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Abstract—In the context of smart cities, with important
population density, Unmanned Aerial Vehicles (UAV) should
be certified for flying. Virtualization techniques allow us to
run several applications of different criticalities on the same
hardware architecture in a spatially and temporally isolated
manner. This makes it possible to adapt the certification cost
of an application to its criticality level. We consider the case
where each application is composed of a set of sporadic tasks
that are executed into a dedicated Virtual Machine (VM). The
set of VMs is monitored by a hypervisor that provides them
an abstraction of the underlying hardware resources. The use
of an hypervisor to isolate the applications hosted into their
VMs results in a two-level hierarchical system. The VMs are
scheduled at the first level then the tasks of each application
are scheduled at the second level. The parameters of the tasks
composing the different applications are known a priori and the
main contribution of this paper is to provide a sizing method for
the VMs. It consists in computing both period and slot duration
for each VM such that its assigned tasks are schedulable (satisfy
all the deadlines of the tasks).

I. INTRODUCTION

Existing professional Unmanned Aerial Vehicles (UAVs)
embed several applications of different criticalities. The con-
trol command (CC) application is responsible for the flight of
the UAV. It has strong real-time constraints and the highest
criticality level, and is often developed using bare-metal soft-
ware. The missions of the UAV refers to a set of applications
that usually have lower criticality level (e.g. video application,
communication). In the context of smart city and high civil
density, drones should be certified at the highest criticality
level to be allowed to fly (CC application has high safety
criticality constraint). If all applications are run on the same
platform with no logical and temporal isolation among them,
the highest criticality application propagates its criticality to
all other applications (less critical applications should then
also be certified at the highest level). This can lead to over-
dimension computing resources. Hence it might have impacts
on the cost, weight and autonomy of the drone. This problem
can be mitigated using Operating Systems (OSs) supporting
mixed criticality scheduling [1] where each application is
associated a worst case criticality level. This requires a specific
OS supporting mixed criticality scheduling and that all appli-
cations are executed on the same OS. Container approaches
like Docker or LinuX Container (LXC) supported by Control
groups (cgroups) can also be considered for UAV systems [2].

Each application is then assigned to a specific container and
is executed by a Linux host OS. Some patch supporting real-
time scheduling for Linux have been recently proposed for
real-time LXC [3] and docker containers [4]. LXCs have also
be proposed in the context of UAVs [5] to limit and isolate
the access to resources on a Linux system. The LXC is also
proposed in [6] for the CommUnicationS-control distributed
simulator of UAVs (CUSCUS). However, CC application in
charge of UAV fly should be certified at the highest criticality
level by certification authorities especially when flying in civil
areas. Certifying a Linux system (with real-time extensions)
is still not an easy task.

Furthermore, applications are often developed by distinct
specialized teams and even by different service providers
having their own runtime environment requirements. The
integration phase of software components developed by het-
erogeneous teams is then particularly complex.

The development cost of this phase can be reduced by a
last approach based on VMs assigned to the different teams.
VMs scheduling is done by a hypervisor, a software layer
in interaction with hardware platforms that can run several
applications in dedicated VMs having their own OS and their
own scheduler.

Hypervisor can be of type 1 or type 2. With type 1 hyper-
visor approach, the hypervisor is implemented bare metal, on
top of hardware (see figure 1). The VMs are managed by the
hypervisor. With type 2 hypervisor approach, a host operating
is in charge of running the hypervisor which adds for embed-
ded applications a significant overhead on VM scheduling and
certification. Type 1 approach has been considered for UAV
systems with the Xen Hypervisor in [7] or in [8]. This solution
is however not easy to certify at a high criticality level.

In this paper, we propose a certified type 1 hypervisor
approach for the dimensioning of an UAV system that allows
us to certify applications with a specific certification tool
according to its criticality level. This approach is currently
considered in the CEOS [9] project for the conception of
a certified UAV for surveillance and inspection applications.
A certified hypervisor grants temporal and logical isolation
between applications (see for e.g. PikeOS from Sysgo [10]
that can be certified DO 178B/C for flying systems).

A solution to improve the reliability and the safety of such a
system is to assign distinct hardware resources to applications



Fig. 1. Our type 1 two-level hypervisor approach

using a hypervisor. This approach consists in abstracting the
hardware platform by running applications in dedicated VMs.

This lead to a system that can be seen as a two-level
hierarchical system [11] (see figure 1).

