, people relax, and the epidemic persists. [START_REF] Wilke | Predicting an epidemic trajectory is difficult[END_REF] Social systems also lack global conservation laws (energy and momentum) that are so helpful for their physical counterparts. For example, atmospheric models have a huge number of degrees of freedom and are difficult to model. Nevertheless, weather and climate models have proven reliable, thanks in part to the use of conservation laws. Lacking such conservation laws, models of social systems are unable to predict much of social dynamics. Indeed, complex economic models that try to predict economic growth fare no better than a much simpler model: growth next year will be the same as this year's. [START_REF] Jobert | Quelques constats sur les previsions conjoncturelles de la croissance francaise[END_REF] Another problem makes social systems difficult to model: The dependence of effects of a given cause on the context. For example, the price of an apartment may rise or decrease when it is one floor higher. When there is an elevator, the price is likely to increase if the apartment is brighter, but if there is not an elevator, the price likely decreases because of the additional effort required to climb the stairs. This dependence can be compared to nonlinear effects, which also make some physical systems difficult to understand.

In addition, physics has progressed by transforming its objects in the laboratory. [START_REF] Pickering | The Mangle of Practice[END_REF][START_REF] Jensen | An ontology for physicists' laboratory life[END_REF] Galileo minimized friction because he could not describe it mathematically, and materials were made as pure crystals before quantum physics could describe them. [START_REF] Hoddeson | Out of the Crystal Maze: Chapters from the History of Solid-State Physics[END_REF] The need for simplification suggests that for physicists' models to become relevant for social systems, human behavior would have to be simplified. The value of simplification is confirmed by the usefulness of physicists' tools for the case of pedestrian and traffic flows, [START_REF] Helbing | Traffic and related self-driven many-particle systems[END_REF] where our actions are strongly channeled by social constraints. But going further in the taming of people would need collective approval in democratic societies.

VI. CONCLUSIONS

Our intuition suggests that the observation of a segregated city implies that its dwellers actively seek it. By formalizing this idea, the Schelling model allows us to understand that we can end up with segregated configurations even when all individuals are looking for diversity. The same global state is reached when individuals seek segregation. Therefore, observing a global segregated state does not allow us to deduce anything about individual preferences. [START_REF] Schelling | Note that these individual models neglect structural effects, such as explicitly racial zoning ordinances. See for example, R. Rothstein, The Color of Law. A Forgotten History of How Our Government Segregated America[END_REF] The small number of assumptions makes this model of much interest. We can understand the results and the causalities at work in depth, without being overwhelmed by the complexity of the real world: Selfishness leads to unfavorable situations because individuals make decisions without considering the wishes of their neighbors, old and new. We can study these effects in detail and show why they are, on average, stronger than the specific utility obtained by the mover, leading to an overall negative effect. The application of statistical physics to the model improves our understanding by calculating its stationary states. Models inspired from physics can expand the conceptual toolbox of other disciplines.

