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Abstract – The timing and process of exhumation
 of the subcontinental peridotites of the Gibraltar Arc
(Ronda, Beni Bousera) have been discussed extensively over the last decades. In this work, we contribute to
this debate through the first mapping, structural and petrological analyses, and SHRIMP U-Th-Pb dating of
high-grade marbles that crop out around the Beni Bousera antiform of the Alpujarrides-Sebtides units of
northern Rif (Morocco). These marbles, here termed the Beni Bousera marbles (BBMs), instead of being
intercalations in the granulitic envelope (kinzigites) of the Beni Bousera peridotites, as previously described,
formminor, dismembered units within a∼30 to 300m thick mylonitic contact between the kinzigites and the
overlying gneisses of the Filali Unit (Filali–Beni Bousera Shear Zone, FBBSZ). They display silicate-rich
dolomitic marbles, sandy-conglomeratic calcareous marbles and thinly bedded marble with interleaved
biotite-rich schists. An unconformable contact, either of stratigraphic or tectonic origin, with the underlying
kinzigites, is observed locally. Pebbles or detrital grains include K-feldspar, quartz, almandine garnet and
zircon. Peak mineral assemblages consist of forsterite, Mg-Al-spinel, geikielite (MgTiO3), phlogopite and
accessory zirconolite, baddeleyite and srilankite in dolomite marble, as well as K-feldspar, scapolite,
diopside, titanite and accessory graphite and zircon in calcite marble. These assemblages characterize peak
HT-LP metamorphic conditions close to 700–750 °C, �4.5 kbar. The FBBSZ includes minor ductile thrusts
that determine kinzigite horses or slivers carried NW-ward over the marbles. Within the latter, NNE-
trending folds are conspicuous. Brittle, northward-dipping normal faults crosscut the FBBSZ ductile
structures. Detrital cores of zircon from the BBMs yield two U-Th-Pb age clusters of ∼270Ma and
∼340Ma, whereas their rims yield ∼21Ma ages. Correlations with comparable settings in other West
Mediterranean Alpine belts are discussed. The BBMs compare with the Triassic carbonates deposited over
the crustal units of the Alpujarrides-Sebtides. The assumed Triassic protoliths may have been deposited onto
the kinzigites or carried as extensional allochthons over a detachment in the Early Jurassic during the
incipient formation of the Alboran Domain continental margin. Thus, it is concluded that the Beni Bousera
mantle rocks were exhumed to a shallow depth during early rifting events responsible for the birth of the
Maghrebian Tethys.

Keywords: Gibraltar Arc / mantle exhumation / Alpine Tethys / HT metamorphism / Triassic rifting / hyperextended
margins / SHRIMP U-Th-Pb dating
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Résumé – Lesmarbres des Beni Bousera, témoins d’unemarge hyper-étirée triasique-liasique dans
les unités Alpujarrides-Sebtides du Rif (Maroc). La chronologie et les processus d’exhumation des
péridotites sous-continentales de l’Arc de Gibraltar (Ronda, Beni Bousera) ont fait l’objet de discussions
nombreuses ces dernières décennies. Dans ce travail, nous contribuons à ce débat par la cartographie,
l’analyse structurale, la pétrologie et la géochronologie U-Th-Pb SHRIMP des marbres de haut degré qui
affleurent autour de la moitié sud-est de l’antiforme des Beni Bousera (Rif septentrional). Ces marbres des
Beni Bousera (BBMs), loin d’être des intercalations dans l’enveloppe granulitique (kinzigites) des
péridotites, comme admis jusqu’ici, forment de petites unités démembrées dans une zone de cisaillement
ductile, épaisse de ∼30 à 300m, entre les kinzigites et les gneiss de l’unité Filali superposée (FBBSZ). Ils
comportent des bancs de carbonates dolomitiques silicatés, des bancs détritiques et conglomératiques, des lits
carbonatés fins à interlits phylliteux, composant une sédimentation de plateforme. Une discordance, de nature
stratigraphique ou tectonique, s’observe localement sur les kinzigites. Les galets et grains clastiques
comportent feldspath potassique, quartz, grenat et zircon. Les minéraux du pic métamorphique incluent
forstérite, Mg-Al-spinelle, phlogopite, geikielite (MgTiO3) et accessoirement zirconolite, baddeleyite et
srilankite dans les marbres dolomitiques ; diopside, phlogopite, scapolite, sphène et accessoirement zircon et
graphite dans les marbres calciques. Ceci définit un pic métamorphique de haute température, basse pression
proche de 700–750 °C, � 4.5 kbar. Dans le chevauchement FBBSZ, des structures de second ordre sont des
zonesdecisaillementductiles àvergenceNWamenantdesécaillesdekinzigites sur lesmarbres.À l’intérieur de
ces derniers, les plis mineurs d’axe NNE sont dominants. Ces structures mylonitiques sont recoupées par des
failles normales tardives à pendage nord. Les analyses SHRIMP U-Th-Pb dans le cœur des grains de zircon
extraits des marbres indiquent des pics d’âge à ∼270Ma et ∼340Ma, tandis que les bordures fournissent des
âges Miocène inférieur (∼21Ma). Les corrélations avec les contextes comparables dans les autres chaînes
alpines deMéditerranée occidentale sont examinées.Nous proposons de corréler lesmarbres desBeniBousera
avec les séries triasiques déposées sur les unités crustales des Alpujarrides-Sebtides. Les protolithes des
marbres se sont déposés en transgression sur les kinzigites ou bien y ont été amenés comme allochtones
extensionnelsdurant leLias au-dessusd’undétachement lié à la formationde lamargecontinentaleduDomaine
d’Alboran. Ainsi, les roches mantelliques auraient été exhumées à faible profondeur dès le Trias durant la
formation initiale d’une marge hyper-étirée au bord septentrional de la Téthys maghrébine.

Mots clés : Arc de Gibraltar / exhumation du manteau / Téthys alpine / métamorphisme de haute température / rifting
triasique / marges hyper-étirées / datation U-Th-Pb SHRIMP
‘What is now proved was once only imagined’
William Blake
1 Introduction

At the westernmost tip of the West Mediterranean Alpine
belts, the Gibraltar Arc is famous for its large massifs of
subcontinental peridotites, up to ∼5 km thick, i.e., the Ronda
massifs in the northern (Spanish) branch of the arc, and the
Beni Bousera massif in the southern (Moroccan) branch
(Fig. 1), both topped by a granulitic cap a few hundred meters
thick. These massifs are included in a complex of crustal
nappes, i.e., the Alpujarrides (Spain)–Sebtides (Morocco)
Complex, which, together with the underlying Nevado-
Filabrides of Spain and the overlying Malaguides (Spain)–
Ghomarides (Morocco) nappes, constitutes the Alboran
Domain (see reviews in Chalouan et al., 2008; Jabaloy
Sánchez et al., 2019a, 2019b). The exhumation history of the
Gibraltar Arc peridotites has been hotly debated since the
1970s. Contrary to the hypothesis of a Neogene “hot diapiric
emplacement” of Loomis (1972), Kornprobst (1974) ascribed
the mantle uplift to Variscan compressional tectonics, whereas
Reuber et al. (1982) and Saddiqi et al. (1988) favored an early
uplift in the framework of the Mesozoic crustal extension of
the Mediterranean domain. In a pioneering paper, Kornprobst
and Vielzeuf (1984) compared the Ronda-Beni Bousera
lherzolites with those of the Pyrenees (Fig. 2A) and
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emphasized the major role of extension . Michard et al.
(1991, 1997) compared the Ronda-Beni Bousera peridotites
with those of Ivrea in the Western Alps, whose earliest
exhumation is related to Permian-Jurassic extensional tecton-
ics (Brodie et al., 1989; Vavra et al., 1999).

A decisive step was achieved when Sánchez-Rodríguez
and Gebauer (2000) obtained Jurassic–Early Cretaceous U-Pb
zircon ages from garnet pyroxenites in the Ronda peridotites,
and concluded that these ages were linked to the breakup of
Pangea. These authors also obtained ∼20Ma ages from zircon
rims from the underlying crustal nappe and ascribed these
overgrowths to a Miocene subduction event. Li and Massonne
(2018) recently assigned a ∼40Ma age to the subduction event
recorded in the Nevado-Filabrides. This event is part of the
slab rollback model (Fig. 2B) developed to account for the Late
Eocene–Pliocene opening of the West Mediterranean basins
and coeval building of the surrounding Alpine belts (Royden,
1993; Lonergan and White, 1997; Frizon de Lamotte et al.,
2000; Spakman and Wortel, 2004; Jolivet et al., 2009; Van
Hinsbergen et al., 2014). In this model, the Alboran Domain is
part of an Alboran-Kabylias-Peloritani-Calabria block (AlKa-
PeCa, also spelt Alkapeca; Bouillin et al., 1986; Dercourt
et al., 1986) drifted by back-arc spreading from the
southeastern margin of Iberia from ∼35Ma onward
(Fig. 2C, left). However, the timing and mechanism of
exhumation of the Gibraltar Arc peridotites remained debated.
Michard et al. (2002) and Chalouan and Michard (2004)
defended the hypothesis of an early exhumation during the
f 35



Fig. 1. Structural map of the Gibraltar Arc, modified after Chalouan et al. (2008). Insert: location (framed) in the Western Mediterranean area
(Alpine belts in ochre). AL: Alboran; BAL: Balearic Islands; CA: Calabria; GK/LK: Greater/Lesser Kabylias; PE: Peloritani Mts; SARD:
Sardinia; TYR: Tyrrhenian Sea.
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Jurassic opening of the Alpine Tethys. In contrast, Platt et al.
(2003) proposed rapid exhumation of the mantle rocks by
delamination of the lithospheric mantle between ∼25Ma and
20Ma.

Currently, the role of Permian-Mesozoic extension is
accepted, but is generally regarded as minor compared to
Oligocene-Miocene tectonic events. Garrido et al. (2011)
related exhumation from depths of ∼140 to ∼85 km to the
Tethyan extension. The deeper value was linked to the
occurrence of diamond pseudomorphs and microdiamonds in
pyroxenites (Davies et al., 1993; El Atrassi et al., 2011),
whereas the shallower value corresponds to the observation of
graphite–garnet facies in the lherzolites. However, Garrido
et al. (2011) ascribe the exhumation of the mantle rocks up to
30–40 km depth to an Oligocene-Early Miocene extension in a
back-arc setting linked to the westward subduction of the
Tethyan lithosphere (Fig. 2D). Most authors currently adopt
similar views to describe a long-term exhumation of the
Ronda–Beni Bousera peridotites (Afiri et al., 2011; Précigout
et al., 2013; Álvarez-Valero et al., 2014; Hidas et al., 2015;
Gueydan et al., 2015; Gervilla et al., 2019). However, Rossetti
et al. (2010, 2020) and Melchiorre et al. (2017) demonstrated
that the Beni Bousera peridotites were exhumed to lower-crust
depth during the waning stage of the Hercynian orogeny. The
final exhumation of the peridotite massifs is attributed to the
Alpine orogeny, but is variably depicted in the recent literature
(e.g., Mazzoli and Martín Algarra, 2011; Tubía et al., 2012;
Gueydan et al., 2019; Rossetti et al., 2020).
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In this study, we report new field and laboratory data
involving detail mapping, structural analysis, petrological
studies, and SHRIMP (Sensitive High-Resolution Ion Micro-
probe) dating of zircon grains from marble outcrops scattered
around the Beni Bousera massif. Kornprobst (1974) consid-
ered these marbles as mere intercalations within the
metapelitic series of the kinzigites (granulites) topping the
peridotites. This interpretation was subsequently accepted by
all geologists working in the area, including the present authors
(Reuber et al., 1982; Saddiqi, 1988; Chalouan and Michard,
1990), at least until last year, when we observed that the
marbles are exclusively located on top of the kinzigite
envelope and below the gneisses of the Filali Unit (Saddiqi
et al., 2019; Michard et al., 2020a). The new data presented
here support the early extensional exhumation of the Beni
Bousera peridotites to close to the surface during the Triassic–
Early Jurassic rifting of Pangea. In light of these results and
correlations with similar settings from the Betics to the Central
Alps, we propose that this early exhumation occurred in the
framework of the incipient formation of the southwestern
Alkapeca continental margin, north of the Maghrebian Tethys.
2 Geological setting

