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ABSTRACT 

The paper focuses on the stiffness analysis of multi-link serial planar manipulators, which may demonstrate 

nonlinear stiffness behavior under the compressive loading. Two important cases are considered, where the 

manipulator has either a straight or non-straight initial configuration. It was proved that in the first case the 

loading may cause the buckling if it exceeds some critical value, and the manipulator suddenly changes its 

straight shape and stiffness properties. For computing this critical force, a general eigenvalue-based technique 

was proposed that can be applied to any multi-link serial manipulator. For the second case dealing with 

non-straight initial configurations, a universal energy-based technique was applied that allowed to detect 

quasi-buckling phenomenon when it is observed very fast but not instant change of the manipulator shape and its 

stiffness coefficient under the loading. These results are illustrated by numerous examples of non-linear stiffness 

behavior of three- and four-link manipulators that are subjected to compressive force.  

Keywords: Manipulator stiffness modeling; Planar serial manipulators; Buckling and quasi-buckling 

phenomenon; Critical force computing; Eigenvalue- and energy-based methods. 

 

Nomenclature 

F  the external force  

q  the mechanism configuration angle  

α  an angle defining the mechanism initial shape  

k  the stiffness coefficient of the rotational spring  

L  the length of the links 

CF  the critical force 

V the potential energy  

U  the strain energy 

Δ  the end-effector deflection  

0 0( , )x y  the end-point coordinates  

F=[Fx Fy]  the external force,  

M  the internal torques 

J  the Jacobian matrix 

q1, q2 the mechanism configuration angles (for 3-link mechanism) 

(.)E  the strain energy of this mechanism 

U
+
, U

–
, Z

+
, Z

– 
 the manipulator configuration shapes 

( , )x y   the end-effector displacement  

mailto:Wanda.Zhao@ls2n.fr
mailto:A.Klimchik@innopolis.ru
mailto:Anatol.Pashkevich@imt-atlantique.fr
mailto:Damien.Chablat@cnrs.fr


 

2 

0S , 
1S  the geometric parameter matrices  

1( ,..., )q ndiag k kK  the joint stiffness matrix. 

A, B  ( 1) ( 1)n n    square matrices of parameters  
0

xF  the desired critical force  

 1 1,..., n   the eigenvectors 

ijv   the components of the eigenvector
T

,1 , 1,...,i i i nv v 
  =  

i  the eigenvalues  

   some small scaling factor 

1 Introduction 

Mechanical stiffness is one of the most important indicators in the performance of industrial robotic systems [1-3]. 

For instance, for machining applications where the primary target is the precise manipulation of a technological tool, the 

stiffness defines the positioning errors due to the external loading caused by the manipulator link weights or interaction 

with the workpiece. Similarly, in industrial pick-and-place applications which are intended for simple but fast 

manipulations, the stiffness defines an admissible range of velocity/acceleration while approaching the target point, in 

order to avoid undesirable positioning errors due to inertia forces [4]. The stiffness is also very important in medical 

applications with large robotic manipulators for patient positioning, where elastic deformations of mechanical 

components under the task load are not negligible [5]. It is obvious that in all of these cases, the manipulator links/joints 

should be rigid enough to ensure the high stiffness required by the relevant application. On the other hand, there are 

currently a number of fields where the required manipulator stiffness is rather low to ensure safe interaction with a 

human operator. Such compliant manipulators are already widely used both in industrial automation and medical 

equipment due to their flexibility, modularized construction, low weight and ability to excuse sophisticated motions. 

However, for some of such manipulators, their stiffness behavior under the loading is quite different from conventional 

mechanisms that are usually treated as multi-dimensional springs with constant parameters described by 66 stiffness 

matrices [6]. For instance, under loading, the compliant manipulators may suddenly change their shape or partially lose 

stiffness. Such phenomenon (also known as mechanical buckling) has been already been reported by several researchers, 

but general methods of nonlinear stiffness analysis for robotic manipulators have not been created yet. This paper 

concentrates on some of such issues and proposes a new technique allowing to detect buckling phenomenon in serial 

compliant robotic manipulators subjected to the axial loading. 

Currently, the stiffness analysis of robotic manipulators is mainly based on three popular methods, which are the 

Finite Element Analysis (FEA), the Virtual Joint Method (VJM), and the Matrix Structural Analysis (MSA) [7-10]. The 

most accurate of them is the FEA [11-13], which allows modeling links and joints with their true dimension and shape. 

However, this technique is usually applied at the final design stage because of the high computational expenses required 

for high order matrix inversion [14, 15]. In contrast, the VJM method is treated as the simplest one, it is based on the 

extension of the traditional rigid model by adding the virtual joints (localized springs), which describe the elastic 

deformations of the links, joints and actuators [16-19]. This technique is widely used for serial and strictly parallel robots, 

but it can be hardly applied to manipulators with more complex topology. The MSA is considered as a compromise 

technique, which incorporates the main ideas of the FEA, but operates with rather large elements such as flexible links 

connected by the actuated and passive joints in the overall manipulator structure [20-23]. This obviously leads to the 

reduction of the computational expenses that are quite acceptable for robotics, but it requires some non-trivial actions for 

including passive and elastic joints in the related mathematical model. Despite their high popularity, the above-mentioned 

three methods provide the user with linear stiffness models allowing them to compute only small manipulator 

deformations under the external loading. Their main instrument is the 66 stiffness matrices that relate the external 

forces/torques with the linear/angular deflections of the manipulator end-effector. These matrices are usually assumed to 

be constant and there is a rather limited number of works that investigate their dependence on the loading amplitude 

[23-25]. On the other hand, in structural mechanics, the nonlinear stiffness behavior had been already carefully studied 

for some typical elements such as columns, beams, thin plates, etc. The most famous example is the Euler-Bernoulli 

theory of compressed column, which keeps its initial straight shape under the small loading, but suddenly bends or buckle 

if this load is larger than some critical value [26-29]. But for robotics, the buckling phenomenon was rarely studied before 

because usually engineers prefer to exclude buckling while designing a robot. There are only several related works 

presenting some case studies dealing with three-link serial manipulators or serial mechanisms based on tensegrity 

structures [30, 31]. Nevertheless, for compliant manipulators, this phenomenon is important and must be anticipated on the 

desired stage, which requires the development of special nonlinear stiffness analysis techniques. 
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The main objective of this paper is to develop a general technique for serial planar manipulators allowing us to 

compute the critical force causing the buckling phenomenon. In contrast to the previous work, which concentrated on 

some case studies, this new technique should be applicable to any multi-link manipulator that is subjected to compressive 

loading in its straight configuration. In addition, some other nonlinear phenomena will be investigated, such as 

quasi-buckling for initial non-straight configuration, when it is observed very fast change (but not instant) of the 

manipulator shape and its stiffness coefficient under the loading.  