For example, analogies between economic systems and the random field Ising model have suggested that large fluctuations of the economy (such as stock exchange price jumps) can arise from endogenous dynamics, and not only from external shocks, as assumed by most economic models. [START_REF] Ph | Crises and collective socio-economic phenomena: Simple models and challenges[END_REF] However, most physical models need to be adapted to respect the specificity of the system of interest. For example, pedestrians do not always behave as granular matter, as initially assumed by many physicists, [START_REF] Moussaïd | How simple rules determine pedestrian behavior and crowd disasters[END_REF] and geographical space is not homogeneous. [START_REF] Jensen | Network-based predictions of retail store commercial categories and optimal locations[END_REF] Moreover, successful interdisciplinary collaborations need time: it has taken decades for physicists to build meaningful epidemiological models and achieve recognition for their important contributions. [START_REF]As illustrated by the long-standing commitment of Alex Vespignani and Vittoria Colizza in modeling epidemics[END_REF] The difficulties of social models inspired from physics does not mean that it is impossible to conceptualize or to quantify human collective behaviors. Statistical tools or quantitative indicators are essential to improve public knowledge (is unemployment rising?), or to make appropriate decisions (how efficient are vaccines?). The key point is to find conceptualizations which are relevant for human societies. [START_REF] Dewey | The Public and Its Problems: An Essay in Political Inquiry[END_REF] 
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 1 FIG. 1. (Color online) (a) A simple utility function given by u(ρ) = 0 if ρ ≤ ρ 1 = 0.35, u(ρ) = 1/2 if ρ ≥ ρ 2 = 0.65, and u(ρ) = 1 if ρ 1 ≤ ρ ≤ ρ 2 , where ρ is the proportion of same color neighbors. (b) For this utility function, the green (light) agent in the center has maximum satisfaction in the left configuration (mixed neighborhood), low satisfaction in the middle configuration (neighborhood entirely of its color), and zero satisfaction in the right configuration (neighborhood entirely of the other color). Neighborhoods can be defined by the closest four agents (top, down, left, right) or by the eight closest agents (adding the four agents along the diagonals). In the examples in the figure, both definitions of the neighborhood lead to the same satisfaction.
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 2 FIG. 2. (Color online) The inhabitants are initially randomly distributed in the different squares. As they move to increase their satisfaction, the colors separate and the city ends up being totally segregated. I use periodic boundary conditions and the utility function described in Sec. IV C and Fig. 5.
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 3 FIG. 3. Screen capture of Netlogo's program display. The utility functions given in Fig. 1 and used in Sec. III A are shown on the left. A description of the different parameters is given in the Information tab of the program.

FIG. 4 . 3 ≃

 43 FIG. 4. City composed of Q = 36 blocks each containing H = 100 cells, with ρ 0 = 1/2. (a) Mixed state: agents are distributed homogeneously between the blocks, ρ q = 1/2 for all q. (b) Segregated configuration: agents are positioned on 22 blocks with mean density ρ = 0.82; the other blocks are empty. Note that (b) is a metastable state, and not the stable equilibrium predicted by statistical physics, which is 36/ √ 3 ≃ 21 blocks with density ρ = 0.86 (see Sec. IV C).
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 5 FIG. 5. Asymmetrically peaked individual utility as a function of the block density ρ. The utility is defined as u(ρ) = 2ρ if ρ ≤ 1/2 and u(ρ) = 3/2 -ρ if ρ > 1/2. Agents strictly prefer half-filled neighborhoods (ρ = 1/2). They also prefer overcrowded (ρ = 1) neighborhoods to empty ones (ρ = 0).

VII. SUGGESTED PROBLEMS

The Schelling model provides many further avenues for exploration. I list them from the easiest to the most difficult.

1. Explore the effects of changing the utility function to check the importance of the agents' preferences for unmixed neighborhoods of their own color (see the discussion on the symmetry of the utility function at the end of Sec. II).

2. An optimal result (a mixed city) can be reached by forcing movers to pay a tax proportional to the utility change they impose on their neighbors. [START_REF] Grauwin | Competition between collective and individual dynamics[END_REF] To incorporate the effects of a tax, we can write the probability of a move as

where ∆C = ∆u + α(∆U -∆u), ∆u is the change of the agent's own utility, and ∆U is the change of the total utility. The parameter 0 ≤ α ≤ 1 weights the contribution of the other agents' utility variation in the calculation of the cost C, and can be interpreted as a degree of cooperativity (or altruism). For α = 0, the probability of a move depends only on the selfish interest of the chosen agent, and when α = 1, it depends only on the collective utility. Compute the total satisfaction as a function of α to interpolate between the two limiting behaviors of individual and collective dynamics.

3. Explore the role of temperature. This variable is already implemented in the NetLogo program and can also be treated analytically. Show that noise makes the segregated phase disappear for T > 1/2.

4. Mix two kinds of agents (selfish and altruist) to explore how rapidly the system goes beyond the reach of analytical tools and shows "compositional chaos." [START_REF] Jensen | Giant catalytic effect of altruists in Schelling's segregation model[END_REF] Write a simulation program and measure the evolution of the average agent utility in the stationary state as a function of the proportion of altruists. Show that even an infinitesimal proportion of altruists has dramatic effects on the average agent utility. * pablo.jensen@ens-lyon.fr