In the Rif Chain, the Alboran Domain tectonic wedge
forms a backstop to an external tectonic wedge thrust over the
North African crust (Figs. 1 and 3). The external wedge mostly
f 35



Fig. 2. A: Early extensional exhumation of the Ronda-Beni Bousera peridotites, according to Kornprobst and Vielzeuf (1984). B: Rollback
model accounting for building of the West Mediterranean Alpine belts and opening of the Western Mediterranean, modifed after Lonergan and
White (1997). Ca: Calabria; Pe: Peloritani Mts. C: Contrasting restorations of the Tethyan realm between Africa, Adria, Iberia and Western
Europe, according to Bouillin et al. (1986) and Guerrera et al. (1993), respectively (after Guerrera et al., 2019). The “Betic Ocean” is named after
Puga (1990). D: Lithospheric scale cross-section showing the Neogene exhumation of the Ronda-Beni Bousera peridotites at ∼40 km depth in
the framework of N- to NE-dipping subduction and correlative back-arc extension, preceding the final compressional deformation of the Rif-
Betic orogen, after Garrido et al. (2011).
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consists of sedimentary units involving two types of nappes,
from top to bottom: (i) the Maghrebian Flyschs nappes, i.e., the
Upper Jurassic–Early Miocene infilling of the Ligurian-
Maghrebian Tethys, also extending to the Western Betics
(Bouillin et al., 1986; Leprêtre et al., 2018; Daudet et al.,
2020), and (ii) the Intrarif, Mesorif and Prerif parautochtho-
nous and allochthonous units formed during Oligocene-
Miocene inversion of the North African hyperextended margin
and comprising obducted units of the adjacent Tethyan crust
(Favre, 1992; Michard et al., 2007, 2014, 2020b; Benzaggagh
et al., 2014; Gimeno-Vives et al., 2019).

The stacked nappes of the Alboran Domain are thrust over
the Flyschs and External zones of North Africa and Iberia
(Fig. 1). However, late extensional faulting strongly affected
this internal tectonic wedge whose Early Miocene collapse
accompanied the opening of the Alboran basin (Galindo-
Zaldivar et al., 2019; Lafosse et al., 2019). In the Rif belt, the
lowest unit of the internal wedge (lower Sebtides) crops out at
Ceuta (Fig. 1) and comprises the Monte Hacho orthogneiss
underlying a ∼200m thick serpentinite–granulite unit
(Homonnay et al., 2018). The lower Sebtides are correlated
with the Alpujarride nappe (Ojen-Guadaiza nappe) widely
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exposed beneath the Ronda peridotites in the Western Betics
(Jabaloy Sánchez et al., 2019a, 2019b). In the Central Betics,
the Alpujarrides nappe complex overlies the Nevado-
Filabrides Complex (Fig. 1). In this entirely eclogitic complex
(Santamaria-Lopez et al., 2019), the lowest unit is regarded as
proximal with respect to the Iberian plate (e.g., Augier et al.,
2005; Rodríguez-Cañero et al., 2018; Pedrera et al., 2020)
whereas the overlying meta-ophiolites are considered to record
a lost oceanic branch of the western Tethys, i.e., the Betic
Ocean (Puga, 1990; Puga et al., 2005; Fig. 2) or West Ligurian
Ocean (Leprêtre et al., 2018).

The Lower Sebtides are widely exposed in the Beni
Bousera antiform (Fig. 3A). There, the base of the peridotites is
not exposed, but their thickness exceeds 2500m (Fig. 3B).
They mainly consist of spinel lherzolites, including ∼5–10%
of ultra high-pressure (UHP) pyroxenites (Gysi et al., 2011;
Frets et al., 2014; Chetouani et al., 2016; Varas-Reus et al.,
2018). They are overlain by a 200–500m thick granulitic
envelope traditionally labeled kinzigites and grouped with the
ultramafics in the high-pressure (HP) “Beni Bousera Unit”
(Kornprobst, 1974). The kinzigites mainly consist of
migmatitic metapelites characterized by the assemblage
f 35



Fig. 3. Structural map (A) and cross-section (B) of the Northern Rif Internal zones (Alboran Domain) from Tetouan to Jebha, modified after
Suter (1980) and Chalouan et al. (2008). The shear zones on both sides of the kinzigites granulitic unit are distinguished here for the first time and
labeled KPSZ and FBBSZ, respectively (see A for explanation of acronyms).
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garnet–kyanite–rutile ± biotite–sillimanite and include meta-
basite lenses (Bouybaouene et al., 1998; Haissen et al., 2004;
Álvarez-Valero et al., 2014). They are currently regarded as
lower-crustal rocks separated from the ultramafics by a major
extensional shear zone (Saddiqi et al., 1988; Afiri et al., 2011;
Gueydan et al., 2015, 2019) hereafter labeled the “Kinzigite–
Peridotite Shear Zone” (KPSZ, Figs. 3–5). Immediately
beneath the kinzigites, the porphyroclastic spinel peridotites
are replaced by garnet–spinel mylonites that include corun-
dum–garnet or plagioclase–garnet pyroxenites interpreted as
derived from subducted slices of the crust–mantle boundary
(Chetouani et al., 2016) and subsequently exhumed by
24 ± 3Ma (Lu-Hf; Pearson and Nowell, 2004). Rossetti
et al. (2020) dated at 300–290Ma (U-Pb zircon) the migmatitic
granulite; they assume that the mantle and lower-crust rocks
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were coupled twice, firstly at great depth (∼50 km) during the
waning stage of the Hercynian orogeny, and secondly in the
cordierite stability field (<15 km) during the last stage of the
Alpine orogeny (zircon rims at 20–21Ma).

The Beni Bousera Unit is draped by the ∼ 5 km-thick Filali
Unit, which includes two sub-units, i.e., the Filali Gneiss and
overlying Filali Schists (Figs. 3A, B and 4). Both sub-units
exhibit mineral associations typical of high-temperature, low-
pressure (HT-LP) conditions, from sillimanite–K-feldspar in
the gneiss, to kyanite-, to andalusite ± staurolite assemblages in
the schists (El Maz and Guiraud, 2001). Evidence of partial
melting occurs in the lower sub-unit in the form of kyanite-
garnet leucocratic granitic lenses (leptynites of Kornprobst,
1974). Like the kinzigites, the Filali Unit records a polyphase
evolution, i.e., Barrovian metamorphism during the Hercynian
f 35



Fig. 4. Geologic map of the southeastern part of the Beni Bousera massif, after the Geological Map of Morocco, scale 1:50,000, sheets Bou
Ahmed and Bab Berred (mapping by J. Kornprobst), with additions from Reuber et al. (1982), Elbaghdadi et al. (1996), Afiri et al. (2011), Frets
et al. (2014), El Bakili et al. (2020) and this work (marbles). The TZ (Taza), IN (Inoualine), OL (Oued Ljouj) and JN (Jnane Niche) marble
outcrops underline the Filali-Beni Bousera Shear Zone (FBBSZ).
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orogeny (late anatectic phase at ∼300Ma; U-Pb zircon dating
of the leptynites) and HT-LP during the Alpine orogeny
(∼22Ma; U-Pb zircon/monazite and 40Ar/39Ar muscovite/
biotite) (Rossetti et al., 2010; see also Gueydan et al., 2015).
The Filali Unit corresponds to a thinned upper-crust section,
currently regarded as separated from the underlying Beni
Bousera Unit by an extensional shear zone parallel to the
KPSZ (Saddiqi et al., 1988; Chalouan et al., 2008; Afiri et al.,
2011; Álvarez-Valero et al., 2014; Gueydan et al., 2015, 2019).
The occurrence of the marbles (BBMs) studied here between
the Beni Bousera and Filali Units questions this classical
Page 6 o
interpretation, as soon as the age of their protoliths may be
post-Paleozoic. We have distinguished this limit under the
name of Filali–Beni Bousera Shear Zone (FBBSZ), as
explained below (Sect. 4.1).

The uppermost section of the Sebtides complex is defined
by the Federico units, which are characterized by a distinct
MP-HP/LT metamorphic signature and overlie the Lower
Sebtides through a tectonic contact (Fig. 3A, B). Three units
are distinguished in the Beni Bousera region, according to their
metamorphic grade, which decreases from bottom to top, i.e.,
from the Souk-el-Had (late cordierite–andalusite assemb-
f 35
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lages), to Boquete (sudoite–chloritoid), to Tizgarine (cook-
eite–pyrophyllite) units (Bouybaouene, 1993). In contrast,
their sandy-pelitic lithology is homogeneous and derives from
Permian-Early Triassic red beds and quartzites series
(Kornprobst, 1974). The Souk-el-Had unit is regarded as
the detached stratigraphic cover of the Filali basement
(Bouybaouene, 1993). Middle to Upper Triassic dolomites
are associated with the Federico units in the Beni Mezala
Sebtides antiform west of Ceuta (BMZ, Fig. 1; Durand-Delga
and Kornprobst, 1963). The two lower Beni Mezala units
display mineral associations typical of blueschist to eclogite
metamorphic facies (Bouybaouene et al., 1995; Michard et al.,
1997, 2006; Vidal et al., 1999; Janots et al., 2006; Marrone
et al., 2020). Ladinian to Norian beds have been identified in
their Betic equivalents of the western Alpujarrides, namely the
Casares-Benarraba imbrications (Balanyá et al., 1997; Sanz de
Galdeano et al., 1999).

The Ghomarides complex comprises four nappes that
overlie the Sebtides complex through extensional contacts of
two types (Fig. 3B), either low-angle normal faults on top of
the tectonic pile (e.g., Zaouia fault) or steep normal faults
dipping toward the Alboran basin (Aaraben faults). Each
Ghomarides nappe involves a low-grade Paleozoic basement
and at least part of its post-Variscan unconformable cover
(Chalouan and Michard, 1990). In the two lowest nappes,
remnants of the sedimentary cover consist of Anisian-Carnian
red beds (Baudelot et al., 1984), which can be correlated with
the Verrucano of Tuscany (Perrone et al., 2006). To the north of
Tetouan, the Beni Hozmar nappe is overlain by a locally
preserved thin (∼50m) sequence of Liassic carbonates and
Lower Eocene sandy limestones (El Kadiri et al., 1992), which
are covered by an Oligocene-Miocene, syntectonic marly-
clastic cover (El Kadiri et al., 2001). The lower Ghomarides
pile underwent metamorphic recrystallization at temperatures
up to 500 °C (Negro et al., 2006) at about 25Ma (Michard
et al., 1991).

The “Dorsale calcaire” complex extends across the front
and below the Alboran Domain internal wedge (Fig. 3B),
except to the north of Tetouan where the wedge is pinched and
tilted backward (eastward). The Dorsale complex includes
several small units characterized by a slab of Upper Triassic–
Liassic carbonates overlain by relatively thin Jurassic-
Cretaceous pelagic facies, and unconformable Eocene–Early
Miocene formations (El Kadiri et al., 1992, 2000–2002a;
Chalouan et al., 2008). Based on their stratigraphy these strata
were classified into “Internal” and “External” Dorsale units:
the Internal Dorsale comprises Triassic stromatolithic lime-
stones overlain by white Liassic limestones, whereas the
External Dorsale is typified by alternating beds of Triassic
limestones and dolostones followed by dark, cherty Liassic
limestones and Middle-Upper Jurassic radiolarites. From the
Betics to Sicily, these units are currently viewed as having been
derived from the Mesozoic passive margin separating the
Malaguide-Ghomaride-Kabylian high from the Maghrebian
Flyschs basin (Bouillin, 1986; Cattaneo et al., 1999; Durand-
Delga, 2006; Martín-Martín et al., 2006; El Kadiri et al.,
2009). The “Pre-Dorsalian” units (e.g., Cherafat slivers
southwest of Beni Bousera, and the “Hercules columns” on
both sides of the Strait of Gibraltar) were located in the most
distal part of this margin (Olivier, 1990; Durand-Delga et al.,
2007), transitional to the Flyschs basin substrate (Olivier et al.,
Page 7 o
1996). They are now disrupted and sheared in the sole of the
Alboran Domain tectonic wedge.