The first level consists in scheduling VMs that are managed
by a hypervisor. At the second level, each VM embeds an
application and the tasks that compose it are scheduled by a
specific Operating System (OS) in the slots allocated to the
VM.

Several papers introduced hierarchical scheduling to sched-
ule both periodic and sporadic (or aperiodic) tasks [12],[13].

In [11], a schedulability analysis is provided for this
scheduling scheme in the context of hierarchical fixed priority
preemptive tasks. In [14], a response time analysis is provided
for hierarchical systems using Deferrable Servers [15] or
Sporadic Servers [16]. In [17], an exact response time analysis
is provided to improve the success ratio of the schedulability
test.

In this work, we focus on a hierarchical scheduling and we
consider that tasks composing an application are scheduled by
a Fixed-Task-Priority (FTP) preemptive scheduling in a VM
instead of a server ([18] introduced EDF policy).

Our hypothesis is that only the parameters of the tasks (i.e.
WCET, period and deadline) at the second level are known
but not the ones of the VMs (i.e. slot duration and VM period
of activation). The problem we address is to determine VMs
parameters, to obtain a schedulable system at the second level.
The scheduling of the VMs implies to derive their parameters
from the tasks parameters. In [19], such a sizing is provided
in the case of servers at the first level. This server sizing is
performed according to a FTP policy for the second level and a
fair scheduling algorithm at the first level. In [20] we consider
FTP policy and show that a fair scheduling at the first level
leads to higher number of schedulable tasksets.

The concept of Mixed-Criticality (MC) has been introduced
in [21] in a view to adapt the certification process to the
criticality level of the tasks. The more critical task, the higher
considered execution time. In this paper we consider that
criticality is defined at the level of VMs. All tasks in one
VM have the same criticality level but VMs can have different

criticalities.
Our first contribution is to provide conditions to decide

on the schedulability of the tasks in their dedicated VM.
The conditions derive minimum and maximum acceptable
VM periods. Then, we provide an algorithmic approach to
compute slot durations. Our particular method first computes
these parameters for the most critical VM. Then, it tries to
schedule remaining VMs with harmonic periods multiple of
the most critical VM period. The resulting VM schedule is
strictly periodic (i.e. the difference between the start of the
execution of the VM and the release time of the VM is constant
for a given VM).

This paper is organized as follows: in Section II we intro-
duce the model and notations used in this paper. In Section III
we provide different task schedulability conditions for a given
VM. In Section IV we propose an algorithm to compute the
parameters of the most critical VM and in Section V we show
how to find the parameters of the following VMs when they
have harmonic periods.

Finally, we validate our work through a real-life use-case in
Section VI and we give some conclusion of our work.

II. MODEL AND NOTATIONS

As stated in Section I, the scheduling model considered in
this paper is a two-level hierarchical level model. At the first
level, a set ρ of m VMs is scheduled. The sth VM ρs ∈ ρ
is characterized by its slot duration Cs, its period T s and its
worst case context switch time Cso . With this model, a VM
is active during Cs every T s. These scheduling parameters
are not known a priori and we focus on a sizing approach
to compute them. The set ρ is sorted in decreasing criticality
order. That is, ρ1 is the most critical VM and ρm is the least
critical one.

The whole system consists of a set τ of n sporadic tasks.
Each task τi is characterized by its Worst Case Execution
Time (WCET) Ci, its minimum inter-arrival time Ti and its
relative deadline Di. The utilization of the task τi is denoted
Ui and defined by Ui = Ci

Ti
. The parameters of these tasks

are known a priori. At the second level of our hierarchical
scheduling model, each VM ρs hosts an application consisting
of a subset τ(ρs) of τ . The subsets are disjoint and a task
τi can be scheduled by only one VM. The utilization of the
tasks of τ(ρs) is defined by Us =

∑
τi∈τ(ρs)

Ci

Ti
. It corresponds

to the utilization of the VM ρs without taking into account
the overhead due to VM context switches.

We later characterize T smin (respectively T smax) the mini-
mum (respectively the maximum) period of VM ρs such that
any VMs smaller (respectively higher) period leads to non
schedulable VMs. These bounds on the VM periods are used
to find feasible VMs periods.

The definition of harmonic taskset comes from [22] and
[23]. A harmonic taskset is defined by:

Definition 1 (Harmonic taskset [23]). A set of tasks is har-
monic if and only if:

∀τi, τj ∈ {τ}2, (Ti mod Tj = 0) ∨ (Tj mod Ti = 0) (1)



where mod is modulo operator and ∨ is logical OR operator.