To address these issues, the remainder of this paper is organized as follows. Section 2 gives some theoretical 

background on buckling in continuous and discrete systems. Section 3 concentrates on the manipulator's stiffness analysis 

for non-straight initial configuration and presents a universal energy-based technique allowing to detection of 

quasi-buckling phenomena in the considered mechanical structures. Section 4 contains the main theoretical contribution, a 

general eigenvalue-based method for the critical force computing for straight initial configuration of the multi-link serial 

manipulators under axial loading. Finally, Section 5 summarizes the main results and contributions. 

2 Buckling in discrete mechanical systems and robotics 

In structural engineering, one of the main nonlinear stiffness phenomena is known as buckling, which refers to the loss 

of stability of a component, when it suddenly changes its shape under the loading. Such behavior is mainly known for the 

beams and columns, which spontaneously bend from straight to curved form under a compressive load [32-34]. However, 

this event can be also observed in some discrete mechanical systems including robotic manipulators [35-38]. The buckling 

phenomenon was detected in a number of mechanisms composed of rigid/flexible links and springs, which are connected 

by passive or elastic joints. Let us consider the first two-link serial mechanisms connected by a rotational spring shown in 

Fig. 1.  

 

Fig. 1 A two-link mechanism where the buckling phenomenon is observed 

For this mechanism, the static equilibrium equation is sin( ) 2FL q kq  , which allows us to get the desired 

force-deflection relation F(Δ) in the following parametric form. 

 ( ) 2 sin( ); ( ) 2 cos cos( )F q kq L q q L q        , (1) 

where F is the external force, q is the mechanism configuration angle, α is an angle defining the mechanism initial shape, k 

is the stiffness coefficient of the rotational spring and L is the length of the links. An example of this force-deflection curve 

for the case α=0 (i.e. for the straight initial configuration) is presented in Fig. 2a, which shows that at first the function F(Δ) 

goes from the zero to a non-zero value without changing the deflection Δ, until achieving the critical force causes the 

buckling. Then the force F is increasing monotonically as the deflection Δ is increasing. The exact value of the critical force 

for this mechanism in straight configuration (α=0) can be found by computing the limit of F(q) for 0q  : 

0
lim ( ) 2 ; for 0C
q

F F q k L 


    (2) 

The above buckling phenomenon can be also analyzed using the energy method, by considering maximums and 

minimums of the potential energy curves corresponding to the stable and unstable equilibriums respectively [39, 40]. The 

potential energy V of the considered mechanism can be expressed as ( ) ( ) ( )V q U q F q   , where U is the strain energy 

stored in the spring, F is the applied conservative load, and deflection Δ is the distance moved by F in its direction. Here the 

strain energy 
2(2 ) 2U k q  , so the potential energy V can be expressed as  

 2( ) 2 2 cos cos( )V q kq FL q     . (3) 

For the case α=0 the energy curves on the plane (V, Δ) are presented in Fig. 2b, which shows that for CF F  the energy 



 

4 

minimum is achieved when Δ=0 and the equilibrium is stable and corresponds to the straight shape of the mechanism (q=0). 

In contrast, for CF F  the energy minimum is achieved when Δ≠0, which corresponds to the non-straight mechanism 

shape in the stable equilibrium state. It is clear that this shape depends on the external force F. 

 

Fig. 2 Straight initial configuration: the force-deflection and energy curves for two-link mechanism (case α=0). 

 

Fig. 3 Non-straight initial configuration: the force-deflection and energy curves for two-link mechanism (case α=π/6). 

For the case of α≠0, i.e. the non-straight initial configuration, the above equations produce continuously monotonic 

force-deflection curves passing through the zero point F(Δ)=(0, 0) as shown in Fig. 3a. So, the mechanism behavior is 

similar to a simple spring that always resists external loading. Corresponding energy curves are shown in Fig. 3b, all of 

them have a single minimum defining stable equilibrium with different Δ≠0 depending on the external loading F. Hence, 

the considered two-link mechanism with the rotational spring may demonstrate the so-called “bifurcation” buckling similar 

to the Euler’s column. 

Further, let us also consider a three-link serial mechanism shown in Fig. 4. The left endpoint is connected to the base 

by a passive joint, there are two linear springs located on the second and the third joints, and the right endpoint is also 

equipped with a passive joint and is moved horizontally by the external force F. Here L denotes the lengths of the three 

similar rigid links, k denotes the stiffness coefficient of the two rotational linear springs. It is also assumed that the 

orientation angle of the first link is denoted as , and the initial values of the second and the third angles are α1 and α2 

respectively. Thus, under the loading F, the deflection Δ depends on the orientation angles α1+q1 and α2+q2, and the 

end-point coordinates 0 0( , )x y  for the initial configuration can be expressed as 

0 1 1 2

0 1 1 2

cos cos( ) cos( )

sin sin( ) sin( )

x L L L

y L L L

     

     

     

     
. (4) 

 

Fig. 4 Example of three-link mechanism with the buckling phenomenon. 

Then under the loading, the end-point moves to a new position 
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1 1 1 1 2 2

1 1 1 1 2 2

cos cos( ) cos( )

sin sin( ) sin( )

x L L q L q q

y L L q L q q

     

     

        

        
 (5) 

that can be also expressed via the deflection   as 0 ; 0x x y   . It should be noted that here, because of the 

geometric constraints y0=y=0. To find the angles q1, q2 corresponding to the external force F, it is necessary to consider the 

static equilibrium equation that generally is written as follows 

 TJ F M 0 , (6) 

where F=[Fx Fy] is the external force, M is the internal torques in the joints that can be computed via the angles q1, q2 as 

M=[0 kq1 kq2]
T
 and J is the Jacobian matrix of size 23 that is expressed as  

0 01 012 01 012 012

0 01 012 01 012 012

S S S S S S
L

C C C C C C

      
   

   
J . (7) 

Here for further convenience, it is denoted S0=sin, C0=cos, S01=sin(+α1+q1), C01=cos(+α1+q1),  and 

S02=sin(+α1+q1+α2+q2), C02=cos(+α1+q1+α2+q2). Taking into account that the static equilibrium corresponds to the 

minimum of the potential energy, for the known equilibrium configuration described by the angles
1 2( , , )q q , the external 

force can be obtained from the equation (6) by using the Moore-Penrose pseudoinverse 

†

( ) ( ) ( )    
TF q J q M q , (8) 

where
† 1( ) ( )T TJ J J J , and q=(, q1, q2). It is clear that for such equilibrium configuration the corresponding end-effector 

deflection Δ(q) can be straightforwardly computed from the direct geometric model. 