3 Samples and methods

We first resumed the study of the marbles in the Oued
Amter valley (Fig. 4) where we had previously described
marble outcrops (Saddiqi, 1988). The marbles were now
mapped south of Taza village, north of Inoualine, and at the
Oued Ljouj-Oued Amter confluence (Fig. 5). As the marble
outcrops appeared to be linked to the upper boundary of the
Beni Bousera kinzigites in the mapped area, we searched for
other marbles along the southwestern flank of the Beni Bousera
Unit from the Oued Ljouj to the crest of the massif, where we
discovered a large marble outcrop in the predicted location
(JN, Fig. 4). Structural data were collected at many stations, on
both flanks of the Beni Bousera antiform. In order to visualize
these data, we use the Stereonet software by Richard
Allmendinger© 2011–2020 version 11.1.3 with a lower-
hemisphere equal-area projection (Allmendinger et al.,
2013; Cardozo and Allmendinger, 2013).

Thirty-three samples were collected within and around the
marble outcrops (Tab. 1), with locations shown in Figures 4
and 5. Petrological/textural analyses were performed at École
normale supérieure, Paris, using polarizing microscopy and a
ZeissSigma field-emission-gun scanning electron microscope
equipped with a large-area (50mm2) energy-dispersive silicon
drift detector, X-Max Oxford Instruments, for standardless
analysis in carbon-coated polished thin sections using the
Aztec software, Oxford Instruments. Micrometer-size calcite
inclusions in forsterite were analysed for calcite–dolomite
thermometry (Ferry, 2001, using the formulation of Anovitz
and Essene, 1967); operating conditions were accelerating
voltage 15 kV and beam current 9 nA, Si content was
monitored to avoid a possible contribution from the host
olivine and counting time was reduced to 2 s in order to limit
beam damage to the carbonate. To back the petrological
discussion, we used phase relations calculated in the CaO–
MgO–Al2O3–SiO2–H2O–CO2 system for the composition
1 clinochloreþ 5 calciteþ 10 dolomite with the Theriak/Dom-
ino software (de Capitani and Petrakakis, 2010; version
03.01.2012) and the JUN92d2019 updated database of Berman
(1988).

Five samples were collected (1–3 kg) from marble
outcrops on both sides of Oued Amter (Fig. 5, samples
MTS5, MTS6, MTS14–15, MTS17, MTS18) to extract zircon
grains for SHRIMP analysis. Samples were broken into
smaller pieces, cut using a diamond saw, then fragmented with
a jaw-crusher in the Geosciences Laboratory, Faculty of
Sciences Aïn Chock, Hassan II University of Casablanca,
Morocco. The fragments were sieved to concentrate the size
fraction 80–300mm. Potential zircon-bearing fractions were
separated using panning, first in water and then in ethanol.
Only three samples yielded sufficient zircon grains to
undertake SHRIMP analysis with a perspective of detrital
zircon study: (i)MTS5 from the metaconglomeratic bed near
the base of outcrop 1a; (ii)MTS6 from the impure marbles of
outcrop 1b; and (iii)MTS18 from a calcschist bed of outcrop
1c (Fig. 5). After extracting the magnetic fraction with a
neodymium magnet, zircon grains were handpicked under a
f 35



Fig. 5. Map of northwestern marble outcrops, ∼7 km SWof Amter-village (see Fig. 4 for location), with sample locations. 1a–1c: Amter road
outcrops (from SW to NE). 2a–2b: Inoualine outcrops. The Filali-Beni Bousera Shear Zone (FBBSZ) has not been mapped west of 1a–1c.
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binocular microscope. About 150 zircon grains for samples
MTS5 andMTS6, and 60 for MTS18 were mounted along with
standards on a 3.5 cm diameter epoxy SHRIMP megamount.
Zircons were polished, studied by optical (reflected and
transmitted light) and scanning electron microscopy (second-
ary electrons and cathodoluminescence images), coated with a
13–15 nm thick gold layer, and analyzed for U-Th-Pb using a
SHRIMP IIe/mc ion microprobe at the IBERSIMS laboratory
of the CIC University of Granada, Spain. The SHRIMP U-Th-
Pb analytical method is described in detail at www.ugr.es/
ibersims. Each selected spot was rastered with the primary
beam for 120 s prior to analysis, and then analyzed by 6 scans,
following the isotope peak sequence 196Zr2O,

204Pb,
204.1 background, 206Pb, 207Pb, 208Pb, 238U, 248ThO, and
254UO. Each peak of every scan was measured sequentially
10 times with the following total counting times per scan: 2 s
for mass 196; 5 s for masses 238, 248, and 254; 15 s for masses
204, 206, and 208; and 20 s for mass 207. Uranium
concentration was calibrated using the SL13 reference zircon
(U: 238 ppm; Claoué-Long et al., 1995). U/Pb ratios were
calibrated using the TEMORA-II reference zircon (417Ma;
Black et al., 2004), which was measured every 4 unknowns.
All calibration procedures were performed on the standards
included on the same mount. Mass calibration was done on the
REG20 zircon (internal laboratory standard: ca. 2.5Ga, very
high U, Th, and common lead content). Data reduction was
carried out with the SHRIMPTOOLS software (downloadable
from www.ugr.es/~fbea) using the STATATM programming
language.
Page 8 o
4 Results

4.1 Marble outcrops

At a regional scale (Fig. 4), the marble outcrops form lens-
shaped exposures (TZ, IN, OL, JN) exclusively located in
between the kinzigite envelope of the Beni Bousera peridotites
and the overlying Filali gneisses. As noticed above (Sect. 2;
Fig. 3), we have distinguished this limit under the name of
Filali-Beni Bousera Shear Zone (FBBSZ). Along this contact,
the most significant outcrops are observed on the western bank
of Oued Amter, south of Taza village, along the Amter track,
and in the narrow Oued Taza valley (Fig. 5, outcrops 1a–1c).
Here, the FBBSZ is nearly 150m thick, whereas at Inoualine,
on the opposite bank of Oued Amter, marble lenses 2a, 2b
(Fig. 5) are pinched within a narrow, ∼30m thick shear zone.
The variation in thickness observed at the different outcrops
can be largely attributed to the tectonic deformation that
affected the marbles in the FBBSZ (see Sect. 4.2 below).
Marble outcrops of the Taza and Inoualine lenses commonly
exhibit bedding confirming the sedimentary nature of the
protoliths. This is best exemplified by the thinly bedded
marbles with interleaved meta-argillites (now biotite-vermic-
ulite schists) outcropping in Oued Taza (Fig. 6B). Likewise,
outcrop 1a (Fig. 5) displays conspicuous bedding marked by
alternating pure and siliceous/silicate-rich carbonate layers
(Fig. 6C). The state of the silica component in the protolith
may have been diffuse (chert) and/or detrital sand (see Sect.
5.1), but the occurrence of a metaconglomeratic bed (Fig. 6D)
f 35
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Fig. 6. A: Panoramic view of marble outcrops from the NE side of Oued Taza valley (see location 1b, Fig. 5). The Filali gneiss in the foreground
belongs to the hanging-wall of the FBBSZ. B: Close view of the thinly banded marbles cropping out along Oued Taza, at ∼200m NW of its
confluence with Oued Amter (location 1c, Fig. 5). The upright folds (P2) deform the main, bedding-parallel foliation, which is associated with
isoclinal folds (P1, see Fig. 7C). C: Outcrop of metadetrital marbles along the Amter road (location 1a, Fig. 5). To the left of the photograph, the
kinzigites crop out continuously up to the peridotites, whereas those on the right belong to a second-order sliver included in the FBBSZ. The
unconformable contact below the marbles looks like a stratigraphic unconformity, but could alternatively be a low-angle fault. D: Close view of
the metaconglomeratic marble bed, ∼1m above the base of the marbles (red star in C). E: View of the uppermost part of the Oued Jnane Nich
marbles (JN, Fig. 4; N 35°14’26”, W 4°53’03”). The kinzigite sliver between the marbles and the Filali gneiss is interpreted as part of a horse by
comparison with (C).
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supports the idea of metadetrital carbonate beds in this
sequence. Moreover, the outcrop bedding appears to parallel
the basal contact of the marbles over the tightly folded
kinzigites of the Beni Bousera Unit (Fig. 6C). However, this
contact may be of sedimentary or of tectonic origin as
discussed below (Sect. 5).

4.2 Structures

Syn- to post-metamorphic structures are observed within
the marbles and at their contacts with the surrounding units. Of
particular interest is the lower contact of the marble lens 2a
(Fig. 5), which within a few square meters shows: (i) a marble
bed unconformably overlying the kinzigites of the Beni
Bousera Unit, and (ii) two juxtaposed, northwest-ward verging
kinzigite–marble duplexes (Fig. 7A). These structures are
comparable to those observed in the same position at the basal
contact of lens 1a, on the other bank of Oued Amter (Fig. 6C)
or at the outcrop 1b (Fig. 8C, D). In contrast, the upper limit of
lens 1c (Fig. 5) shows conspicuous development of mylonitic
structures along with progressive ductile deformation. There,
the boudinage of gneissic mylonites (Fig. S1 in Supplementary
Material [SM]) in the juxtaposed calc-mylonite (Fig. 7B) and
the ductile, asymmetric folding of previously boudinaged
silica-rich beds (Fig. 7D) are observed. Two types of folds are
illustrated within the same marble lens 1c: (i) isoclinal
recumbent folds (P1) whose axial-planes coincide with the
main foliation Sm=S0–S1 (Fig. 7C), and (ii) open, upright
folds (P2) that deform Sm (Fig. 6B). In more massive marbles,
syn-D2 crenulation cleavage and brittle-ductile microfaults
contribute to flattening of the main foliation, which again
parallels bedding S0 (Fig. 7E). Both the ductile and brittle-
ductile structures are overprinted by place by late, east-
trending brittle faults with gouge (Fig. 7F) or breccia and
striated mirror (Fig. 8E).

The JN outcrop at the source of Oued Jnane Nich (Fig. 4 for
location) displays a complex structure involving both
kinzigitic and calc-mylonitic sheets (Fig. 7G). These alternat-
ing sheets feature sheath/isoclinal folds the core of which is
filled by a calc-mylonitic meta-breccia that contains small
shreds and fragments of kinzigite-like material (Fig. 7H).

In the Oued Ljouj outcrop (OL, Fig. 4), the marbles are
reduced to shreds in the shear zone beneath the Filali gneisses.
Some lens-shaped blocks of siliceous marbles can be seen in a
sheared kinzigite matrix (Fig. 8A, B).

To summarize, the marbles and the intercalated kinzigite
bodies (duplexes or slivers) that delineate a decametric
corridor at the base of the Filali gneisses are all marked by a
strong ductile deformation, which justifies the name we
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proposed above for this major contact, i.e., Filali-Beni Bousera
Shear Zone (FBBSZ). In the kinzigite slivers, the ductile
deformation is characterized by recrystallised quartz ribbons,
elongate garnet and feldspar porphyroclasts with typical core-
and-mantle structure due to dynamic recrystallization (Fig. S1
in SM).

Stretching lineation is W- to NW-directed with a low to
moderate plunge towards E to SE (Figs. 5 and 9B). In the
FBBZ, kinematic criteria such as asymmetrical folding or C/S
structures are indicative of thrusting toward the west (Figs. 7A,
B, D and 8).

