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Abstract

In dial-a-ride systems involving autonomous vehicles circulating along a cir-
cuit, a fleet of vehicles must serve clients who request rides between stations
of the circuit such that the total number of pick-up and drop-off operations is
minimized. In this paper, we focus on a unitary variant where each client re-
quests a single place in the vehicles and all the clients must be served within
a single tour of the circuit. Such unitary variant induces a combinatorial
optimization problem for which we introduce a nontrivial special case that
is polynomially solvable when the capacity of each vehicle is at most 2 but
it is NP-Hard otherwise. We also study the polytope associated with the so-
lutions to this problem. We introduce new families of valid inequalities and
give necessary and sufficient conditions under which they are facet-defining.
Based on these inequalities, we devise an efficient branch-and-cut algorithm
that outperforms the state-of-the-art commercial solvers.

Keywords: Combinatorial optimization, autonomous vehicles, dial-a-ride,
computational complexity, polyhedral study

1. Introduction

It is undeniable that the demand for faster, cheaper, and more conve-
nient forms of mobility has unceasingly evolved throughout the history of
human civilization. Transport systems have also developed along. Today
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more than ever, mobility represents an important issue when dealing with
sustainability challenges. Autonomous vehicles and electric vehicles have
been key actors in transforming the transportation sector and reshaping mo-
bility, through new types of business and service models for the former and
more environment-friendly alternatives for the latter. Several studies can be
found in the literature that link electric autonomous vehicles to improve-
ments of air quality, traffic mitigation, and safety. (See, e.g., Fagnant and
Kockelman (2015) and Pelletier et al. (2016).)

One of the many issues and challenges of deploying electric autonomous
vehicles is the management of fleets of such vehicles when operating in semi-
closed or closed sites such as medical complexes, commercial or industrial ar-
eas, airports, train stations, and campuses. VIPA, a French acronym stand-
ing for Automomous Individual Public Vehicle, is an example of an electric
driverless vehicle designed to transport goods or people in such environments.
(See, e.g., EasyMile (2015) whose EZ10 shuttles have been operating in a
dozen US cities, on a trial basis, for over a year.) VIPA shuttles may perform
in three different modes of operation (Bsaybes et al., 2018). In this paper we
only focus on the so-called tram mode where same-capacity VIPA shuttles
continuously go around a circuit, always in the same direction, and upon
requests stop at predefined stations to pick up and drop off users. Each of
these dial-a-ride requests, later on called demands, is specified by a pick-up
station, a drop-off station, and a load that corresponds to the number of
places the user will be needing in a VIPA shuttle.

Due to infrastructure restrictions, the stations are not located on the
circuit but are attached to it as illustrated in Figure 1. This peculiarity
significantly impacts the management of the fleet of vehicles. Indeed, a VIPA
shuttle responding to a request must slow down and deviate from its original
course. This necessary detour increases the travel time of on-board users
as well as the shuttle’s battery consumption, a key resource for electrical
vehicles. If the detour lengths are supposed to be approximately the same,
the quality of service can then be improved by minimizing the total number
of stops the VIPA shuttles have to perform. Pimenta et al. (2017) pointed
out that a reduction of the total number of stops also ensures a steady flow
of vehicles which helps improve the reliability of such VIPA-based systems.
The Stop Number Problem (SNP) we consider in this paper hence consists
of assigning the demands to the shuttles of a fleet such that no shuttle ever
is overloaded and the total number of stops is minimized.

In practice, a VIPA-based system obviously needs to dynamically man-
age an ongoing flow of demands. This is usually handled through online
algorithms. However an analysis of the solutions and difficulties one would
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Figure 1: An illustration of the VIPA circuit scheme.

encounter in an offline management (i.e., when all the demands are known
beforehand) may help gain important insights into the development of better-
suited online algorithms. A reasonable option therefore is to deeply investi-
gate the offline version of SNP and thus determine where its complexity lies.
In this paper, we explore the combinatorial core of SNP through the simplest
version of the problem where (i) as many same-capacity vehicles as necessary
are available to serve all the demands, (ii) each user only requests a single
place (i.e., unit load), and (iii) a vehicle may only serve a demand during its
first tour of the circuit (i.e., no waiting tours). This version of SNP, hereafter
denoted Unit Stop Number Problem (USNP), is formally defined as follows.