We then adapt this definition to our context by applying it
to the set of VMs instead of the the set of tasks. The equation
is then transformed in:

Definition 2 (Harmonic set of VMs). A set of VMs is harmonic
if and only if:

∀ρi, ρj ∈ {ρ}2,
(
T i mod T j = 0

)
∨
(
T j mod T i = 0

)
(2)

This definition is used to determine if VMs are schedulable
with a strictly periodic scheduling.

III. CONDITIONS OF SCHEDULABILITY

In this section we provide several conditions of schedula-
bility which take into account the overhead of the context
switching between the different VMs.

A necessary and sufficient condition to schedule harmonic
tasks is given in [22] if and only if the tasks have distinct
periods. This condition ensures that task executions are strictly
periodic (the time between the release time and the start
of the execution is constant). We extend this condition to
the context of VM scheduling and determine if the VMs
are schedulable by a specific scheduling algorithm when the
periods of VMs are harmonic. As the VMs do not have direct
temporal constraints, a schedulable VM ρs is a VM with
parameters such that the scheduling algorithm used to schedule
ρs satisfies its properties (e.g. strict periodicity in our case).

Theorem 1 (Schedulability condition of harmonic taskset with
distinct periods [22]). Let τ be an harmonic taskset such as
∀τi ∈ {τ \ {τ1}}, Ti > Ti−1. The set τ is schedulable if and
only if:

∀τi ∈ {τ \ {τ1}}, Ci ≤ T1 − C1 (3)

We adapt the previous theorem to our context and model by
applying it to the different VMs (i.e. by replacing the WCET
of a task by the slot durations of a VM), taking into account
the overheads of VM context switch. We obtain:

Theorem 2 (Schedulability condition of harmonic VMs set
distinct periods with overheads). Let ρ be an harmonic set
of VMs such as ∀ρs ∈ {ρ \ {ρ1}}, T i > T i−1. The set ρ is
schedulable if and only if:

∀ρs ∈ {ρ \ {ρ1}}, Us × T s + Cso ≤ T 1 − C1 (4)

With the two-level hierarchical model, a necessary condition
must be satisfied. This condition provides a bound on the
utilization of the tasks in the whole system plus the context
switch overhead of each VM:

∑
ρs∈ρ

(
Us +

Cs
o

T s

)
≤ 1.

If VMs are harmonic, we deduce a bound T sβ1 for the
minimum period of any VM ρs as follows.

∀ρs ∈ ρ, T sβ1 ≥ Cs = Cso + Us × T sβ1 (5)

⇔ T sβ1 ≥
Cso

1− Us
(6)

The bound T sβ1 is given from (6). The last term Us × T sβ1

represents the execution time of the tasks for this specific VM
period when the scheduling is non-preemptive. We obtain (6)
which provides a safe minimum period for a given VM ρs.

But it can be too small. For instance, consider that the
overhead Cso = 1 unit of time (ut). For an utilization Us

ranging from 0.1 to 0.5 ut, this equation always gives the same
minimum value of 2 ut for T sβ1 . Then, if the VM period is set
to 2 ut, only 1 ut remains for the VM. With such a VM period
the only possible slot duration of the VM is necessarily 2 ut.
In that case, this VM uses all system resources, even if task
utilization is equal to 0.1, which is not acceptable for real
systems. This is due to the integers parameters of the VMs
which lead to rounding approximations. In order to avoid this
drawback, we take into account the ratio α (0 ≤ α ≤ 1)
between the overhead and the VM period. We provide a new
bound T sβ2 on the minimum VM period:

T sβ2 ≥
Cso
α

(7)

For instance, if the user limits the overhead to 5% of the
VM period (i.e. α = 0.05), and the overhead is 1 ut, we get
T smin = 1

0.05 = 20 while it was only of 2 ut using the previous
equation.

The final equation for the minimum VM period is then:

T smin ≥ max
(
T sβ1 , T sβ2

)
(8)

We now define the maximum possible period of a VM. From
the following equations and Figure 2 we deduce a bound T smax
for the maximum period of VMs.