The data plot collected from different stations shows that
the main foliation and marble bedding (Taza marbles) trend
NW-SE with an opposite dip consistent with the Beni Bousera
anticline (Fig. 9A). Three sets of folds are observed at the
regional scale, NW-SE, NE-SW, and E-W (Fig. 9C), reflecting
late polyphase FBBSZ activity.

4.3 Petrology

The marbles frequently display alternating beds of pure
and silicate-rich facies (Figs. 6 and 7), which demonstrates
unequivocally their sedimentary origin (Kornprobst, 1974).
The critical problem to tackle within the marble samples is to
distinguish clastic from metamorphic minerals. A sketchy
description of samples is given in Table 1 and we address
below four main rock types: conglomeratic marble, standard
calcite marble, dolomite marble and siliceous marble.

Of particular interest is the layer marked with a red star in
Figure 6C. A clastic input is undisputable for this bed as the
30 cm thick layer contains pebbles of 0.5–4 cm in diameter
(Fig. 6D). In sample MTS5 from this layer, the pebble studied
(Figs. 10 and 11A) comprises a minor quartz-rich part with
plagioclase (∼An60) and diopside (XMg=Mg/(Mgþ Fe) ∼
0.7) and a main part bearing a complex assemblage of
K-feldspar, sodic plagioclase, diopside (XMg=∼ 0.7 to 0.4),
quartz, titanite, garnet (ca. Alm53Grs29Prp16Spe2), zircon (with
small rounded quartzþ plagioclaseþK-feldspar inclusions),
apatite, allanite and late prehnite and pumpellyite. The matrix
around the pebble is a recrystallized calcite groundmass
containing rounded clasts (?) of K-feldspar, finely polycrys-
talline globular aggregates of a low-birefringence, Al-free and
Si-rich Mg-silicate with an Mg/Si atomic ratio close to 0.5
(palygorskite/sepiolite), and partly altered Mg-Fe-diopside
and scapolite crystals (Fig. 11A), the latter commonly showing
a thin rim of grossular garnet and/or clinozoisite. A
conspicuous reaction rim developed around the pebble,
essentially along its quartz-rich part (Fig. 10). The rim
comprises quartz–calcite intergrowths (former wollastonite?),
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Fig. 7. Structure of marble lenses (see location in Fig. 5, except for G and H, located in Fig. 4). Sm: main foliation, which corresponds to bedding
S0 transposed in the mylonitic foliation S1. A: Lower boundary of marble lens 2a. B: Upper boundary of marble lens 1c. C: Early isoclinal folds in
the lower part of the 1c lens. Compare with the late folds exposed in a neighboring outcrop (Fig. 6B). D: Northwest verging asymmetric fold in
the mylonitic zone on top of the marble lens 1c; the fold deforms boudinaged silica-rich beds (white) interleaved in the carbonate matrix.
E: Boudinage and flattening of a silica-rich bed in the marble lens 1b. Notice the late crenulation and minor fault structures. F: Late normal-
sinistral fault crosscutting the marble lens 2a and the overlying kinzigite horse. The fault dips ∼40° to the N. G: Ductile, multiple folding and
brecciation of the JN marbles about 50 meters to the north of outcrop (Fig. 6E). The dark sheets and shreds are composed of kinzigite-like
material, the white sheets and the breccia matrix correspond to calc-mylonite. H: Detail of the calc-mylonitic meta-breccia in the core of the
major isoclinal fold shown in (G), a few meters to the north.
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K-feldspar, sodic plagioclase and diopside in a fine-grained
groundmass of Mg-Si-rich sheet-silicate (palygorskite?).

In a more common, less obviously metadetrital marble type
such as sample SR123, collected ∼50m to the north of MTS5
along the same outcrops of the Oued Amter dirt road south of
Taza, a coarse-grained calcite groundmass bears abundant
phlogopite lamellae and minor scapolite (Fig. 11B), titanite,
diopside, and graphite, with accessory pyrrhotite and zircon,
and rare thorian uraninite. Titanite is Al-F bearing (up to
∼20mol% CaAlSiO4F) and consistently shows reddish-brown
to colorless inverse pleochroism. Similar samples may bear
less or no phlogopite in the calcite matrix but commonly
contain isolated K-feldspar grains (clasts?) and, less common-
ly, isolated quartz grains, usually rimmed by diopside or (e.g.,
Jnane Nich, Fig. 11C, D) wollastonite and grossular.
Tremolite ± talc, albite ± zoisite, chlorite/vermiculite and mus-
covite are late products of incipient retrogression of diopside,
scapolite, phlogopite and K-feldspar, respectively (Fig. 11H);
prehnite and zeolites are even later, very minor products.

Dolomitic marbles were found in all outcrops except Jnane
Nich, e.g., MTS21 in Taza 1c, MTS13 andMTS15 in Inoualine
2b, SR138 in Oued Ljouj. The dolomite ± calcite matrix
typically bears forsterite (XMg= 0.98 to 0.99), Mg-Al-spinel
(XMg typically 0.96 to 0.98), phlogopite (XMg>0.99) and
geikielite (ideally MgTiO3, XMg 0.65 to 0.87). Rutile is rare,
probably late (Fig. S2 in SM); apatite, pyrrhotite/pyrite and an
(Mg, U, Th)-rich zirconolite (ideally CaZrTi2O7) are syn-
metamorphic accessories, with occasional baddeleyite (ZrO2),
generally rimmed or overgrown by tiny zircon (Fig. S3 in SM).
A single grain of srilankite (ZrTi2O6, bearing minor Ca, Th, U
and Al) was observed, associated with zirconolite in sample
MTS21 (Fig. S4 in SM), which is the first report of srilankite in
metacarbonate. Dolomite exsolution in calcite is a common
feature and both carbonates consistently bear up to 1mol%
SrCO3; exsolution of tiny strontianite blebs from calcite was
observed in MTS15. Diopside is now conspicuously absent in
the matrix of dolomite marbles but must have been an early
(prograde?) phase, as shown by a few tiny diopside inclusions
(XMg ∼ 1) in forsterite and by pseudomorphic aggregates of
calciteþ (serpentinized) forsterite in the dolomitic ground-
mass (in SR138, Fig. 11G, and Fig. S5 in SM). Partial
retrogression and hydration is observed in many samples with
serpentinization of forsterite, chloritization or vermiculitization
of phlogopite, chlorite overgrowths on spinel, faint talc and
tremolite development. The green phyllitic layers locally
interleaved in the dolomite marble are made up of a muddle
of twisted chlorite-vermiculite lamellae (after phlogopite) with
minor fine-grained dolomite and talc.
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Within calcite marbles, up to 5 cm thick boudinaged,
massive siliceous layers occur in several outcrops (e.g.,
Figs. 7D–E). The whitish siliceous layers in outcrop 1a
along the Amter road (Fig. 5; sample MTS1, included in a
marble bed next to SR123) mainly consist of diopside (partly
altered to talc), epidote, and scapolite (partly altered to
albiteþ zoisite). Small wollastonite bundles partly altered to
calciteþ quartz occur between the siliceous layer and host
marble (Fig. 11E). The white marble samples collected at the
Jnane Nich outcrop (JN, Fig. 4) are characterized by dark,
boudinaged siliceous layers. These consist of K-feldspar,
quartz, plagioclase, diopside, titanite, zircon (Fig. 11C, D).
Chalcopyrite grains are surrounded by wollastonite and
grossular.

The metamorphic conditions attained by the marbles may
be conveniently addressed in the classical CaO–MgO–Al2O3–
SiO2–H2O–CO2 system, extended to include TiO2 and ZrO2 in
order to account for the rich accessory mineralogy of dolomite
marbles. The absence of tremolite, talc and muscovite in the
main marble parageneses points to formation temperatures in
excess of 600 °C, for any pressure and mole fraction of CO2

(XCO2) in the fluid (e.g. Bucher and Grapes, 2011), which is
consistent with dolomite exsolution from calcite and the
abundance of Ca-rich, S-Cl-poor scapolite. The presence of
geikielite in all dolomitic marbles further constrains the
conditions to T>650 °C, and that of baddeleyite (e.g. in
MTS15 dolomite, fringed by zircon and zirconolite) probably
to T>700 °C (Ferry, 1996; Ferry et al., 2002). The relatively
low F and Ti content in phlogopite does not point to
temperatures approaching or exceeding 800 °C, nor does the
scapolite composition (ca. 80mol% meionite) in the calcite
marbles, which suggests T� 750 °C (cf. Ellis, 1978). These
conditions are confirmed by the results of calcite-in-forsterite
thermometry (Fig. S6 in SM), which show a high-temperature
peak at 740–750 °C. A key indicator in dolomite marbles is the
relative stability of diopsideþ dolomite (on the low-T, high-P
side) versus forsteriteþ calcite, e.g., above 1.5 kbar at 600 °C
and above 4.5 kbar at 750 °C (Bucher and Grapes, 2011, their
Fig. 6.14). Aggregates of calciteþ forsterite (altered to
serpentine; Fig. 11G, and Fig. S5 in SM) in dolomite show
that diopside formed and then became unstable in these rocks.
The relatively coarse-grained texture of these pseudomorphic
aggregates and the presence of dolomite exsolution from
calcite in the pseudomorph (Fig. S6) indicate that this
replacement took place at high T, compared to the much later
features of incipient breakdown (serpentinization, chloritiza-
tion, etc.), and at relatively low P (�4.5 kbar, forsteriteþ
calcite stable).
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Fig. 8. Field views of some outcrops from the FBBSZ. A: Vertical cliff along the river with exposure of highly sheared kinzigites at Oued Ljouj
(location: OL, Fig. 4). The Filali gneisses crop out a few ten meters to the left. B: Close view of a lens-shaped boudin of siliceous marble with
brittle-ductile pressure-shadows framed in (A). Half arrows: C planes of S/C structures. Walking poles for scale. C: Lower part of the marble
outcrop “1b” exposed along the Amter track (see Fig. 5 for location). The ∼20 m-thick lens-shaped 1b outcrop exhibits three main packages of
marbles separated from each other by kinzigites. Hammer for scale. Red star: location of Figure 7E. D: Detail of the kinzigite-marble contact
framed in (C). Notice the westward sense of shear indicated by the S/C structures. E: Minor marble-kinzigite packages piled up half-way
between “1a” and “1b” along the Amter track (Fig. 5 for location). The top of the lowest marble layer “m1” is shown in light blue, the
intermediate layers “m2” and “m3” in light orange, the uppermost marble lens “m4” is not stained. Notice the ductile boudinage (b) of the blue
and orange layers. F: Steep brittle fault associated with marble breccia (br) and striated mirror (stm).

Fig. 9. Stereoplots of foliation Sm (A), stretching lineations (B), and fold axes (C). Lower-hemisphere equal-area projection. Location of the
cited areas in Figures 4 and 5.
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4.4 SHRIMP U-Th-Pb results

The typical aspect of the mounted zircon grains under
cathodoluminescence (CL) is illustrated in Figure 12. The
results are presented hereafter for each dated sample in the
form of density distribution and Wetherill Concordia diagrams
(Fig. 13), whereas the complete analytical data are provided as
Supplementary Material (Table S1 in SM).
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4.4.1 MTS5

Zircons from this sample are short to medium prismatic,
with rounded pyramidal terminations and average 100–
200mm in length. Under cathodoluminescence (CL), most
zircons are grey, with patchy zoning or a faint oscillatory
zonation. Many of these grains show relict cores of different
sizes and shapes, usually rounded and light, whereas overlying
of 35
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Fig. 10. Overview of a thin section across one of the flattened pebbles
(sample MTS5) of the bed shown in Figure 6D. Sm: regional foliation
molded on the pebble in the pressure shadow. The matrix is calcite-
rich, whereas the pebble shows a feldspar-rich brownish part and a
quartz-rich, lighter layer. The dark, foliated aureole (rim) around the
pebble mainly consists of quartz–calcite intergrowths.
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rims are darker, have no internal structure or just a weak
zonation (Fig. 12).