1.1. The Unit Stop Number Problem
We first go over some notation we use throughout this paper. Let the

edge set (resp. node set) of an undirected graph G be denoted by E(G)
(resp. V (G)) or simply E (resp. V ) when G is clear from the context. For
F ⊆ E, let V (F ) denote the set of nodes spanned by the edges in F . For
v ∈ V , the degree of node v in G is denoted degG(v). Given a subset of edges
F ⊆ E, the undirected graph (V (F ), F ) induced by F is denoted G(F ).

Let V = {1, . . . , n} be the set of predefined stations as they appear
along the circuit network. Even though all the vehicles leave from a same
depot, we assume without loss of generality that the depot does not belong
to V . Let E be the set of m unit-load demands, where each demand e
is specified by a pick-up station oe ∈ V and a drop-off station de ∈ V .
Without loss of generality, we assume that each station of V appears as
the endpoint of at least one demand of E. We also assume that oe < de
for any demand e = (oe, de) in E. Notice that if this is not the case, one
can provide an equivalent instance by setting V = {1, . . . , 2n} and replacing
demands (oe, de) by (oe, de + n) for any e in E where oe > de. To serve
these m demands, we are given a fleet K of p identical vehicles, each of
them having the same capacity C ∈ Z+. Since the decision maker can use
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as many vehicles as needed to reduce the total number of stops, the number
p of available vehicles is set to the trivial upper bound m unless otherwise
specified. With any USNP instance I = (V,E,C) a graph GI = (V,E)
is associated where stations and demands may be referred to as nodes and
edges, respectively. When instance I is clear from the context, we may omit
the subscript I and only write G. Figure 2 provides an example of an USNP
instance and its associated graph.
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Figure 2: Example of an USNP instance. On the left, the set of five demands is represented
as intervals over four stations. On the right, the instance is defined by its associated graph.

Demands having the same pick-up and drop-off stations (e.g., e1 and e2
in Figure 2) are referred to as parallel demands and correspond to multiple
edges in GI . Without loss of generality, we suppose that GI is a (loopless)
connected multigraph for otherwise solving USNP on GI would reduce to
solving as many independent USNPs as GI has connected components.

For any F ⊆ E and any v ∈ V , let ∆F (v) = {e ∈ F : oe ≤ v < de}
denote the set of demands of F that need to go through station v. Notice
that demands having v as their drop-off station do not belong to ∆F (v).
The demands belonging to ∆E(v) are said to intersect station v. Every
station v whose set ∆E(v) is inclusionwise maximal (i.e., there is no v′

in V such that ∆E(v) ⊂ ∆E(v
′)) is referred to as a maximal-intersection

station. For the example depicted in Figure 2, ∆E(1) = {e1, e2},∆E(2) =
{e1, e2, e3, e4},∆E(3) = {e4, e5}, and ∆E(4) = ∅, and both stations 2 and 3
are maximal-intersection.

Any feasible solution to USNP can hence be represented as a partition
of E into p (possibly empty) subsets E1, . . . , Ep that satisfies |∆Ei(v)| ≤ C
for all i = 1, . . . , p and all v ∈ V . USNP thus consists of finding a partition
{E1, . . . , Ep} that minimizes the cost function

c(E1, . . . , Ep) =

p∑
i=1

|V (Ei)|,

where V (Ei) is composed of all the stations where vehicle i stops.
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1.2. Literature review
SNP was first introduced in Pimenta et al. (2017) where it was proven to

be (weakly) NP-Hard through a simple reduction from the classic partition
problem (Garey and Johnson (2002)). The authors presented a GRASP-
based heuristic for SNP along with a branch-and-price method that turned
out to be inefficient due to a lack of strong bounds. USNP was also mentioned
in Pimenta et al. (2017) where it was conjectured to be NP-hard. This
conjecture was proven by Baïou et al. (2021) where USNP is showed to be
NP-hard for any fixed capacity C ≥ 2 even when the graph associated with
the instance is planar bipartite.

USNP clearly correponds to a specific case of the well-studied Dial-A-
Ride Problem (DARP). Indeed DARP arises from door-to-door transporta-
tion services, particularly for elderly and disabled people, and its objective is
twofold. It not only consists of assigning demands to vehicles but also of de-
signing minimum-cost vehicle routes to determine a picking-up and delivery
order that fulfills client-driven requirements (e.g., time windows, maximum
riding time, and vehicle occupancy).