∀τi ∈ τ(ρs), Di ≥ T s − Us × T s + Ci ⇔ (9)

T smax ≤
Di − Ci
(1− Us)

(10)

Equation (9) is depicted in Figure 2. The deadline of every
task should be greater than or equal to the period of the VM
minus the slot duration of the VM plus the WCET of the
task under study. If the deadline is lower than this value, the
system becomes unschedulable. This condition is a necessary
condition. The next steps are the same as for (6). The critical
instant of a task is when its activation is synchronous with the
tasks of higher priorities (see [20]). In Figure 2 the blue area
corresponds to the time when the tasks of the VMs may be
scheduled. At the end of the blue area, no tasks of the studied
VM can be scheduled. This may be seen as the scheduling of
a task of higher priority. The critical instant is therefore on
this figure at the end of the blue area.

ρs

T s0

T s

Us × T s Us × T s

Fig. 2. Representation of the maximum period Equation (9).



IV. PARAMETERS OF THE MOST CRITICAL VM
In this section, we provide an interval of periods for the

first VM ρ1 based on necessary schedulability conditions. This
interval of VM periods is bounded by the minimum and the
maximum VM periods found using equations of Section III.
From this interval we deduce a set of parameters for the VM
that guarantees the schedulability of the tasks of ρ1. From
these parameters, we define in Section V the parameters and
the schedule of the remaining VMs.

A. Maximum Period

The equation for the maximum VM period is defined by
Equation (10). It depends on the taskset τ(ρ1) of VM ρ1. It
must be applied to every task of τ(ρ1) then the maximum
period T 1

max is given by the smallest obtained value.
The results of equation (10) are real numbers. As we

consider integer VM parameters, the floor function is used
to obtain a bound on the VM period from (10). This induces
approximation on the bound of the maximum VM period, but
is mandatory to find the parameters and the slot duration as
seen in Section IV-C.

B. Minimum Period

As explained in Section III, (8) is used to compute the
minimum utilization. This equation uses (6) and (7).

The minimum VM period is the largest value between the
result of these two equations. We need to apply the ceil
function to obtain a valid integer number for the minimum
period.

According to equations (10) and (8) the VM may have
a minimum period greater than or equal to the maximum
period: that case corresponds to a schedulable problem. It may
be caused by the overhead resulting from Cso which is not
obviously taken into account during the creation of the VMs.

C. Computation of C1 and T 1

From the minimum period T 1
min and the maximum period

T 1
max, we can compute the parameters C1 and T 1 of the

most critical VM ρ1. This is done by Algorithm 1. It uses the
Worst Case Response Time (WCRT) computed using (11) that
is adapted for sporadic harmonic periods from the equation
given in [20]. The WCRT is computed from the classical
equation given in [24] to which we add the time when ρ1

is not scheduled and the duration of the overhead C1
o . The

WCRT is given by the following equation:

ri = max (wi,q − qTi) (11)

Where q = 0 . . . Q and Q is the minimum value such that
wi,q ≤ (q + 1)Ti and wi,q is recursively computed by the
following equation [20]:

wm+1
i,q = (q+1)Ci+

∑
j∈hp(i)

⌈
wmi,q
Tj

⌉
Cj+

⌈
wmi,q
T s

⌉
(T s−Cs+Cso)

(12)
Algorithm 1 uses a binary search to compute the smallest T 1

and the corresponding C1 of ρ1 such that τ(ρ1) is schedulable.

It first tests for T 1 = T 1
min. If τ(ρ1) is not schedulable, T 1 is

binary searched between T 1
min and T 1

max.
The steps of Algorithm 1 are as follows. After initializing

T 1 at L1 (i.e. Line 1), it loops from L2 to L14 to (i)
binary search a value of T 1, (ii) compute the value of C1

w.r.t. T 1 (L3) and (iii) test if τ(ρ1) is schedulable. If τ(ρ1)
is schedulable according to (11), either T 1 = T 1

min and
(C1, T 1) is returned, or T 1 > T 1

min and the upper bound
T 1
max is decreased to the value of T 1. Otherwise τ(ρ1 is not

schedulable and the lower bound T 1
min is increased to the

value of T 1. T 1 is then updated to the median value of the
two bounds T 1

min and T 1
max, and the iterations continue. The

algorithm either returns false if no feasible schedule could be
found or true else. In the latter case, valid VM parameters are
also returned.