We performed 62 analyses in 59 grains. Except for younger
ages,most of the rest are concordant, andonly fourwere rejected
because of high discordance (% discordance= 100�
[(207Pb/235U age)–(206Pb/238U age)/(207Pb/235U age)] and three
for being probably mixed ages. The age distribution is almost
unimodal (Fig. 13A1) with a maximum of ∼21Ma and older
ageswith smallpeaksand isolatedagesup to717Ma.TheAlpine
(∼21Ma) population is well-defined by 33 analyses. A few are
discordant, defining a common-lead discordia with an intersec-
tion age of 21.72þ 0.24/-0.22Ma. All 33 analyses plot as a
consistent cluster over concordia if common-lead is corrected by
any common-lead correction method. We then obtain weighted
mean 206Pb/238U ages of 21.67± 0.18Ma (MSWD=3.1) for
208-correction method, 21.77 ± 18Ma (MSWD=2.4) for the
204-correction method, and 21.58± 0.18Ma (MSWD=2.6) for
the 207-correctionmethod (Fig. 13A3); all ages arewithin errors
of the intersection age.TheseAlpine ageswere obtained in either
uniform grains (Fig. 12, zircon 1) or the outer rims of older cores
(Fig. 12, zircon 7).

Ages older than the Alpine orogeny range from ∼250 to
∼700Ma and form three poorly defined clusters (Fig. 13A1,
A2). The first and best defined comprises 7 points in the range
of 250–283Ma, yields a mode of ∼270Ma, and represents the
main relict population. A further 8 points fall in the range of
420–515Ma (Fig. 13A1, A2). Two analyses, younger than
250Ma and near concordant ages, likely resulted from lead
loss and/or mixed ages between a 270Ma core and a very close
to concordia 21Ma rim. These older than Alpine ages were
obtained in entirely inherited zircons (Fig. 12, zircons 2 and 3)
or in inherited cores that were partially transformed during
Alpine metamorphism (Fig. 12, zircons 4, 5, 6, and 7).

4.4.2 MTS6

Zircon grains from this sample form medium to long
prismatic morphologies with rounded pyramidal terminations
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and average 100–150mm length. They are light-colored, clear
and free of inclusions or fractures. Under CL (Fig. 12), most
appear as uniform light grey grains with no internal structure or
just with faint oscillatory zonation. Some of these zircons
contain a relict inner core, which is usually rounded and, in
many cases, too small for analysis. Other zircons are darker,
with or without zonation, and most contain an irregular
inherited core (Fig. 12).

Seventy-one analyses were carried out in 46 grains. Six
yielding very discordant or apparent mixed ages were rejected.
The remaining 65 analyses mainly fall into two main groups:
one population peaks at ∼21Ma and the second, and
statistically more important, peaks at ∼270Ma (Fig. 13B1).
There is also a smaller group of analyses of Variscan age
(Fig. 13B2). Isolated older inherited ages appear up to
2644Ma. The Alpine population comprises 11 analyses. Some
have a variable common-lead content and align in a common-
lead discordia line yielding an intersection age of 22.30þ 0.67/
–0.8Ma. Uncorrected and corrected for common-lead by the
207-correction method, they yield more precise weighted
mean 206Pb/238U ages of 22.75 ± 0.48 and 22.54 ± 0.48Ma
(MSWD=3.7). These Alpine ages were obtained in rims
mantling inherited cores (Fig. 12, zircons 1, 2, 3, and 6) or
rarely in almost entirely transformed, Alpine grains (Fig. 12,
zircon 8).

Pre-Alpine ages are mainly Permo-Triassic, but there is a
small Carboniferous population, and older isolated points
(Fig. 13B1, B2). Permo-Triassic ages are, by far, the more
abundant in this sample. Thirty-one analyses fall between 227
and 290Ma and yield a mode of 270Ma with a weighted mean
206Pb/238U age of 266 ± 7Ma. The distribution of this
population is not symmetric, being tailed to the younger ages.
This explains the high error of the average. These ages are
found at any location inside the grains: in unzoned grey rims
over inherited cores of different ages (Fig. 12, zircons 4, 5, and
7), in relict cores mantled by Alpine rims (zircons 1, 3, and 6)
or even in entirely uniform grains. The Carboniferous
population comprises a small, nearly concordant but not very
consistent cluster peaking at ∼340Ma (Fig. 13B1, B2). These
ages always appear in inherited cores of variable size and
shape, mantled by Permo-Triassic, or less frequently, by
Alpine age rims (Fig. 12, zircons 2 and 4).

4.4.3 MTS18

Zircons from this sample are short to medium, prismatic or
round, always with rounded terminations, and are, generally,
relatively short (averaging <100mm). Most of the grains are
heterogeneous in age, with discordant rims over irregular
cores. A few are uniform, with no internal structure (Fig. 12).
Fifty-seven analyses were performed in rims and cores of
52 grains. Eleven had a discordance >10% and were rejected
for age calculations. The remaining 46 analyses show a
polymodal distribution with a main peak at ∼273Ma, smaller
peaks at ∼457, 584, 813Ma, and isolated old ages up to
3088Ma (Fig. 13, C1 and C2). No Alpine ages are recorded in
this sample. Fifteen analyses plot in the range of 220–320Ma
and define a wide cluster yielding a mode at 273Ma and a
weighted mean 206Pb/238U age of 273 ± 14Ma. This popula-
tion shows a symmetric distribution, so mode and mean are
coincident, but the mean age error is large because of the high
of 35
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Fig. 11. Micrographs of some BBMs samples. For location of the corresponding outcrops, see Figure 4 (JN) and Figure 5 (other samples).
Crossed nicols except (C), plane-polarized light, and (G), backscattered-electron image. Sm: main foliation. A: Metadetrital, pebbly marble from
the Amter road (outcrop 1a), ∼1m above the unconformity (Fig. 6C). B: Magnesian marble from the same road-cut, ∼50m above (A) (marble
lens 1b). C: Metadetrital banded marbles of Oued Jnane Nich lens (JN, Fig. 4); the dashed line marks the limit between two elementary layers,
calcite-rich and clastic-free, respectively, interpreted as S0. D: Same outcrop, calc-mylonite facies. E: Calc-silicate bed, likely clastic and
including minute pebbles (left area); same location as (B). F: Meta-argillite layer interbedded with banded marbles (lens 1c). G: Dolomite-rich
calc-silicate bed (Oued Ljouj lens). The aggregates of calciteþ serpentinized forsterite in dolomite matrix are interpreted as calciteþ forsterite
pseudomorphs after diopside. H: Banded phyllitic marble, same outcrop as (F); talc and muscovite are retrograde.

Fig. 12. CL images of selected zircons from samples MTS-5, MTS-6 and MTS-18.
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dispersion. These Permo-Triassic ages are found in rims
(Fig. 12, zircons 1, 2, and 9), in cores (zircon 3), and uniform
grains (zircons 4, 5, and 8). Between 350 to 700Ma ages plot in
an almost continuum, with small and poorly defined groups
having low statistical significance. A separate small group of
analyses peak at 813Ma. These pre-Permian ages are mainly
found in inherited cores (Fig. 12, zircons 2, 6, 7, 9, and 10) and
rarely in entire grains.

5 Interpretation and discussion

5.1 The marble protoliths

Since J. Kornprobst’s fundamental work (1974) the Beni
Bousera marbles have been regarded as calcareous interca-
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lations in the metapelitic series, protolith of the kinzigites. This
hypothesis, although not supported by the mapping of marble
occurrences, has never been questioned until recently (Saddiqi
et al., 2019; Michard et al., 2020a). In fact, three lines of
observation now change this perception.

Firstly, the marbles are nowhere observed in the central
mass of the kinzigites. By contrast, all the marble bodies are
concentrated in the contact zone between the Beni Bousera and
Filali units, i.e., the FBBSZ (Fig. 4). As reported above (Sect.
4.2), this shear zone is characterized by mylonitic, HT
deformation (e.g., Fig. 7B, G, Fig. S1 in SM) with secondary
duplexes and tectonic slivers, which frequently bring kinzigite
bodies on top of marbles sequences (Figs. 6C, E and 7A).
These tectonic imbrications are distinct from sedimentary
intercalations of carbonates in a pelitic series at the origin of
of 35
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Fig. 13. Density distribution andWetherill Concordia diagrams for U-Th-Pb dated zircons from samples MTS5, MTS6 andMTS18. A1, B1 and
C1 are kernel density plots. A2 shows the Concordia of the whole dataset for sample MTS5 and A3 shows only the younger population with the
weighted mean 206Pb/238U age calculation. B2 contains a Concordia between 150 and 500 Ma to show only the main age groups in sample
MTS6. B3 shows the Permian-Triassic population and the age calculation in the same sample. C2 contains a Concordia up to 1000 Ma to show
the main age groups in sample MTS18, and C3 shows the Permo-Triassic population with age calculation.
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the kinzigites. In the case of the Oued Jnan Nich outcrop, the
southern part of the marbles contains folded, boudinaged
silicate layers whose texture and mineralogy are compatible
with a detrital origin (Fig. 11C). In contrast, the northern, lower
part of the marbles displays mingled kinzigite-like and calc-
mylonite sheets folded together (Fig. 7G), which may be
explained by the occurrence of calcareous beds within the
pelitic protolith of the kinzigites. However, at this time, we
prefer a hypothesis involving tectonic mingling in the frame of
the HT mylonitic deformation that prevails along the FBBSZ.

Secondly, a sharp, unconformable contact is observed in
two outcrops (marble lenses 1a and 2a, Fig. 5) between the
kinzigites of the Beni Bousera Unit and the overlying marble
beds (Figs. 6C and 7A). As stated above, the nature of these
sharp contacts is ambiguous: they may be either stratigraphic
unconformities or low-angle detachment contacts. In any case,
these contacts are at odds with a hypothesis of initial continuity
between carbonates and pelites before the granulite-facies
metamorphism that affected the kinzigites during the Variscan
orogeny (Rossetti et al., 2020).

Thirdly, petrologic evidence may negate the intercalation
hypothesis. If the marbles shared the history of the kinzigites,
they should bear evidence of both (i) the Alpine overprint dated
at 21–22Ma (Rossetti et al., 2020), which produced retrograde
cordierite–spinel–sillimanite in the kinzigites at conditions
near 4–5 kbar, 650–750 °C (El Maz and Guiraud, 2001), and
(ii) peak granulite-facies conditions attained by the kinzigites
during Variscan times (290–300Ma; Rossetti et al., 2020) and
estimated at ∼800 °C, 12–15 up to 20 kbar by Bouybaouene
et al. (1998), 800–870 °C, 10.5–13 kbar by El Maz and
Guiraud (2001), or 900–950 °C, 12–14 kbar, down to 850 °C,
11–13 kbar by Rossetti et al. (2020). Under these granulite-
facies peak conditions, with a fluid likely to be H2O-poor
(XCO2> 0.5), the stable assemblage in dolomite marbles
would be corundumþ diopsideþ dolomite, which, upon
decompression, would grade into spinelþ diopsideþ dolo-
mite ± calcite and finally into spinelþ forsteriteþ dolomiteþ
calcite. On the other hand, along a low-P prograde path with an
initial fluid likely to be H2O-rich (XCO2< 0.3), such marbles
would be expected to bear successively chlorite ± tremolite ±
diopside, and then forsterite and spinel. At P lower than 6 kbar
and whatever fluid composition, corundum has no stability
field in such dolomite marble. Considering the refractory
nature of corundum, one would expect to find relics of it in
spinel in case the dolomite marbles underwent HP granulite-
facies conditions before Alpine time (cf. Liati, 1988; Castelli
et al., 2007), whereas the absence of corundum is logical in
case they had only an Alpine history. We did not find
corundum, nor was it reported by Kornprobst (1974). This is
regarded as tentative, but not compelling, evidence for a
simple prograde low-P evolution of the marbles. In any event,
the main forsteriteþ calcite assemblage developed in spinel
dolomite marble is consistent with the LP-HTconditions of an
Alpine imprint.