It should be noted that the above equations operate with three variables (, q1, q2), but the dimension of this problem 

can be easily reduced using the analytical solution of the geometric equations (5) for the end-effector location

  0, ,  ( )0x y x  . The latter allows us to replace the initial configuration space (, q1, q2) by a reduced space (Δ, ), 

which is more convenient for the stiffness analysis. This reduction can be easily executed by applying the inverse 

kinematics of a two-link serial manipulator that yields the following expressions for the angles q1, q2. 

   1 0 0 2 2 1 2 2 2 2atan2( sin , cos ) atan2 , ; atan2 ,q y L x L LS L LC q S C             , (9) 

where  2 2 2 2

2 0 0( cos ) ( sin ) 2 2C x L y L L L      , 
2

2 21S C   . Hence, using the above expressions, a single 

redundant variable  corresponding to the equilibrium configuration can be found from the given Δ using condition of the 

min/max of the spring strain energy, i.e. arg min ( , )E


    for a stable equilibrium and arg max ( , )E


    for an 

unstable one, where the strain energy of this mechanism can be expressed as 

2 2
1 2( , ) ( , ) 2 ( , ) 2E kq kq       . (10) 

It should be mentioned that here, assuming that   is given, minimization of the full potential energy 

( , ) ( , ) xV E F       is not necessary for computing the redundant variable . 

Some simulation results based on the above expressions are presented in Fig. 5. They include the mechanism 

force-deflection curves for different initial configurations defined by parameters α1 and α2. For the initial straight or 

quasi-straight configuration (see Fig. 5) the mechanism stiffness behavior is similar to the compressed Euler’s column. In 

particular, there are also here four equilibriums (U
+
, U

–
) and (Z

+
, Z

–
) corresponding to the half-sine-shape and sine-shape of 

the compressed column (see Fig. 6). However, only (U
+
, U

–
) are stable and either U

+ 
or U

–
 equilibriums can be observed in 

practice depending on small initial perturbations of (α1, α2). For example, in Fig. 5b for relatively small (α1, α2)= (ε, ε) the 

initial U configuration is the only stable one that can be observed. Hence, in practice, only stable configurations can be 

observed, which are also referred to as feasible ones while unstable are referred to the unfeasible.  
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Fig. 5 Three-link manipulator: force-deflection curves for the initial “straight” and “quasi-straight” configurations  

and four possible equilibriums with stable shapes (U+, U–) and unstable shapes (Z+, Z–). 

 

Fig. 6 Evolution of the mechanism shape after the buckling: two possible equilibriums with U-shape and Z-shape.  

Therefore, the buckling phenomenon can be observed both in continuous and discrete mechanical systems such as 

robotic manipulators. In both cases the mechanism behavior is roughly similar: for the initial straight configuration, the 

mechanism keeps its shape if the compressive loading is smaller than some critical value. Then it suddenly changes the 

shape and further the shape is changing continuously while the loading is increasing. However, in the general case, the 

problem of critical force computing for such discrete mechanisms is still challenging. To our knowledge, there is no 

universal technique allowing us to compute the critical force for any given structure. In literature there are only several 

works dealing with two- and three-link manipulators, where the critical force was obtained using the energy method [40, 

41]. Another challenging issue is related to the initial non-straight configuration, where the manipulator may 

continuously change its shape under the loading but, after reaching some critical value, its stiffness in a certain direction 

may be suddenly lost [42]. These problems are in the focus of the following section that concentrates on the serial 

manipulator under the loading for both singular and non-singular initial configurations.  

3 Manipulator stiffness in the neighbourhood of the non-straight configuration 

As follows from the previous section, for the initial-straight (i.e. singular) configuration, the manipulator has 

essentially non-linear stiffness behavior under the compressive loading. However, for practice the so-called non-straight 

initial configuration is more typical, for which the kinematic Jacobian is non-singular. Let us evaluate in detail the 

manipulator stiffness for this case assuming that the external loading is compressive as in the Euler column. It is 

intuitively clear that here the manipulator shape under the loading will be changing continuously. But its resistance to the 

compression described by the stiffness coefficient may essentially depend on the loading amplitude [23, 24]. Below, this 

issue is investigated for the case of a three-link serial manipulator first, and then this methodology is applied to a general 

n-link case. 

3.1 Stiffness properties of a three-link manipulator 

To estimate properties of the three-link manipulator for the non-straight configuration, let us consider different 

non-zero values of (α1, α2) describing the initial manipulator shape and compute set of possible equilibrium configurations 

(, q1, q2) as well as deflections Δ corresponding to different compressive forces F. To simplify computing, it is possible to 

slightly modify this problem by considering the deflection Δ as an independent variable and compute corresponding force F 
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and configuration variables (, q1, q2) satisfying the static equilibrium equation (6) and the geometric model (5). This leads 

to a numerical solution of four nonlinear equations with respect to four variables Δ and (, q1, q2) that corresponds to the 

external force ( , ) ( ,0)x yF F F  and the endpoint location 0x x  , 0y  . However, similar to the previous section, it 

is possible to apply the energy method and find the equilibrium configurations in a straightforward way, by minimizing the 

manipulator potential energy (10) taking into account geometric constraints (5).  

 

Fig. 7 Force-deflection curves computed for different shapes and the same initial “U-configuration”  

corresponding to four possible equilibriums with the feasible shape U+ and unfeasible shapes (U–, Z+, Z–). 

Such an approach yields a one-dimension optimization problem ( , ) minE    with respect to the joint angle  

assuming that the deflection Δ is given. It is clear that the latter assumption allows applying the inverse kinematics (9) to 

compute the joint variables (q1, q2) corresponding to the current value . Using the obtained equilibrium configurations 

(which are obviously not unique because of *  in the inverse kinematic expressions) it is easy to compute the 

corresponding compressive force from (8). It is worth mentioning that here in addition to two stable equilibriums 

corresponding to the energy minimum, there are also two unstable equilibriums corresponding to the maximum of the 

energy. But in practice, we are only interested in a single equilibrium configuration corresponding to the global minimum 

of the potential energy. 

Computation results corresponding to the initial configuration angles (α1, α2)=(–π/4, –π/3) are presented in Fig 7. 

Corresponding manipulator shape with negative (α1, α2) will be further referred to as the U
+
-configuration. For this case, 

there were obtained four different force-deflection curves corresponding to either the potential energy minimums or 

maximums. It is worth mentioning that these curves correspond to different manipulator shapes, which are shown in Fig 7 

and denoted as (U
+
, U

–
) and (Z

+
, Z

–
). It is clear that in practice only a single equilibrium with U

+ 
shape is observed that 

corresponds to the minimum of the compressive force F. Hence, for the considered U
+ 

initial configuration the manipulator 

shape is changing continuously, there is no buckling phenomenon happened (i.e. no sudden jump from one shape to 

another). 