Algorithm 1: Parameters of the most critical VM
Input: (T 1

min, T 1
max)

Result: (C1, T 1, sched)
1 T 1 = T 1

min;
2 while T 1

min + 1 6= T 1
max do

3 C1 =
⌈
U1 × T 1 + C1

o

⌉
;

4 if τ(ρ1) is schedulable using (11) then
5 sched = true;
6 else
7 sched = false;
8 if sched = true and T 1 = T 1

min then
9 return (C1, T 1, sched);

10 else if sched = true then
11 T 1

max = T 1;
12 else
13 T 1

min = T 1;
14 T 1 = T 1

min+T
1
max

2 ;
15 return (C1, T 1, sched);

V. PARAMETERS AND SCHEDULING OF HARMONIC VMS

In this section we provide a method to compute the param-
eters of VMs other than ρ1 (once the parameters of ρ1 have
been defined). Since the problem of sizing VMs is complex,
we provide a heuristic approach. We compute harmonic VM
periods in order to produce higher number of schedulable
tasksets [20].

A. Parameters

The parameters of the most critical VM ρ1 are used to find
the parameters of the other VMs. These parameters are the
input of Algorithm 2. We compute the parameters one by one
starting from the most critical to the least one. This algorithm
uses the condition of schedulability defined in Equation (4).
This algorithm computes and tests a set of parameters for each
remaining VM and checks if they are schedulable according
to Equation (4). The schedulability of the tasks in each VM
is not tested at this point.



The necessary and sufficient condition of Equation (4) is
valid if and only if all the VMs are harmonic and have distinct
periods. As the parameters of the first VM are already set, the
next VM periods are found iteratively from the last VM period
found (starting by the VM period of ρ1).

Algorithm 2 loops on every remaining VM (L2) to find
valid parameters if possible. L3 finds the maximum VM
period of the current tested VM. Then L4 tests a VM period
for the current VM. To create distinct harmonic periods, we
multiply by 2 the VM period of the last VM set. It assures
the harmonicity without heavily increasing the period of the
VMs. After finding a VM period to test, we can check if the
VM period found is not higher than the maximum VM period
of the VM (L5). As in Algorithm 1 (see Section IV-C), L6
computes the VM slot duration. The remaining lines apply
equation (4) to know if the VM tested is schedulable using
these parameters. It adds the parameters to the VM when
succeded or ends the algorithm otherwise.

Algorithm 2: Parameters of harmonic VMs
Input: ρ, ρ1, C1, T 1

Result: Parameters of the VMs scheduled
1 lastVM = 1;
2 foreach ρs in ρ do
3 Set T smax according to (10);
4 T stest = T lastVM × 2;
5 if T stest ≤ T smax then
6 Cstest = dUs × T stest + Csoe;
7 if Cstest ≤ T 1 − C1 then
8 Cs = Cstest; T

s = T stest; lastVm = s;
9 else

10 break;

B. Scheduling

Once the parameters of each harmonic VMs are known,
their scheduling must be defined. Our scheduling algorithm
is an adaptation of [22]. We split it in Algorithm 3 and 4.
These algorithms always find an available solution without
failing. This is due to the subset of VMs of ρ given to
the algorithms. This subset has parameters which satisfies
schedulability condition of equation (4). This allows us to
simplify the algorithm to schedule the VMs and assures that
the algorithms will end with a solution.

Algorithm 3 has one input-element corresponding to the
subset of VMs previously defined. This set is ρsub with
ρsub ∈ ρ. The algorithm returns the set of the VM start
times in one hyper-period, the Least Common Multiple (LCM)
of the periods of the VMs. This information is stored in
the variable VMxList. Each VM has a list. The xth list
VMxList corresponds to the xth VM. L1 of the algorithm
defines the number of activations of the first VM during the
scheduling defined on the hyper-period. As the VMs have
distinct and harmonic periods, the hyper-period is equal to
the highest VM period.

Algorithm 3: Harmonic VMs scheduling algorithm
Input: Set ρsub for which the parameters are found
Input: p the number of VMs in ρ
Result: List of start of execution for each VM

1 repetitionsFirstVM = Tp

T 1 ;
2 boolean isFree[repetitionsFirstVM] = true;
3 for i← 0 to repetitionsFirstVM do
4 VM1List += i× T 1;
5 foreach ρj in ρsub do
6 repetitionsVM = Tp

T j ;
7 for i← 0 to repetitionVM do
8 index = i×T j

T 1 ;
9 firstFree = findFirstFree(index);

10 isFree[firstFree] = false;
11 VMjList = VMjList

⋃
{firstFree× T 1 + C1};

L2 defines an array of booleans (initially set to true) which
has a size equal to the number of activations of the first VM.
The VM with the highest number of activations is the most
critical one. The scheduling algorithm uses the time between
each activation of the first VM to schedule the other VMs.
Each VM is scheduled right after the execution of the first
VM (see [22] and [23] for more details). This boolean array
defines if the space right after the ith activation of the first
VM is available or not (used by another VM or free).