Therefore, based only on these geological/mineralogical
arguments, we assume that the BBMs were derived from a
sedimentary formation younger than the granulitic envelope of
the Beni Bousera Unit (as demonstrated below by the U-Pb
zircon results; see Sect. 5.2.2), and that they were either
deposited unconformably upon it or carried onto it by some
type of fault, prior to the marble metamorphism.
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The protolith of the conglomeratic marble (in Amter 1a)
could be a detrital limestone with pebbles from a garnet gneiss
source and possibly mafic-ultramafic sand-size input as
suggested by the globular aggregates of palygorskite/sepiolite
in the calcite groundmass (Sect. 4.3). The protoliths of the
dolomitic marbles could be dolomites or dolomitic limestones
with a minor detrital fraction, locally interleaved with thin
argillite beds (now forming green phyllitic layers). The
protolith of the massive whitish siliceous layers boudinaged in
calcite marble (Amter outcrops 1b, 1c) could be cherts or a
marly sandstone layers, but the abundance of calc-silicates and
the occurrence of a few greenish aggregates (pebbles?)
comprising diopside, K-feldspar and titanite rather supports
the latter possibility. The protolith of the white marble samples
with dark, boudinaged siliceous layers at Jnane Nich could
again have been immature calcareous sandstones.

The lithology of the carbonate formation before metamor-
phism is therefore characterized by shallowmarine facies, such
as dolomitic limestones and dolostones, sandstones, clastic
limestones with sandstones layers and rare argillites. The
coarse clastic, pebbly marbles located just above one of the
marbles basal contacts (Fig. 6A), apparently support the notion
of unconformable sedimentation on top of the kinzigites.
However, the K-feldspar clasts and the pebbles bearing
quartz, K-feldspar and almandine may have a different origin
than the underlying kinzigites, possibly a source similar to the
Filali garnet-bearing gneisses. As for the globules of
palygorskite/sepiolite scattered in some of the clastic marbles
(e.g., Fig. 11A), they could form from the retrogression of
metamorphic forsterite (Fo 98% in sample MTS13; Tab. 1)
rather than from detrital olivine sourced from the peridotites
(Fo 90%; Obata, 1980). Therefore, in contrast to previously
expressed (Saddiqi et al., 2019; Michard et al., 2020a), the idea
of transgression upon an exhumed Beni Bousera Unit cannot
be presently ascertained. An alternative hypothesis, which
proposes a tectonic emplacement of the marbles onto the
kinzigites, also requires further discussion (Sect. 5.3).
5.2 Age of the marble protoliths
5.2.1 Lithostratigraphic comparisons

Middle-Upper Triassic dolomitic carbonates characterize
the four Federico units superimposed in the Beni Mezala
antiform west of Ceuta (Fig. 1; Durand-Delga and Kornprobst,
1963) and their equivalent in the western Betics (Casares-
Benarraba imbrications; Balanyá et al., 1997; Sanz de
Galdeano et al., 1999). Similar facies are better developed
in the western and central Alpujarrides in several mountains
named after their white cliffs, such as the Sierra Blanca and
Sierra de Las Nieves (see Fig. 16 below). These carbonate
series are less recrystallized in units to the east than in the west.
In the eastern Alpujarrides nappes, the Sierra de Gador (Fig. 1
for location) exposes a low-grade, 1500m thick series, which
begins with alternating phyllites, quartzites and scarce
limestones (Anisian?) and continues upward with Ladinian
to Carnian carbonates and subordinate marls (Martin-Rojas
et al., 2009, 2012). Dolomite is essential in the lower Ladinian
member, and syn-sedimentary normal faults are well-
illustrated during the Ladinian. The Sierra de Gador series
records a faulted platform formed during the rifting of Pangea,
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as the Briançonnais and South Alpine coeval series (Martin-
Rojas et al., 2012). In contrast, the Ghomarides-Malaguides
domain is typified by red beds (Verrucano) facies during the
Anisian-Carnian span of time (see Sect. 2, and Perrone et al.,
2006). The Casares-Benarraba, which are the Betic equivalent
of the Federico units, can be regarded as transitional between
the Malaguides and Alpujarrides domains (Sanz de Galdeano
et al., 1999, 2006). As the Beni Bousera–Ronda units belong to
the typical Alpujarride-Sebtide domain, wemay at first suggest
a Middle-Late Triassic age for the BBMs. However, the
occurrence of younger deposits (Early Jurassic?) cannot be
excluded for thinly-bedded facies such as those illustrated in
Figure 6B.

5.2.2 Zircon dates

The SHRIMP U-Th-Pb analyses of zircon collected from
three marble samples at different outcrops in the Taza and
Inoualine areas (Fig. 5, outcrops 1a, 1c, 2b) yielded convergent
dates, i.e., ∼21Ma in the most external rims and ∼270Ma or
older dates in the core of the grains (Sect. 4.4; Figs. 12 and 13).
The Alpine, ∼21Ma date can be clearly ascribed to the HT-LP
event that affects the marbles, as well as the kinzigites and the
overlying Filali Unit (Rossetti et al., 2010, 2020; Gueydan
et al., 2015). The scatter of dates from ∼270Ma to ∼3000Ma
(Fig. 13) from zircon cores suggests a detrital origin for these
grains. Archean and Paleoproterozoic dates are compatible
with Gondwana sources, consistent with the location of the
Alpujarride-Sebtide domain between Iberia and Africa during
the Mesozoic (Figs. 2B, C). Mesoproterozoic dates around
1000Ma are less easily interpreted; they could reveal presently
distant, but formerly adjacent sources (Bea et al., 2010), or the
erosion of NW-Gondwanian intrusions (Ikenne et al., 2017) or
secondary sources such as the oldest deposits of the Taoudenni
basin (Bradley et al., 2015). Neoproterozoic dates (∼813Ma
and 584Ma peaks) could reveal sources from the Pan-African
belt of NWAfrica and Western Europe (e.g., Soulaimani et al.,
2018; Arenas et al., 2020). Paleozoic peaks at ∼460 and ∼340
can be linked to the Cambro-Ordovician magmatism (Ballèvre
et al., 2012; García-Arias et al., 2018) and Carboniferous
Variscan orogeny (Michard et al., 2010; Díez-Fernández et al.,
2016) of the same regions, respectively.

The well-marked ∼270Ma peak corresponds to the
Middle Permian age of a number of rhyolite flows or domes
emplaced in extensional-transtensional red bed basins, and to
the associated shallow crustal, subalkaline plutons of
Morocco and Western Europe (e.g., El Hadi et al., 2006;
Chopin et al., 2014; Youbi et al., 2018; Yuan et al., 2020;
Zouicha et al., 2021). It is worth emphasizing that this Middle
Permian U-Pb age appears specific to the BBMs when
compared to U-Pb dates published for the Alpujarrides-
Sebtides crustal units. The Beni Bousera kinzigites and the
Filali gneiss both record granitic melt (“leptynites”)
emplacement at 290–300Ma (U-Pb electron microprobe
dating of monazite grains enclosed in garnet, 284 ± 27Ma,
Montel et al., 2000; LA-ICP-MS U-Pb dating of zircon, 290–
300Ma, Rossetti et al., 2010, 2020). Similar ages are
documented for the Variscan anatectic phase beneath the
Ronda peridotites (280–290Ma, SHRIMP data; Acosta-Vigil
et al., 2014) and in the Torrox gneiss of Central Alpujarrides
(286 ± 11Ma, SHRIMP data; Sánchez-Navas et al., 2017).
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The 286–264Ma age proposed by Melchiorre et al. (2017) for
the Variscan HP-HT event and subsequent melting in the Beni
Bousera kinzigites is based on LA-ICP-MS analyses of a
restricted number of zircon grains and is considered tentative.
Therefore, we maintain that the ∼270Ma peak recognized in
the core of the zircon grains from the BBMs is not a
metamorphic age, but rather the younger age cluster of
detrital zircons deposited in the marble protoliths. This is
consistent with the above proposal of a Triassic age for most
of these protoliths.
5.3 Early exhumation of the Beni Bousera peridotites

Based on the P-T-t trajectories of the Beni Bousera
peridotites and kinzigites, Rossetti et al. (2020) assume that
they were broadly coupled during the waning stages of the
Variscan orogeny. From this perspective, we may consider the
exhumation of the kinzigites (documented by the emplacement
of the marble Triassic protoliths over these HP crustal rocks) as
a proxy for the exhumation of the peridotites.
5.3.1 Which mode of emplacement of the Triassic
protoliths over the kinzigites?

On a kilometer scale (Fig. 4), the contact between the Beni
Bousera kinzigites and the Filali gneiss, namely the FBBSZ, is a
syn-metamorphic low-angle thrust fault locally assisted by the
high ductile properties of the calc-mylonites (see the classic
example of the Jurassic calc-mylonites beneath the Helvetic
nappe of Glarus; Ebert et al., 2007), and affected by the late
regional folding and faulting. In contrast, due to the strong
metamorphic and tectonic overprint, the nature of the sharp
contact locally observedbetween themarbles and theunderlying
kinzigites is somewhat ambiguous. As mentioned previously
(Sect. 5.1), there may be two alternative interpretations to
explain this relationship, either stratigraphic or tectonic.
Accordingly, we propose hereafter two alternative scenarios
for the early exhumation of the peridotites (Fig. 14). Both are
based on the assumption that the lower crust and mantle rocks
have been exhumed to theEarth’s surface or close to it during the
rifting and subsequent extension that progressively opened the
Maghrebian (East-Ligurian) and Betic (West Ligurian) oceanic
branches of western Tethys during theMiddle Triassic–Jurassic
(Guerrera et al., 1993;Michard et al., 2002;Molli, 2008; Handy
et al., 2010, 2015; Leprêtre et al., 2018).

For the first possible hypothesis (Fig. 14A), we assume that
the kinzigites were exposed (and then the peridotites not far
from the surface) by the Triassic. Such an early exhumation
may seem anomalous, compared with the currently accepted
Middle Jurassic age of opening of the Maghrebian-Ligurian
Ocean (Bill et al., 2001; Leprêtre et al., 2018; Balestro et al.,
2019). However, rifting might have commenced early in the
westernmost Maghrebian Ocean, close to the Central Atlantic,
whose drifting phase began as early as 195Ma (Labails et al.,
2010).

For the second possible hypothesis (Fig. 14B), we refer to
the hyperextension models of the Adria (Manatschal, 2004;
Mohn et al., 2010) and Corsica (Beltrando et al., 2013;
Seymour et al., 2016) inverted margins, backed on the
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Fig. 14. Alternative models (A/B) accounting for the occurrence of
the BBMs between the Filali and Beni Bousera units. A: Triassic
unconformable sedimentation onto the exhumed kinzigites (lower
crust). B: Triassic-Early Jurassic extensional allochthons (rafts)
emplaced onto the exhumed kinzigites.
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description of the non-inverted margins such as the Atlantic
Galicia margin (Péron-Pinvidic and Manatschal, 2009). In this
hypothesis, the marbles would represent pre- to early syn-rift
deposits, detached and fragmented as continental allochthons
of the hanging-wall of the detachment fault allowing the lower
crust to be exhumed. Thus, the granulitic lower crust would
have been bounded by two detachments, the lowest located on
top of the lithospheric mantle and the uppermost at the limit of
the upper crust. This setting resembles that of the present-day
described by Afiri et al. (2011) and Gueydan et al. (2015), but
the novelty is that it occurred as early as during Triassic–Early
Jurassic time.