 

Fig. 8 Force-deflection curves for the initial “Z-configuration”  

and evolution of the manipulator shape under the loading. 

In contrast, for the initial Z
–
-configuration with (α1, α2)=(π/10, –π/10), the simulation produces essentially different 

results. Here, the manipulator stiffness behavior has some particularities compared to the above case with the initial 

U
+
-configuration. In particular, the force-deflection curve corresponding to the potential energy minimum is not smooth 

(see Fig. 8), and the buckling phenomenon happens, when the manipulator stiffness suddenly reduces and its shape 
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suddenly jumps from Z
– 
to U

+
. It is worth mentioning that similar to the above case with the initial U

+
- configuration, here 

there are also four different equilibriums (two stable and two unstable ones), but only a single curve corresponding to the 

energy minimum is shown in the figure. 

 

Fig. 9 Evolution of energy- curves for stable configuration for the initial “Z-configuration 

and changing of the manipulator shape under the loading (from Z- to U+ configuration). 

The above presented nonlinear manipulator behavior for the initial Z
–
-configuration can be also illustrated using the 

energy curves on the (E, ) plane. Corresponding figures obtained for different deflections Δ are shown in Fig 9. As follows 

from them, at the beginning the mechanism keeps the initial Z
–
-configuration with negative <0 (with the angle signs “-+-”)  

and changes its shape continuously (see Fig. 9a). Then, after the force F reaches some critical value, the angle  becomes 

equal to zero  =0 (see Fig. 9b), and the mechanism stiffness essentially reduces. Further, for the higher loading, this angle 

becomes positive >0, the mechanism maintains the stable equilibriums Z
+
-configuration (with the angle signs “+-+” and 

corresponding to the minimum potential energy) and the deflection changing under the external force is monotonic (see Fig. 

9c, d). It is worth mentioning that for some configurations the observed manipulator shape corresponds to the local (instead 

of the global) minimum of the potential energy (as in Fig. 9e), but the mechanism is not able to jump to this new 

configuration, instead, it keeps maintaining the U
+
-configuration of the local minimum of the potential energy (see Fig. 9f). 

To analyze the stability of equilibrium configuration it is possible to use either the straightforward energy-based technique 

or the matrix criteria proposed in [43]. In fact, for most practical applications only stable equilibrium configurations are 

feasible. However, for some geometrical constraints (see [44, 45] for examples) unstable configurations with negative 

stiffness might be also feasible. 

Summarizing all the above case studies dealing with the three-link manipulator, we can conclude that some 

mechanical structures can demonstrate some new type of non-linear stiffness behavior with a sudden change of the 

mechanism shape and its stiffness coefficient. In literature, such behavior is well known for initial straight configurations 

that under the compressive loading can suddenly jump to a curved one, similar to the half-sine shape of the compressed 

Euler’s column. However, in this section, the buckling phenomenon was also detected for some other initial configurations 

(non-straight ones) that were not studied in Euler’s column theory. In particular, it was proved that under the compressive 

loading the three-link serial mechanism can suddenly change its configuration from the so-called “Z-shape” to “U-shape” 

and essentially reduce the stiffness coefficients. In the following section, a similar phenomenon will be detected for 

multilink serial structure based on the tensegrity mechanisms. 

3.2 Stiffness properties of multi-link manipulator 

To demonstrate the existence of nonlinear stiffness behavior in more complicated mechanical structures let us 

consider a serial multi-link manipulator connected by the elastic joints (Fig. 10), where the link lengths 1( ,..., )nL L  and 

the joint stiffness coefficients 1( ,..., )nk k . For this case study, we will also use the above-presented energy method, which 

is also quite efficient here allowing us to detect very interesting phenomena in the manipulator stiffness behavior.  
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Fig. 10 The multi-link manipulator in the “non-straight” initial configurations. 

 

Table 1 Two different initial configurations of the four-link manipulator for the same end-point (x0, y0) = (3.8L, 0). 

 Initial shape 
Initial configuration angles (rad) 

q1 q2 q3 q4 

Case #1 U-shape:  ‒0.3179 +0.0558 +0.3804 +0.3524 

Case #2 Z-shape:  -0.2417 +0.6821 ‒0.7958 +0.5170 

 

Let us assume that the initial configuration of the considered multi-link manipulator is a non-straight one 

(
0 0, 1,2,...,iq i n  ) and the initial end-point location is 

0 0( , )x y , which can be also expressed via the initial longitude 

displacement 
x , 

0

0 0

1 1 1

cos( ) 0
jn n

j i j x

j i j

x L q L y
  

 
     

 
    (11) 

It is clear that if 3n  this manipulator is cinematically redundant if the target location is defined by its Cartesian 

coordinates (x, y) only. Moreover, for given 
0 0( , )x y  the configuration angles 

0

iq  also cannot be defined uniquely. For this 

reason, in the further analysis, we will consider two typical initial manipulator shapes (U-shape and Z-shape), which 

correspond to the same 
0 0( , )x y . Examples of such initial shapes for the four-link manipulator are presented in  

Table 1, where it is assumed that ,iL L i  . 

First, let us obtain the force-deflection relations ( )x xF   and ( )y xF   corresponding to the end-effector displacement 

with varx  , 0y  , i.e. from the initial location 
0 0( , )x y  to the current one ( , )x y . In this case, the geometric 

constraints derived from the direct kinematics can be presented in the form of two equations 

1 1 1

cos( ) 0
jn n

j i j x x

j i j

x L q L y
  

 
      

 
   , (12) 

where 
x  is the end-effector deflection caused by the external forces ( , )x yF F  and 

x  is the initial displacement before 

the loading. To find loaded equilibriums corresponding to the given
x , let us apply the energy method used in the previous 

section. This allows us to reduce the number of independent variables from n to n-2. The latter is achieved by applying the 

two-link manipulator inverse kinematic expressions similar to (9) and computing the angles 
1( , )n nq q

 from the remaining 

ones
1 2 2( , ,... )nq q q 

. Further, it is possible to apply a straightforward numerical search to find minimums of the energy 

function 
1 2 2( , ,... )nE q q q 

corresponding to locally stable equilibriums. Then, the obtained configuration variables 

1 2( , ,... )nq q q  are substituted to the expression (8), which yields the desired external forces ( , )x yF F  for the given 

deflection varx  , 0y  . 
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Fig. 11 The energy function 1 2( , )E q q  and equilibrium configurations of four-link manipulator for the initial U-shape 

 (end-effector deflection δx=0.4L, δy=0; q4>0). 