From an exact-method standpoint, a usual strategy for dealing with
DARP is to use branch-and-cut algorithms. The first branch-and-cut algo-
rithm for DARP was proposed by Cordeau (2006) who introduced a three-
index formulation and derived families of valid inequalities from well-known
inequalities valid for the Vehicle Routing Problem and the Traveling Sales-
man Problem. Ropke et al. (2007) proposed a tighter two-index formula-
tion and also introduced new families of valid inequalities based on the idea
of incompatible time windows. Parragh (2011) and Braekers et al. (2014)
adapted known branch-and-cut algorithms to deal with heterogeneous vehi-
cles. Liu et al. (2015) proposed new valid inequalities for taking into account
problem-specific properties such as driver lunch breaks. For more extensive
and detailed surveys on DARP, the reader is referred to Cordeau and Laporte
(2007), Parragh et al. (2008) and Ho et al. (2018).

A common point in the DARP literature is the use of valid inequalities to
tackle scheduling issues such as precedence requirements, time-windows com-
patibility, or subtour prevention. However these specific aspects of DARP
appear irrelevant to USNP where they are implicitly taken into account since
the vehicles must serve all the demands within a single tour of a predefined
circuit. These inequalities, necessary for DARP, therefore become of no in-
terest when dealing with USNP.

It is also worth noticing that the combinatorics behind USNP is closely
related to other well-studied telecommunication problems such as the traffic
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grooming problem as pointed out by Baïou et al. (2021) and the k-edge
partitioning problem. For these relations require a deeper understanding of
the solutions to USNP, they are postponed to Section 2.

1.3. Our contribution
In the next section, the complexity of USNP is investigated and con-

nections with other well-studied problems are drawn. We present special
cases where the problem can be solved in polynomial time as well as cases
where USNP is proven to be NP-Hard. In Section 3 a polyhedral analysis
is conducted and yields new facet-defining inequalities that strengthen an
integer-programming formulation known in the literature. Section 4 is de-
voted to a branch-and-cut framework with a focus on symmetry and variable
management, and separation problems. Computational results demonstrat-
ing the efficiency of our branch-and-cut approach are provided at the end of
that section. In Section 5, we conclude the paper pointing out interesting di-
rections of research. Notice that many results presented along this study can
be extended to other related problems. These extensions are exposed when
necessary. The complete proofs of theorems are provided in the Appendix.

2. Complexity analysis

USNP is trivially solvable in polynomial time if C = 1. Baïou et al.
(2021) have proven that USNP becomes NP-hard for any fixed capacity
C ≥ 2 even when the associated graph G is planar bipartite. In this section
we focus on a variant of USNP where all the demands intersect some station
v′ ∈ V , that is, ∆E(v

′) = E. Let Intersection-USNP (I-USNP) denote
this variant. Notice that in I-USNP, each vehicle overall serves at most C
demands. This last fact will be deeply explored throughout this paper and is
the main argument behind both the development of our complexity results
and our polyhedral study. The study of I-USNP is therefore crucial since it
helps to better understand and solve the more general USNP.

Remark 1. For every I-USNP instance I = (V,E,C), the set of stations V
can be partitioned into U = {1, . . . , v′} and V \ U = {v′ + 1, . . . , n}, where
v′ ∈ V is the unique station with ∆E(v

′) = E. In this case every demand
in E has its pick-up station in U and its drop-off station in V \ U , and the
associated graph GI = (V,E) hence is bipartite.

We now show that I-USNP can be solved in O(m) time for C ≤ 2.
Surprisingly, for C ≥ 3, even this very restrictive variant remains NP-Hard.
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2.1. Polynomial cases
For every v ∈ V , let δ+(v) = {e ∈ E : oe = v} (resp. δ−(v) = {e ∈ E :

de = v}) denote the set of demands having v as their pick-up (resp. drop-
off) station. It can therefore be easily seen that at least

⌈
max{|δ+(v)|,|δ−(v)|}

C

⌉
vehicles need to stop at station v. Consequently a lower bound on the number
of stops is ∑

v∈V

⌈
max{|δ+(v)|, |δ−(v)|}

C

⌉
. (1)

Notice that for I-USNP, either δ+(v) = ∅ or δ−(v) = ∅ for every station
v ∈ V . Moreover, each vehicle serves no more than C demands in I-USNP.
It then follows that when C = 1, sequentially assigning a demand to an
available vehicle solves I-USNP. The number of stops of this trivial solution
equals 2m and by (1), it is optimal. The next theorem states that for C = 2,
I-USNP can be solved in polynomial time as opposed to general USNP.

Theorem 1. Intersection-USNP can be solved in O(m) time when C = 2.