With the present state of our knowledge, it would be
unwise to definitely make a choice between these two
scenarios. In both cases, our proposals are in line with the U-Pb
SHRIMP dating of zircons from Ronda garnet pyroxenites and
Ojen eclogites at 178 ± 6Ma and 183 ± 5Ma, respectively,
interpreted as recording the Tethys opening (Sánchez-
Rodríguez and Gebauer, 2000). Rossetti et al. (2020) propose
that the isothermal exhumation of the Beni Bousera kinzigites
within the cordierite stability field (below 5 kbar) records the
Permian collapse of the thermally weakened Hercynian
orogen. Based on the occurrence of the BBMs, we propose
that the kinzigites were entirely exhumed as early as the
Middle Triassic (scenario A, “transgression hypothesis”) or the
Early Jurassic (scenario B, “raft hypothesis”). If correct, the
Beni Bousera peridotites were exhumed to the subsurface as
early as the Middle-Upper Triassic or the Early Jurassic,
respectively. This timing is in line with Angrand et al. (2020),
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who argue for a protracted period of ∼100Myr (late
Carboniferous to Late Triassic) of continental lithosphere
thinning around Iberia.

5.3.2 Restoring the Alpujarrides-Sebtides-Dorsale
paleomargin

During the Jurassic, the Alboran Domain was located at the
southwestern tip of Alkapeca (Figs. 2B–C and 15A), so the
Malaguide-Ghomaride and Alpujarride-Sebtide crustal
domains extended between the two branches of the Alpine
Tethys (East and West Ligurian branches), but their relative
position is a matter of debate (Chalouan and Michard, 2004).
Many authors argue that the post-Triassic sedimentary series of
the Malaguides-Ghomarides are transitional to those of the
Dorsale units and assume that the latter detached from the
external border of the Ghomarides (e.g., Didon et al., 1973;
Sanz de Galdeano et al., 2001; Durand-Delga, 2006; El Kadiri
et al., 2009; Guerrera et al., 2019). As the Dorsale series is
regarded as having been deposited at the northern margin of the
Maghrebian Tethys (Olivier, 1990; El Hatimi et al., 1991;
Chalouan et al., 2008; El Kadiri et al., 2006, 2009), the
Alpujarrides-Sebtides would have been more internal than the
Ghomarides, possibly at the western border of the Betic branch
of the Tethys (Fig. 2C right, after Guerrera et al., 2019).

However, Trümpy (1973), Wildi et al. (1977), and Nold
et al. (1981) observed that the stratigraphic series of the
Sebtides ends with Middle Triassic carbonates whereas that of
the Dorsale begins with Upper Triassic dolostones and
limestones, suggesting that the Sebtides represent the former
basement of the detached Dorsale units. Based on this
observation, and in line with Michard et al. (2021), we restore
the Alpujarrides-Sebtides in a more distal position than the
Malaguides-Ghomarides, at the northern border of the
Maghrebian Tethys (Fig. 15B, location is shown in
Fig. 15A). This proposal is consistent with the nature and
moderate thickness of the crustal rocks that form the
Alpujarrides-Sebtides basement, i.e., a few thousand meters
of schists, gneiss, and granulites affected by high-grade
Variscan metamorphism (see also Zeck andWhitehouse, 1999,
2002; Sánchez-Navas et al., 2017). In this framework, the
occurrence of Triassic unconformable deposits or rafts upon
the Beni Bousera granulites, as proposed above (Fig. 14), is
likely. We assume that the Alpujarrides-Sebtides crustal units
were progressively exhumed during the Early Permian
collapse of the Variscan belt (Rossetti et al., 2020) and the
Late Permian initial rifting of Pangea (Najih et al., 2019), prior
to the onset of Middle Triassic sedimentation. Then rifting
proceeded up to the Early-Middle Jurassic, as indicated by
neptunian dykes in the Dorsale and neighboring Malaguide-
Ghomaride domains (El Kadiri et al., 1992; El Kadiri et al.,
2000–2002b), which are coeval with those described in the
northern Sila massif of Calabria (Bouillin and Bellomo, 1990).
5.3.3 Alpine burial and final exhumation

As described previously, the BBMs have been dramatically
disrupted and recrystallized under HT-LP conditions in the
ductile basal thrust of the Filali Unit (FBBSZ). As the P–T
conditions in the marbles (�4.5 kbar, ∼700–750 °C; see
Sect. 4.3) are in the same range as those at the base of the
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Fig. 15. The hyperextended margin of the Alboran Domain during the
Late Jurassic-Early Cretaceous, modified after Michard et al. (2021).
A: Location of the Alboran Domain (southern part of Alkapeca) to the
north of the Maghrebian Tethys; background map after Angrand et al.
(2020), slightly modified. B: Tentative restoration of the Alboran
Domain margin whose distal part corresponds to the Alpujarrides-
Sebtides crustal units overlain by the Dorsalian pre- and syn-rift
sediments. Crust and mantle signatures as Figure 14.
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overlying unit (El Maz and Guiraud, 2001; Rossetti et al.,
2010, 2013, 2020; Gueydan et al., 2015), we infer that the
carbonate series recrystallized with and beneath the same
degree of burial as the Filali rocks during the Alpine orogeny.
This is confirmed by the SHRIMP U-Th-Pb ∼21Ma dating of
the overgrowths of detrital zircons from the marbles, which are
identical to the age of the HTanatectic phase of metamorphism
and granite dyke intrusions observed in the Beni Bousera and
lower Filali units (Rossetti et al., 2010). However, Homonnay
et al. (2018) showed that Alpine metamorphism began prior to
∼28Ma when the Sebtides were involved in a fanned
accretionary wedge in front of the subducting oceanic slab.
A Late Eocene–Oligocene age is therefore likely for this early
phase (Frizon de Lamotte et al., 2000, 2011; Marrone et al.,
2020). The Filali thrust over the Beni Bousera carbonates
would have occurred during this early phase of the Alpine
orogeny. Furthermore, we suggest that the Filali Unit belongs
to the middle crust previously detached from the lower crust
during Triassic-Jurassic rifting and hyperextension of the
margin. In other words, the FBBSZ formed from inversion of
the postulated Triassic-Jurassic detachment.

The geodynamic interpretation of the Alpine events that
affected the Beni Bousera and Filali units is beyond the scope
of this work. Recently, Rossetti et al. (2020) showed that the
compressional Alpine events resulted in the re-burial of the
previously exhumed crustal envelope of the peridotites. During
a later episode, the collapse of the Alboran Domain tectonic
wedge and opening of the back-arc Alboran basin was
triggered by the southwestward rollback of the oceanic slab
during the Late Oligocene–Early Miocene (Fig. 2B, D; e.g.,
Van Hinsbergen et al., 2014; Gueydan et al., 2015; Homonnay
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et al., 2018). Extensional faulting strongly affected the Filali
Unit at that time (El Bakili et al., 2020) and is also recorded in
the BBMs (Fig. 7F).
5.4 Early exhumation of subcontinental peridotites in
the West Alpine–Pyrenees realm

Several, and famous subcontinental peridotites are known
in the Western Mediterranean belts and the Pyrenees. This
section aims to compare the setting and exhumation history of
these various occurrences with that described above for the
Beni Bousera marbles.
5.4.1 Betics

The BBMs overlie the Beni Bousera mantle–granulite unit
and underlie the Filali crustal unit. Two areas of the Ronda
peridotite massif could be candidates for similar settings, i.e.,
the southern part of the massif (Estepona-Benahavis-Guadaiza
area) and its frontal part at the contact with the Las Nieves
carbonates (Fig. 16).

In the Estepona-Benahavis-Guadaiza region, Sanz de
Galdeano and Ruiz-Cruz (2016) describe the transgression of
a Permian-Triassic sequence onto the Ronda peridotites. The
mantle rocks would be stratigraphically overlain by a
magmatic, chaotic formation (including blocks of schists
and peridotites), followed upward by a metadetrital series
(again with schist and peridotite pebbles) passing progressive-
ly upward to marbles. A metarhyolite intercalated in the
metadetrital series yields a U–Pb zircon age of ∼270Ma, and
the overlying marbles are assigned to the Triassic. The authors
have observed that in some sectors these marbles overlie the
peridotites directly. These conclusions are at odds with the
current view that the Ronda peridotites were thrust over
chaotic meta-magmatic formations and associated marbles of
the so-called Guadaiza-Ojen nappe (e.g., Lundeen, 1978;
Sánchez-Gómez et al., 1995; Esteban et al., 2008; Acosta-
Vigil et al., 2014). However, the similarities with the setting of
the BBMs are striking, except that no crustal unit comparable
to the Filali Unit directly overlies the uppermost Permo-
Triassic series. The Jubrique unit overlies the Ronda
peridotites ∼7–8 km further to the NW through a granulitic-
migmatitic formation, similar to the Beni Bousera kinzigites
(peak P–T conditions of 12.5–13 kbar, 780 °C, Balanyá et al.,
1997; Massonne, 2014, or 12–14 kbar, ∼850 °C, Barich et al.,
2014).

Another possible correlation concerns the north-western
front of the Ronda peridotites of the Sierra Bermeja massif at
their contact with the Nieves unit (Fig. 16). The latter is a
∼1500m thick, near vertical or overturned series which, from
SE to NW, consists of undated (Middle Triassic?) impure
dolomitic marbles, Norian marbles and dolostones, Rhaetian
marbles and calcschists, Lower Jurassic cherty limestones, and
a Middle Jurassic–Paleogene condensed succession ending
with a cellular dolomitic breccia (Mazzoli et al., 2013). The
authors describe a strong metamorphic gradient in the Nieves
formations: for a maximum pressure of 3 kbar, peak
temperature >510 °C (probably ∼700 °C) in the forsterite
zone adjacent to the peridotite; 510–430 °C in a more distant,
diopside-in zone; 430–360 °C for the tremolite-in zone in the
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Fig. 16. Sketch map of the Western Betics (see Fig. 1 for location)
simplified after Balanyá et al. (1997), Sanz de Galdeano et al. (1999)
and Mazzoli et al. (2013). White fill: Pliocene-Quaternary deposits.
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Norian dolomites and 360–330 °C for the phlogopite-in zone.
Mazzoli et al. (2013) ascribe this strong gradient to the Alpine
thrust of the Rondamantle wedge above the Alpujarride crustal
domain and its Triassic-Paleogene succession. However,
Bessière (2019) considers the relationship between the Ronda
mantle rocks and the Nieves dolomitic marbles as an
extensional contact related to the exhumation of the mantle
in a hyperextended passive margin. The HT-LPmetamorphism
would have developed in an extensional setting under the
shallow burial of the Nieves series due to a massive circulation
of water next to the triple junction between the thinned crust
(Jubrique unit), the mantle, and the overlying series. The
authors do not firmly date this metamorphic event, but
40Ar/39Ar dating on phlogopite from the highest T (>600–
550 °C) zone along the peridotite massif yields ages of ∼20Ma
(Bessière, 2019). The Nieves marbles overlie the peridotites as
mostly do the BBMs, but they are not intercalated between the
peridotites and the Jubrique crustal unit. To the NE, the
Jubrique unit overlies and truncates the Nieves formations
through a late, low-angle normal fault (Fig. 16), which
according to Balanyá et al. (1997) and Sánchez-Gómez et al.
(2002) continues beneath the peridotites. The long claimed
correlation between the Filali and Jubrique units now seems
controversial as the latter has kinzigites at its base (Barich
et al., 2014), whereas the Filali gneisses are separated from the
Beni Bousera kinzigites by the BBMs.