 

Fig. 12 Force-deflection curves Fx(δx), Fy(δx) for initial U-shape (end-effector deflection δy=0; q4>0).  

 

Examples of the possible equilibrium configurations for loaded four-link manipulators that were obtained using the 

energy method are presented in Fig. 11. Here it is assumed that 1 2 ... nL L L   , 1 2 ... nk k k    and the manipulator 

has the initial U-shape with 0.2x L  ( see  

Table 1 ) and the deflection caused by the loading is 0.4x L  . For this case, the energy function 1 2( , )E q q  has a 

single maximum, a single minimum and a single saddle point. Corresponding equilibrium configurations are shown in the 

figure where the stable one has a U-shape (as the initial one). A similar study for other deflections 
x  shows that the 

energy function 1 2( , )E q q  evolution with respect to 
x  is continuous, which proves that the force-deflection curves are 

also continuous as shown in Fig. 12. Here the change of the manipulator shape is smooth, the resistance of the manipulator 

is gradually increasing while the deflection 
x  becomes bigger. However, the stiffness coefficient in the x-direction is 

continuously decreasing. 

Another example presented in Fig. 13 demonstrates quite different stiffness behavior under the loading. Here the 

manipulator has an initial Z-shape with 0.2x L   (see  

Table 1) and the deflection caused by the loading is 0.4x L  . For this case, the energy function 1 2( , )E q q  has a 

single maximum and a single minimum point. It is worth mentioning that here the stable point corresponds to the Z-shape 

(similar to the initial configuration). However, the energy surfaces 1 2( , )E q q  are quite different in this case, their evolution 

with respect to 
x  has some singularities. In particular, the force-deflection curve Fx(δx) shown in Fig. 14 is not very 

smooth, it contains a singular area where the stiffness coefficient becomes very low. For this case study, there are two 

intervals of the manipulator deformation. In the beginning, when x  is relatively small the manipulator maintains its 

Z-shape and the resistance against the external force is increasing fast and monotonically. Further, when the deflection x  

is bigger than some critical value, the quasi-buckling phenomenon is occurring, and the manipulator resistance against the 

external force is increasing very slowly. Correspondingly, the stiffness coefficient xdF dx  becomes very small.  

In the above-presented examples, it was assumed that the initial configuration is changed by means of the actuation 

of corresponding joints. Further, the actuator coordinates remain the same, but the joint angles are changed under the 

influence of the external force (because of the joint elasticity only). 
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Fig. 13 The energy function 1 2( , )E q q  and manipulator equilibriums of initial Z-shape configuration 

(end-effector deflection δx/L=0.4, δy=0;  q4>0). 

 

Fig. 14 Force-deflection curves Fx(δx), Fy(δx) for initial Z-shape (end-effector deflection δy=0; q4>0). 

It is worth mentioning that similar results can be also obtained by straightforwardly solving the static equilibrium 

equations (8) with respect to n unknown variables  1,..., nq q , i.e. without imposing any kinematic constraints on the 

end-effector location. In this approach, it is assumed that the external loading  ,x yF F  is given while the manipulator 

endpoint deflections ( , )x y   are computed from the configuration angles  1,..., nq q  satisfying the equilibrium 

equations.  

Hence, for this case study dealing with the n-link serial manipulator, it was also discovered nonlinear stiffness 

behavior for non-straight initial configuration, when it is observed very fast change (but not instant) of the manipulator 

shape and its stiffness coefficient under the loading. It is worth mentioning that usually, such behavior is typical for 

mechanical structures with the initial straight shape that can suddenly jump to a curved one under the compressive loading. 

It should be mentioned that in the presented simulation studies only a single quasi-buckling point was discovered. But 

intuitively it is quite possible that several quasi-buckling points may exist for some particular initial configurations. So it is 

an open question for further research. 

4 Manipulator stiffness in the neighborhood of the straight configuration 

Now let us consider in detail the manipulator stiffness behavior under the loading assuming that the initial 

configuration is straight. Intuitively, this behavior should be similar to the compressed Euler column presented at the 

beginning of this paper, i.e. the manipulator should keep its straight shape until the external loading is larger than a certain 

critical value. However, computing of this critical force is not a trivial issue and is addressed below.  

4.1 Critical force for three-link manipulator 

Let us present first a specific technique for a relatively simple case, which deals with a three-link manipulator with 

two elastic joints considered in the previous section (see Fig 4). It is assumed that here its initial shape is straight but 

under the compressive loading, the manipulator changes its shape to a non-straight one. It is clear that after the buckling 

the manipulator should achieve either “U” or “Z” shape with some symmetrical properties that can be taken into account 

by defining the configuration angles as (, -, -) or (, -3, 3) correspondingly.   
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To compute the desired critical force it is necessary to assume that after buckling the above-mentioned angle  is very 

small, i.e. 0  . It is clear that either for the “U” or “Z” cases the considered mechanical system must satisfy the usual 

static equilibrium equation  TJ F M 0 , which relates to the external force ( , )T
x yF FF , the internal joint torques 

1 2(0, , )Tkq kqM , and the manipulator Jacobian J. It is worth mentioning that here the initial joint angles are 1 2 0   , 

and the geometric constraints (5) can be excluded from the consideration because it is taken into account implicitly, by the 

assumption that the configuration angles are either (, -, -) or (, -3, 3). So, the desired value of critical loading can be 

computed directly from the static equilibrium equation by computing the limit of the force F for 0  . 

In the case of the U-shape, the kinematic Jacobian can be expressed as 

0 sin sin
1 2cos 1 cos cos

L
 

  
  
   

J  (13) 

giving the following equations for the static equilibrium  

(1 2cos ) 0

sin (1 cos ) 0

sin cos 0

y

x y

x y

L F

L F L F k

L F L F k



  

  

  

      

     

 (14) 

The solution of the system is 

sin ; 0x yF k L F    (15) 

and describes the stable force-deflection curve in Fig. 5a. So, computing the relevant limit that yields the following 

critical force for the U-shape case 

0
lim

sin

U
x

k k
F

L L





 
  

 
 (16) 

Similarly, in the second case (Z-shape), the kinematic Jacobian can be rewritten as 

0 sin 2 sin sin
cos 2 2cos cos 2 cos cos

L
  

    
   

   
J  (17) 

and the static equilibrium is defined by the following equations 

(cos2 2cos ) 0

(sin2 sin ) (cos2 cos ) 3 0

sin cos 3 0

y

x y

x y

L F

L F L F k

L F L F k

 

    

  

  

       

      

 (18) 

which do not have exact solutions corresponding to the configuration angles (, -3, 3). However, for the very small 

0   the above system is consistently providing the following solution  

3 sin ; 0x yF k L F    (19) 

Hence, the critical force for the Z-shape case can be obtained by computing the relevant limit, which is 

0

3 3
lim

sin

Z
x

k k
F

L L





 
  

 
 (20) 

So, for the considered three-link serial manipulator, similar to the Euler column, there are two possible 

post-buckling manipulator shapes satisfying the static equilibrium equations. For the column, there were referred to as 

the half-sine and the full-sine shapes, while here they are called U- and Z-shapes respectively. Moreover, both half-sine 

and U-shape correspond to the stable equilibrium and relevant critical forces are lower than the alternative case of the 

full-sine and Z-shapes, which correspond to the unstable equilibrium. It is also worth mentioning that these conclusions 

are in good correspondence with the simulation results obtained via the energy approach in the previous section (see Fig 5). 