The first loop (L3) is to define the start times of the first
VM. As nothing is scheduled yet, the result of this loop is the
start of slot executions at each period for the first VM. The
second loop (L5) defines the start times of all the remaining
VMs. L6 defines the number of activations of each VM in the
hyper-period.

L8 set the variable index. This variable is the minimum
index in the boolean array isFree which corresponds to the
ith repetition of the VM ρj . L9 set the firstFree variable.
This variable corresponds to the first free index in the array
isFree. In other words function findFirstFree (algorithm
4) finds the first index in the array isFree where no VMs is
scheduled (except the first one). L10 sets the index of isFree
array as not available. L11 updates the list of VM j start-times.

Algorithm 4: findFirstFree function

Input: isFree[] a boolean array of size Tp

T 1

Input: index the minimum index to find
Result: The index of the first free space in the scheduling

1 for i← index to p do
2 if isFree[i] then
3 return i;

VI. EXAMPLE

We illustrate our approach by presenting the use case of the
CEOS project [9]: an industrial project that develops reliable
and secure inspection drone systems. We derive an example
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Fig. 3. The three VMs of CEOS use-case and their associated tasks.

Fig. 4. Global taskset

from this use case to illustrate the algorithms and conditions
previously presented.

The CEOS use case is composed of three applications de-
veloped by independent teams and have different requirements
in terms of memory usage, real-time constraints, computing
power and criticality. Each application is associated to a
dedicated VM respectively (1) VM1 of High criticality: a
control-command application in charge of the flight of the
drone, (2) VM2 of Medium criticality: a communication
application which allows the drone to receive command from
a ground station, but also to send drone’s parameters and (3)
VM3 of Low criticality: a video application which stores,
analyzes and compress images from embedded cameras.

The control-command application is implemented bare-
metal, the communication application is running on OpenWRT
and the video application on a Linux Debian operating system.

In the context of the CEOS project, we rely on the the
PikeOS [10] hypervisor to isolate spatially and temporally
each application in a dedicated VM. This level 1 hypervisor
has been chosen as it can be certified DO 178B/C for flying
systems. Certification can mandatory when flying in civil
areas (authorization for flying is given by DGAC in France
depending on the weight of the UAV).

We now give an example of scheduling which uses three
VMs and takes as input the taskset τ defined in Figure 4. The
first VM contains one task τ1, the second one two tasks (τ2
and τ3) and the third one two tasks (τ4 and τ5). For each VM
ρi the overhead Cio is set equal to 1.

Our example takes into account the criticality of the differ-
ent VMs. As none of the parameters of the VMs is known,
the first step is to find the parameters of the most critical VM,
namely ρ1. As explained in Section IV, the minimum and
maximum VM periods for this VM must be computed with
(8) and (10).

Algorithm 1 may now be used to find the parameters of
the first VM. Line 2 initializes T 1

test to 10. Line 4 with such
values leads to C1

test = d 1
20 × 10 + 1e = 2. The test VM

ρ1test(2, 10, 1, 1) is then created. The scheduling of the tasks
in this VM is tested (line 6). Equation (11) leads to a WCRT

Equation (6) d 1
1− 1

20

e = 2

Equation (7) d 1
0.1

e = 10
Minimum Period (Equation (8)) 10

Maximum Period (Equation (10)) b 15−1
1− 1

20

c = 14

TABLE I
MINIMUM AND MAXIMUM VM PERIODS FOR ρ1

ρ2 τ2 b 20−1
1−U2 c = 23 ρ3 τ4 b 40−2

1−U3 c = 45

τ3 b 30−2
1−U2 c = 35 τ5 b 80−4

1−U3 c = 91

TABLE II
COMPUTATION OF THE MAXIMUM PERIOD OF VM2 AN VM3.

equal to 10, so the VM is schedulable.
As all the tasks of the first VM are schedulable, these

parameters (2 for the slot duration and 10 for the VM period)
are valid. From the parameters of the first VM we can deduce
the parameters of the following VMs if harmonic parameters
may be found thanks to Algorithm 2. This algorithm uses the
maximum VM period found in (10). The result of this equation
for each task of each VM is given in Table II (where U2 = 2