Marbles associated with gneiss also occur inside the
Sierra Bermeja peridotite massif, but may be referred to
tectonic slices of the underlying Blanca-Guadaiza unit
(Sánchez-Gómez et al., 2002; Précigout et al., 2013). These
marble–gneiss intercalations connect southward in the
Estepona area with the outcrops described above (Sanz de
Galdeano and Ruiz-Cruz, 2016). To summarize, based on the
available literature, none of the potential correlations of the
BBMs with similar marbles in contact with the Ronda
peridotites can presently be used to corroborate or refute the
notion of an early exhumation of the Beni Bousera peridotites
as presented in this paper.
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5.4.2 Pyrenees

The Pyrenees offer a remarkable example of an orogen
with subcontinental mantle rocks (e.g., the famous lherzolites
of Lherz) exhumed during the opening of an axial rift, which
was later mildly inverted (Fig. 17). Nowadays, this rift and its
paleomargins correspond to the North Pyrenean Fault (NPF)
zone with its rosary of small lherzolite bodies and associated
breccias (Jammes et al., 2009; Clerc and Lagabrielle, 2014;
Clerc et al., 2015; Asti et al., 2019; Lagabrielle et al., 2019a,
2019b). The rifting event occurred during the late Aptian–
Turonian, being connected to the opening of the Northern
Atlantic through that of the Bay of Biscay (Fig. 1, insert;
Fig. 17). In the Western Pyrenees (Mauléon Basin), according
to Jammes et al. (2009), the Late Triassic to Jurassic pre-rift
carbonate platform was stretched during the rifting stage, and
detachment faults exhumed deep crustal and mantle rocks to
the seafloor. The final basin structure is characterized by
extensional allochthons that have glided on the Triassic
evaporites from the proximal margin as to overlie the exhumed
rocks of the distal margin. This complex architecture is
overprinted by a magmatic/low-grade thermal event that
postdates the mantle exhumation. In the same area, Lagabrielle
et al. (2019a, 2019b) show that the serpentinized peridotites,
which are topped by ophicalcites and partly covered by
sedimentary breccias, were strongly metasomatized at
∼110Ma (Albian), contemporaneously with some alkaline
volcanism.

The syn- to post-rift thermal anomaly is much more
important in the Eastern Pyrenees, where HT-LP metamor-
phism at ∼550 °C, 3–4 kbar is recorded in the Mesozoic series
of the NPF zone (Clerc and Lagabrielle, 2014). These authors
proposed a “hot hyperextended margin” model, within which
the Triassic-Jurassic pre-rift sequence would have been
recrystallized in situ at the contact of the ascending mantle
rocks, beneath a blanket of Late Cretaceous flysch, whereas
most of the Paleozoic crust would have been extracted
laterally. Some slivers of granulitic gneisses are preserved, for
instance in the Lherz � Port de Saleix area (Azambre and
Ravier, 1978; Kornprobst and Vielzeuf, 1984; Clerc and
Lagabrielle, 2014), which could record a first Paleozoic HT
metamorphism event responsible for the granulitization,
followed by a second HT metamorphism event during the
Cretaceous (Clerc and Lagabrielle, 2015). High-T marbles are
associated with the Port de Saleix granulites, which contain
calcite, minor dolomite, forsterite, phlogopite, spinel and
humites (Azambre and Ravier, 1978). They have been
regarded as metasediments interbedded in the Pre-Variscan
protoliths of the granulites but, like in the case of the Beni
Bousera marbles, we may ask whether they are not remnants of
a former Mesozoic cover of margin units.

5.4.3 Maghrebides, Calabria, Alps and Corsica

In the Edough massif 100 km east of Lesser Kabylia
(Fig. 1, insert), which includes distinct outcrops of mantle
material, the Bou Maiza succession comprises a lower unit
with 50m-thick marbles associated with kyanite–staurolite–
garnet metapelites, and an upper unit of marbles, phyllites and
metagabbros (Bosch et al., 2014). The BouMaiza metagabbros
are interpreted as allochthonous oceanic fragments, whereas
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Fig. 17. Sketch map of the North Pyrenean Fault Zone, simplified after Clerc and Lagabrielle (2014).

Fig. 18. Sketch map of the Western-Central Alps and Corsica,
modified after Chenin et al. (2019). Ca, Calizzano; Cv, Canavese; DB,
Dent Blanche; EB, Err-Bernina; G, Geisspfad; Iv, Ivrea; Lz, Lanzo;
Se, Sesia; SL, Santa Lucia.
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the Sidi Mohamed peridotites are regarded as part of
subcontinental lithospheric mantle incorporated into crustal
units during the early stages of opening of the Algerian basin.
Likewise, in the Lesser Kabylia itself, marbles are associated
with the peridotites and kinzigites of Collo, which were
compared by Bouillin (1978) to those of Beni Bousera
(C. Chabou, personal comm.). To date the significance of these
two marble occurrences has not been discussed.

In Calabria (Fig. 1, insert; Fig. 2B), the easternmost
equivalent of the Alboran Domain is widely exposed in the Sila
and Serre crustal massifs that overlie the ophiolitic Ligurian
units (Rossetti et al., 2001; Vitale and Ciarcia, 2013). The
sedimentary cover of the Sila massif is preserved and includes
“Verrucano”-type deposits, overlain by carbonate Triassic-
Sinemurian successions followed by Pliensbachian-Toarcian
marly-olistolitic facies. The Middle Liassic extension is
recorded by neptunian dykes that penetrate down to the
Paleozoic basement (Bouillin and Bellomo, 1990). The
Paleozoic massifs include a ∼7 km-thick basal section which
equilibrated in the medium-pressure granulite field (Schenk,
1984). Lenticular bodies of ultramafics are widespread in the
lower part of the section. Siliceous marbles and calcsilicate
rocks represent a minor proportion of these lower crustal rocks
in the form of lenses ranging in thickness from a few
centimeters to several tens of meters. These marbles are
regarded as Paleozoic or older alike the host metapelites,
whose HT-MP metamorphism is dated at ∼295Ma (Schenk,
1980). Therefore, the Calabria marbles cannot be directly
compared with the BBMs.

In the Western Alps (Fig. 18), peridotites associated with
lower or middle continental crust units and pre- to syn-rift
sediments are observed on both sides of the Piedmont-Ligurian
oceanic suture zone. On the Adria side, the Baldissero and
Finero peridotites appear at the base of the tilted Adria crust of
the Ivrea Zone (Handy and Zingg, 1991; Schmid et al., 2017).
Due to the movement along the shear zone (now vertical)
which separates the lower crust from the upper crust, the
thickness of the granulitic lower crust and underplated gabbros
(Vavra et al., 1999) along strike varies from 10 km to less than
1 km. The pre-rift to early syn-rift deposits range in age from
the Late Carboniferous to the Upper Triassic. The more distal
margin is (poorly) exposed in the narrow Canavese Zone,
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Fig. 19. Interpretation of the Geisspfad peridotite-gabbro-gneiss complex, after Bianchi et al., 2003. The natural cross-section is overturned
(Monte Leone nappe). See location in Figure 16.
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which bounds the Ivrea Zone to the WNW (Elter et al., 1966;
Ferrando et al., 2004; Festa et al., 2020). Besides a
serpentinized peridotite unit, the basement units comprise
lower or upper crustal rocks overlain by pre- to early syn-rift
(Late Carboniferous, Permian, Triassic), to syn-rift (Liassic–
Middle Jurassic), to post-rift sediments (Late Jurassic–Early
Cretaceous).

Due to the dramatic Adria–Europe collision associated
with tilting and strong strike-slip movements (Schmid et al.,
2017), the geometry of the Canavese distal margin units prior
to the Alpine orogeny is controversial. The initial geometry of
the hyperextended Adria margin is much better restored in the
Err-Bernina transect of the Central Alps (Manatschal, 2004;
Mohn et al., 2010; Incerpi et al., 2017; Chenin et al., 2019).
There, the crust thins down to a few meters of breccia due to
normal and low-angle detachment faults that root on top of the
lithospheric mantle. Blocks and slabs, tilted to varying degrees,
consisting of early syn-rift, mainly Triassic deposits, may
constitute continental allochthons on the thinned crust or the
exhumed mantle of the Ocean-Continent Transition.

Also in the Central Alps, but linked to the European
margin, we find an example of subcontinental peridotites
associated with gabbros, i.e., the Geisspfad peridotites
(Pastorelli et al., 1995; Bianchi et al., 2003; Pelletier et al.,
2008). These mantle rocks are exposed in the overturned
Monte Leone nappe of the Simplon culmination (Fig. 18).
When restored to their pre-orogenic position, these peridotites
appear to be overlain by a thinned gneissic crust, which is
covered by early syn-rift Triassic sediments and younger syn-
rift breccias (Fig. 19). Thus, the restored Geisspfad setting is
strongly suggestive of the possible Beni Bousera setting prior
to Alpine events.

In Corsica (Fig. 18), the transition zone between the
European margin and the Ligurian Tethys is exposed in the
Santa Lucia nappe, which shows a 2–4 km thick layered
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“Mafic Complex” whose base hosts slices of mantle rocks
attaining a thickness up to 50m (Rossi et al., 2006; Beltrando
et al., 2013). U–Pb zircon and Sm-Nd analyses on meta-pelitic
septa allowed Rossi et al. (2006) to date the magmatic
intrusion under granulite-facies conditions (∼7 kbar, 800 °C) at
∼280Ma, and the onset of cooling at 195 ± 9Ma, respectively.
The “Mafic Complex” is overlain by a “Diorite–Granite
Complex”, which is a shallower Permian complex separated
from the HP-HT complex by a shear zone where 40Ar/39Ar
dates reveal Triassic–Jurassic activity. Beltrando et al. (2013)
conclude that the Permian lower crust was progressively
exhumed to the sea floor, from the Middle Triassic to Middle
Jurassic, along the footwall of a low-angle detachment fault
typical of a hyperextended passive margin. To the north, the
Corsican paleomargin correlates with the Calizzano massif of
the Ligurian Briançonnais (Seymour et al., 2016; Decarlis
et al., 2017).
6 Conclusions

The BBMs are exposed in small outcrops around the
granulitic envelope (kinzigites) of the Beni Bousera subconti-
nental peridotites. Despite their modest extent, a study of these
marbles leads to revisiting current models that interpret the
exhumation of the Gibraltar Arc mantle rocks as a basically
Cenozoic process.

The marbles are not intercalated in the kinzigites, but rather
pinched within a mylonitic thrust contact between the
kinzigites and the overlying Filali mid-crustal unit. The
Filali–Beni Bousera Shear Zone (FBBSZ) can no longer be
considered as extensional and equivalent to the deeper
Kinzigites-Peridotites Shear zone (KPSZ). The protoliths of
the most typical BBMs formed a series of sandy and
sometimes pebbly carbonates, dolostones, and magnesian
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limestones locally interlayered with argillites. They are
comparable to the Triassic series of the less recrystallized
Alpujarrides-Sebtides units.

Zircons from the BBMs exhibit cores of detrital origin with
rim overgrowths dated at ∼21Ma. The youngest age cluster
from the cores peaks at ∼270Ma, which suggests the erosion
of Middle Permian magmatic sources, and supports a Triassic
age for the marble protoliths.

At this stage, we consider two alternative explanations for
the presence of these marbles in the FBBSZ: either the likely
Triassic beds were deposited unconformably onto the
kinzigites, or they were emplaced as extensional allochthons
above the detachment allowing the granulitic crust to be
exhumed during latest Triassic–Early Jurassic time. In both
cases, the Beni Bousera mantle rocks would have been
exhumed to shallow depth during the early rifting events
responsible for the birth of the Maghrebian Tethys.

The BBMs and their host rock units, i.e., the peridotites and
associated thinned crustal units, are relics of the hyperextended
southern margin of the Alboran Domain severely affected by
re-burial, thrusting, and metamorphism during the Alpine
orogeny before their final exhumation. Correlations with other
subcontinental peridotite occurrences from the West Alpine–
Pyrenees realm support this proposition: at most localities,
early exhumation linked to the late Variscan collapse and
subsequent continental rifting occurred before inversion and
final exhumation.

Supplementary Material

Supplementary Figures S1 to S6 and Table S1.
The Supplementary Material is available at https://www.bsgf.
fr/10.1051/bsgf/2021015/olm.
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