Nevertheless, despite obvious simplicity, the above-presented method can be hardly applied to the general case dealing 
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with n-link serial manipulators. 

  

4.2 Critical force for n-link manipulator  

Further, let us present a general technique dealing with a n-link serial manipulator containing n elastic joints, which 

is shown in Fig. 15, where the left-hand side is fixed. It is assumed that the manipulator initial shape is straight and its 

geometry is described by the following equations 

1 1 1 1 1

cos( ) sin( )
j jn n n

x j j i y j i

j j i j i

L L q L q 
    

   
       

   
      (21) 

where Lj denotes the manipulator link lengths, qi is the joint rotation angles, and (x, y) is the deflections of the 

manipulator end-effector caused by the external loading ( , )T
x yF FF . As known from mechanics, the manipulator 

equilibrium configuration must satisfy the following matrix equation 

( ) ( )T  M q J q F 0  (22) 

which includes the kinematic Jacobian matrix 

1 1 2 1 1

1 1 2 1 1 2

sin sin ... sin

( )

cos cos ... cos

j j jn n n

j i j i j i

j i j i j n i

j j jn n n

j i j i j i

j i j i j n i n

L q L q L q

L q L q L q

     

      

      
           

      
      
        
       

     

     

J q  (23) 

and the elastic joint torque vector ( )M q , which for the straight initial configuration can be expressed as  

 1 1 2 2( ) , ,...,
T

n nk q k q k qM q  (24) 

where 1,..., nk k  are the joint stiffness coefficients 

 

Fig. 15 Evolution of the manipulator shape after the buckling: possible equilibriums with U-, Z- and ZU-shapes. 

It should be noted that the equilibrium equation (22) provides n scalar relations applied to n+2 variables (q1, q2,…, qn) 

and ( , )x yF F . So totally, combining (22) with two geometric equations (21), one can obtain n+2 nonlinear equations for n+2 

unknowns corresponding to some given deflection ( , )x y  . Obviously, in the general case, such a nonlinear system can be 

solved only numerically. However, for some small neighborhoods of the straight initial configuration, it is possible to find 

an analytical solution, which allows us to compute the critical force causing the manipulator buckling. For this computation, 

let us also assume that both the end-effector displacement ( , )x y   and the angles 1 2( , ,..., )nq q q  are small enough. Under 

such assumption, the geometric model can be linearized and equations (21) are rewritten as 
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2

1 1 1 1

1
;

2

j jn n

x j i y j i

j i j i

L q L q 
   

    
            

    . (25) 

Besides, in this case, the Jacobian matrix can be expressed in the form 

1 1 2 1 1

1 2 2

...

( )

...

j j jn n n

j i j i j i

j i j i j n i

n n n

j j j

j j j n n

L q L q L q

L L L

     

   

      
           

      
 
 
  

     

  

J q  (26) 

that can be further presented in a more compact way   

 
T

1 0( )  J q S q S  (27) 

with the following matrix components  

1 2 1

1 02 2 2

...

...
;

... ... ... ... ...

...

n n n n

j j j j

j j j n j
n n n n

j j j j

j j j n j

n n n n

j j j j

j n j n j n j n

L L L L

L L L L

L L L L

   

   

   

   
   
   
   

     
   
   
   
      

   

   

   

S S  (28) 

The latter allows us to transform the static equilibrium equation (22) in the linearized form 

1 0q x yF F    K q S q S 0  (29) 

that includes the vectors of unknowns  1= ,...,
T

nq qq , =( , )T

x yF FF , the geometric parameter matrices 
0S , 

1S , and the 

joint stiffness matrix 1( ,..., )q ndiag k kK . Further, taking into account that the initial configuration is straight, let us 

assume that 0y   and combine the above equation (29) with the corresponding geometric constraint obtained from the 

linearized model. It can be easily proved that such constraint 0y   can be also expressed via the matrix 0S  as 

T

0 0S q . (30) 

This grouping leads to an extended system of n+1 linear equations with n+2 unknowns 1 2( , ,..., )nq q q  and ,x yF F , which 

describes the loaded manipulator behavior in the neighborhood of the initial straight configuration. Using the above 

notations, this extended system of equations can be presented as 

  01 1

T
1 0

0 0

qn n n
x

y yn

F
F F

 



     
         

       

q qK SS 0
0

0 S
 (31) 

and rewritten further in the following matrix form 

 xF A B     (32) 

where the notations are A, B are ( 1) ( 1)n n    square matrices of parameters and   is the vector of size ( 1)n  

including unknowns, i.e. 

   

 

     

01 1

T
1 1 1 1 10 1 1

; ;
0 0

qn n n

yn n n nn n

F

 

       

    
     
     

qK SS 0
A = B

0 S
  (33) 
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Thus, it can be easily seen that the obtained extended matrix equation (32) is similar to the basic equation considered in the 

classical matrix analysis for computing the matrix eigenvectors and eigenvalues. The latter allows us to find the relation 

between the desired critical force 
0

xF  and the eigenvalues of the matrix 1B A . In particular, taking into account that here 

the matrix B is invertible, i.e.  det 0 , the above equation (32) can be easily converted to the standard form used in 

conventional matrix algebraic  

 1 1 xF    B A I    (34) 

It should be noted that the above matrix equation defines only ( 1)n  relations between ( 2)n  unknowns because it 

does not include explicitly the geometric constraint (25) associated with x , which is assumed to be small but arbitrary. 

Nevertheless, besides its deficiency, the equation (34) allows us to obtain some very useful results.   