10 ,
U3 = 1

6 .
From this approach we can deduce for each VM the

maximum period. Respectively 23, 45 for ρ2 and ρ3.
The line 3 sets the maximum period T smax of all VMs except

VM1 from the values provided in Table II. Line 4 defines the
current VM period to test. As the first one is 10, the second
one will be 20, the third 40. Only three VMs may be scheduled
according to line 5 and the maximum VM period. Line 6
initializes the slot duration to test for each VM. In that case,
C2
test = d 2

10 × 20 + 1e = 5, C3
test = d 16 × 40 + 1e = 8 (and

as the test line 5 fails for ρ4, C4
test is not computed).

Line 7 checks C2
test and C3

test to know if this slot duration
satisfies the necessary and sufficient condition given by (4). In
that case, both values fulfill this required condition and we now
obtain the three following VMs: ρ1(2, 10, 1, 1), ρ2(5, 20, 1, 2)
and ρ3(8, 40, 1, 3).

At this point we can check if the tasks within the VMs are
schedulable according to (11). The result of the WCRT of the
tasks are 17, 28, 35 and 76 for τ1, τ2, τ3 and τ4 respectively.

As the three first VMs have harmonic periods they may
be scheduled by Algorithms 3 and 4. In our example ρsub =
ρ1 ∪ ρ2 ∪ ρ3 since only the first three VMs have parameters
because of the previous algorithms.

In this algorithm we are sure that the system (at least the
VMs) are schedulable because of the different methods to find
the parameters. The main idea to schedule the VMs is that
the exact number of repetitions of each VM period is known
(usually hyperperiod

period but here the hyper-period is equal to the
greatest period of VMs).

The first VM has the greatest number of repetitions as it
has the smallest VM period. The algorithm will schedule the
other VMs right after the slot durations of the first VM.

Let us define the start of the execution of the first VM (lines
3-5). In this example, repetitionsF irstV M = 40

10 = 4. The



execution are then 0× 10 = 0, 1× 10 = 10, 2× 10 = 20 and
3× 10 = 30.

The goal is now to schedule the others VMs when ρ1 is not
active. This is done in the loop (lines 6-14) of Algorithm 3.
The idea here is to find the first repetition of the first VM
which has no other VM scheduled.

We develop the loop for ρ2. Here repetitionsVM = 40
20 =

2. The loop from lines 8 to 13 has only two iterations. The
two computations of the index gives respectively 0 and 2 for
ρ2. It corresponds to the first iteration of ρ1 where the VM
may be scheduled. A function to check if a VM is not already
scheduled is given in Algorithm 4. This function will find the
first available iteration. As ρ2 is the first VM scheduled after
ρ1 this function will not iterate.

But after this, the iteration 0 and 2 of the first VM are
already taken by ρ2. We show through ρ3 the importance of
Algorithm 4. For this one, repetitionsVM = 40

40 = 1, so
index = 0. The repetition 0 of ρ1 is already used by ρ2.
This is where Algorithm 4 is useful to get the first available
repetition. In this example it is the repetition 3.

VII. CONCLUSION

We consider UAV real-time dimensioning when the set of
applications executed by the drone are run in dedicated VMs
managed by an hypervisor. An application is composed of
several sporadic tasks with arbitrary deadlines. The VMs are
scheduled by an hypervisor according to a scheduling table
that must be constructed to satisfy the real-time constraints of
the tasks. We suppose that each VMs have different criticali-
ties. Furthermore, all the tasks executed in one VM must have
the same criticality. The problem we consider is as follows:
knowing the task parameters, how to dimension the VMs so as
to satisfy the real-time constraints of the tasks ? We adopt an
iterative approach for the construction of the scheduling table
of the VMs, starting from the most critical VM to the least
critical. For each VM, we propose an algorithm to compute
its parameters (slot duration and period) satisfying the real-
time constraints of the tasks run by the VM. This algorithm
results in harmonic VM periods that maximize the chance
to obtain a feasible schedule. As a future works we plan to
propose a linear programming approach to assign non assigned
remaining slots to non-schedulable VMs by our algorithm,
possibly leading to arbitray slot patterns, not strictly periodic.
We will also experiment our solution with the Ceos project.
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