Using the matrix 1B A  and computing its eigenvalues/eigenvectors, one can obtain a set of possible stable and 

unstable equilibrium configurations corresponding to 0y   and some small x . In such equilibrium configurations, the 

manipulator shape is defined by the vectors 
iq  that are extracted from the eigenvectors  1 1,..., n  , which are defined as 

1 2( , ,..., , )i i i i T

i n yq q q Fν . However, taking into account that the classical eigenvalue analysis assumes that the norm 

1i  , here the vectors 
i  must be replaced by i , where   is some small scaling factor that may be both positive 

and negative. It is clear that such scaling does not violate the equation (34) but allows us to satisfy the assumption that iq  

is small enough. Using the obtained eigenvectors 1 1,..., n  , it is possible to express the joint variables qj and the 

components of the external force Fx, Fy in the following way 

, 1

1 1,..., ; : 0

j ij

x i i

y i n

q v

F j n i

F v



 

 

 

    

 

 (35) 

where ijv  are the components of the eigenvector
T

,1 , 1,...,i i i nv v 
  = and 0   is an arbitrary small number. Besides, it 

can be proved that there are exactly two zero eigenvalues among i , which correspond to a pure straight configuration. 

The latter follows from some specific properties of the matrix 
1B A , where  det 0 ,  det 0 and 

 1rank 1n  B A  

 Hence, taking into account that   can be both positive and negative, the above expressions yield 2( 1)n  possible 

manipulator shapes corresponding to the static equilibriums under different axial loadings defined by the nonzero 

eigenvalues , 1,..., 1i i n   . It is clear that the buckling happens when the external force Fx achieves the minimum of 

these possible equilibrium loadings, which allows us to compute the desired critical force 
0

xF  using the largest (in 

absolute value) eigenvalue of the matrix 
1B A : 

0 1

max
x

i

F


   (36) 

that corresponds to the minimum energy non-straight equilibrium with non-zero configuration angles 0q .  

The above conclusion can be also confirmed by the straightforward application of the energy method. In particular, 

using the expressions (32) the manipulator elastostatic energy 
2

1

2
n

j j

j

E k q


   in the ith equilibrium configuration and 

corresponding deflection x can be expressed as  

 
2

2

12

n

i j ij

j

E k v




        

2
2

1 12

n s

x s ij

s j

L v



 

 
  

 
   (37) 

This allows us to compute the elastostatic energy corresponding to different equilibriums with the same x , and obtain 

corresponding energy-displacement relation in the neighborhood of the considered straight configuration 

0

i i xE     (38) 

where 
0

i  is the coefficient which will be further referred to as the energy factor that is computed as 
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2

10

2

1 1

n

j ij

j

i
n s

s ij

s j

k v

L v




 




 
 
 



 
 (39) 

Thus, as follows from (37), for the same small deflection 
x  there are n-1 equilibrium shapes with different elastostatic 

energy 
1 1,..., nE E 

. It is clear that the smallest of them with minimum energy factor 
0

i  corresponds to the first buckling 

mode which is really observed in practice. Below the factor 
0

i  will be also used for the equilibrium stability analysis of 

different equilibriums, allowing us to confirm that the minimum of 
0

i  corresponds to the largest eigenvalue 
i  (in 

absolute value). 

 The developed technique can be illustrated by an application example dealing with a trivial four-link manipulator 

for which the lengths of all links and the stiffness coefficients are equal to one, i.e. 4; 1, 1,i in L k i    . For this 

manipulator, the matrices 
1S  

0S  can be expressed as  

1 0

4 3 2 1 4

3 3 2 1 3
;

2 2 2 1 2

1 1 1 1 1

   
   
     
   
   
   

S S  (40) 

yielding the following characteristic polynomial  

5 4 3 29 9 2
0

5 10 15
      

  

with three non-zero roots  1.0822 0.4337 0.2, , , 04 , 08 1i     , whose eigenvectors are presented in Table 2. 

 
Table 2 Non-zero eigenvalues and corresponding eigenvectors of matrix B

-1
A for four-link manipulator  

  1v  
2v  

3v  
4v  

5v  

#1 -1.0822 0.5185 -0.0902 -0.6156 -0.5721 -0.1296 

#2 -0.4337 0.3863 -0.6009 -0.2026 0.6628 -0.0966 

#3 -0.2841 0.2062 -0.5713 0.6623 -0.4356 -0.0516 

The obtained eigenvalues and eigenvectors allow us to evaluate the manipulator shape for all possible equilibriums in 

the neighborhood of the initial configuration. It is clear that each 
i  yield two symmetrical equilibrium configurations 

(for both 0   and 0  ), whose shape can be evaluated by analyzing the signs of ijv . Hence, the total number of the 

different equilibrium shapes is equal to 2(n-1), and two of them providing the minimum energy are globally stable and 

observed in practice. Examples of such shapes after buckling (obtained for very small 
x ) are presented in Table 3. It 

should be mentioned that in contrast to the case when n=3 with U- and Z-shapes only (see subsection 4.1), there is here an 

additional “ZU-shape” that is also unstable. Besides, it is worth mentioning that if the compressive force is small and less 

than the critical value 
0

x xF F , all discovered U-, Z- and ZU-shapes are unfeasible and the manipulator keeps its stable 

straight configuration with 0x  . 

 
Table 3 Possible manipulator shapes in static equilibrium after the buckling for the four-link manipulator (for small deflection 0x  ). 

 q1 q2 q3 q4 Geometric shape Stability Energy factor 

i
0
  

Axial force Fx 

Case #1 

q1<0 

‒ + + + U shape: 
 

stable 0.9240 0.9240 

‒ + ‒ + Z shape:  unstable 3.5203 3.5199 

‒ + + ‒ ZU shape: 
 

unstable 2.3057 2.3057 

Case #2 

q1>0 

+ ‒ ‒ ‒ U shape: 
 

stable 0.9240 0.9240 

+ ‒ + ‒ Z shape:  unstable 3.5203 3.5199 

+ ‒ ‒ + ZU shape: 
 

unstable 2.3057 2.3057 
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The above-proposed eigenvalues technique gives a universal method for computing the critical force causing 

buckling of multi-link serial manipulators. This technique is also summarised in Algorithm 1, which can be applied to 

serial manipulators with arbitrary links lengths and joint stiffness coefficients. 

 

Algorithm 1. Critical force computation for multi-link serial manipulators 

Input: 
1 2[ , ,..., ]nL L LL  :  

1 2[ , ,..., ]q nk k kK :  

vector of manipulator links lengths 

vector of manipulator joints stiffness coefficients 

Output: 0

xF                  : value of critical force causing the buckling 

1:  Compute the auxiliary matrix 
1( )S L  and vector 

0( )S L  using equation (28) 

2:  Obtain the principal matrices 
1)A(S  and 0, )qB( K S  using equation (33) 

3:  Compute the eigenvalues 
1 2 1[ , ,..., ]n   λ  of the matrix 

1B A  

4:  Estimate the critical force 
0 1/ maxx iF    causing the buckling 

The elastostatic energy associated with each equilibrium shape can be easily evaluated using the energy factor that is 

also included in Table 3. As follows from these data, the energy minimum corresponds to the U-shape, which has the 

minimum value of the energy factor 
0

i  and minimum compressive force Fx. These results are also confirmed by 

straightforward computing of the energy function 
1 4( , )E q q  presented in Fig. 16 that was obtained under the geometric 

constraints (21) allowing to exclude 2 3,q q . As follows from this figure, two global maximums/minimums are 

corresponding to the stable/unstable equilibriums respectively. Besides, two saddle points obviously correspond to unstable 

equilibriums. So totally, for the given deflections (δx, δy), there are six equilibriums: two stable ones with U-shape and four 

unstable ones with Z- and ZU-shapes. It is also worth stressing that in contrast to Table 3, the axial deflection is not very 

small here 0.5x L  , but the manipulator also prefers to keep the U-shape after the buckling with minimal elastostatic 

energy.  

 

Fig. 16 The energy function 1 2( , )E q q  and static equilibriums for δx=0.5L, δy=0. 

Therefore, the proposed technique, which is based on the eigenvalue analysis of the special parameter matrix, allows 

easily to estimate the critical load for any n-links serial manipulator under the compressive loading. This method is also 

in agreement with the result from a subsection of 4.1 where the critical force was computed for a three-link manipulator 

using a particular technique.  

5 Discussions 

This work is mainly focused on the stiffness analysis of 2D planar serial chains, however, some of the obtained results 

can be easily adapted for 3D spatial cases. For instance, if the kinematic chain can be decomposed into several planar 

substructures then the critical force for the straight configuration can be straightforwardly computed by selecting minimum 

from corresponding critical forces for the sub-chains. Moreover, the relevant extension of static equilibrium equations and 

corresponding Jacobian linearization in the neighborhood of the straight configuration obviously should lead to the 
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equation similar to (29) that is linear with respect to the joint variable vector q. Hence, the critical force computing for a 3D 

case can be also reduced to the eigenvalues and eigenvectors computing of some matrix depending on the manipulator 

geometric parameters. However, some difficulties may arise if the coupling between the liner and angular component 

influence essentially on the manipulator stiffness behavior or if non-negligible external torque is applied to the end-effector, 

in addition to the considered external force. Nevertheless, these issues are rather non-natural for real robotic systems.  

Also, the main results were obtained for the serial manipulators with revolute joints only. Nevertheless, this limitation 

is not very essential from the practical point of view. In fact, since deflections in prismatic joints do not change the 

manipulator shape under the loading and corresponding deflections are relatively small (compared to the original link 

lengths), the prismatic joints do not affect the critical force value, while the total deflections should be obviously higher and 

the manipulator post-buckling behavior may be slightly different.  

Another important issue is that in the presented work it was indirectly assumed that the links have regular symmetrical 

shape and their elasticity can be included in the model via the joint stiffness coefficients. However, in the case of complex 

shape links the corresponding 6 6  stiffness matrix is non-diagonal and takes into account coupling between deflections 

in different directions. To overcome this difficulty, VJM-based technique can be applied where the considered 

one-dimensional compliant joints are replaced by generalized six-dimensional virtual springs. So, it is also possible here to 

apply the general results presented in this paper. It is worth mentioning that the required 6 6  stiffness matrix for serial 

chain links can be estimated using virtual experiments in a CAD environment [13, 46]. 

It should be also mentioned that the presented results carefully analyzed both stable and unstable equilibrium of 

compressed kinematic chains. But in practice, unstable static equilibrium can hardly be hardly be observed since any 

disturbance moves the manipulator to the stable configuration. So, in order to ensure that numerical routine produces 

desired stable solution, it is reasonable to use the relevant stability criterion proposed in [43]. In the case when the unstable 

equilibrium is discovered, it is sufficient to add some small disturbance to the system configuration and find the equilibrium 

again. The latter is extremely important for practice.  

Besides, in this study, we ignore the impact of gravity and/or gravity compensation on the manipulator stiffness 

behavior. In fact, this issue can be ignored if the motion plane is orthogonal to the gravity direction. Also, the gravity forces 

do not affect the stiffness behavior if they are directed along the axis of the straight configuration, but they definitely 

change critical force. However, in other cases, the gravity compensators and gravity forces affect stiffness behavior. Since 

the gravity compensators were not addressed in the considered mechanical structures, it is required to adjust some 

expression for the critical forces in the case of the gravity influence is essential. On the other hand, for the structures studied 

in this paper, the gravity forces do not affect the behavior essentially, their impact is comparable with small external 

disturbance. It is also worth mentioning that the effect of inertia forces is also out of the scope of this paper because the 

buckling phenomenon is usually studied for static cases only.  

Finally, it is clear that in practice the model parameters are estimated with limited accuracy. This means that critical 

force is also estimated with some tolerance. Besides, the post-buckling behavior for real parameters (not nominal) may 

differ essentially from the theoretical one (another force magnitude leads to the force-deflection curve shift while other 

stiffness parameters change the curve shape). For this reason, it is not possible hardly rely on real applications on the 

post-buckling behavior predicted by the models with nominal parameters. The obtained results are mainly useful to 

estimate the range of the critical forces causing the buckling phenomenon. Hence, in practice, it is reasonable to limit the 

compressive force magnitude with some safety factor, in order to avoid undesirable manipulator behavior.  

6 Conclusions 

The paper focuses on the non-linear stiffness behavior of planar serial robotic manipulators with revolute joints under 

the compressive loading assuming that the manipulator's initial shape is either straight or non-straight one. It was proved 

that for the straight initial configuration if the compressive force exceeds some critical value, there may be observed the 

buckling where the manipulator suddenly changes its straight shape and stiffness properties. For computing this critical 

force, a general eigenvalue-based technique was proposed that can be applied to any multi-link serial manipulator. For 

the non-straight initial configuration, a universal energy-based technique was applied that allowed detection of 

quasi-buckling phenomena. It is also observed here very fast but not an instant modification of the manipulator shape and 

its stiffness coefficient if the compressive force exceeds some critical value. This force was computed by straightforward 

minimization of the manipulator strain energy for different end-effector deflections which allowed to obtain non-linear 

force-deflection curves with essential change of the slope in some areas. The developed technique has been successfully 

applied to the stiffness modeling of three- and four-link planar manipulators that are subjected to compressive forces. In the 

future, the developed method will be generalized for the three-dimensional case and applied to more complex architectures. 
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