Proof. Consider an instance I = (V,E, 2) of I-USNP. Suppose E has two
parallel demands e and e′. We claim that there exists an optimal solu-
tion wherein e and e′ are served by the same vehicle. Assume on the con-
trary that e and e′ are served by different vehicles in every optimal solu-
tion. Let {E∗

1 , . . . , E
∗
p} be an optimal solution with, without loss of gen-

erality, e ∈ E∗
1 and e′ ∈ E∗

2 . We trivially have |E∗
1 | = 2 for otherwise

{E∗
1 ∪ {e′}, E∗

2 \ {e′}, E∗
3 , . . . , E

∗
p} would be a feasible solution with no more

stops than {E∗
1 , . . . , E

∗
p}. Similarly |E∗

2 | = 2. Let {f} = E∗
1 \{e} and {f ′} =

E∗
2 \ {e′}. Consider now the feasible solution {{e, e′}, {f, f ′}, E∗

3 , . . . , E
∗
p}

and let α = |V ({f, f ′})|. We have

c({e, e′}, {f, f ′}, E∗
3 , . . . , E

∗
p}) = c(E∗

1 , . . . , E
∗
p)−(|V (E∗

1)|+ |V (E∗
2)|)+2+α.

(2)
If e and f or e′ and f ′ are parallel demands, we then have |V (E∗

1)| +
|V (E∗

2)| = 2 + α and {{e, e′}, {f, f ′}, E∗
3 , . . . , E

∗
p} is optimal by (2). If

none of the sets E∗
1 and E∗

2 is composed of parallel demands, we have
|V (E∗

1)|+ |V (E∗
2)| ≥ 6 ≥ 2 + α, the last inequality coming from α ≤ 4. So-

lution {{e, e′}, {f, f ′}, E∗
3 , . . . , E

∗
p} hence is optimal. Consequently we may

assume that in the optimal solution {E∗
1 , . . . , E

∗
p}:

i. the first p′ ≤ p vehicles serve pairs of parallel demands, that is, subsets
E∗

i are composed of parallel demands for 1 ≤ i ≤ p′, and

ii.
⋃p

i=p′+1E
∗
i contains no parallel demands.
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Packing together pairs of parallel demands (i.e., computing E∗
i for 1 ≤

i ≤ p′) can be done in linear time. So we now consider the I-USNP instance
I ′ = (V,E′, 2), where E′ = E \

⋃p′

i=1E
∗
i contains no parallel demands. We

now show that an optimal solution {E′∗
1 , . . . , E

′∗
p } to I ′ can be constructed

in O(m) time which results in I also being solved in O(m) time.
We assume, w.l.o.g., that for every vehicle i, G(E′∗

i ) is a connected graph,
for otherwise the two demands assigned to vehicle i could be split between
two vehicles and the obtained solution would be as good as {E′∗

1 , . . . , E
′∗
p }.

Therefore, solving I ′ amounts to maximizing the number of subsets E′∗
i

containing two connected demands. To do so, consider the line-graph of GI′ ,
where every node represents a demand and two nodes are adjacent if their
associated demands share an endpoint. A matching M in such line-graph
provides a feasible solution to I ′. Indeed, every edge in M corresponds to the
pair of demands served by a vehicle. The remaining demands (i.e., the ones
associated with the nodes incident to no edges in M) can be each assigned to
different vehicles. Consequently solving the maximum-cardinality matching
problem in the line-graph of GI′ clearly solves I ′.

Notice that every edge in the line-graph of GI′ corresponds to a 2-path
(i.e., a simple path of length 2) in GI′ . The maximum-cardinality matching
problem in the line-graph of GI′ thus is equivalent to the maximum edge-
disjoint 2-path packing problem in GI′ . Masuyama and Ibaraki (1991) gave
an algorithm, that runs in O(m) time, to solve the latter problem.

2.2. NP-hardness
After having proven that I-USNP can be solved in polynomial time for

C ≤ 2, the question of whether or not I-USNP is NP-Hard for larger ca-
pacities arises naturally. We first point out that I-USNP can be solved in
polynomial time for C ≤ 2 mainly because of two properties its optimal so-
lutions satisfy. The first one is related to the number of nonempty vehicles
used in an optimal solution.

Let pmin ≤ p denote the minimum number of vehicles necessary to serve
the m demands of a USNP instance and let popt ≥ pmin denote the minimum
number of nonempty vehicles used by an optimal solution. For the demands
can be viewed as (half closed - half open) intervals of the real line, pmin

clearly can be computed in polynomial time by a first-fit algorithm where
the demands are picked out according to the order of their increasing pick-up
station. More precisely, we have pmin = maxv∈V

{⌈
|∆E(v)|

C

⌉}
.
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Property 1. For C ≤ 2, there exists an optimal solution of Intersection-
USNP whose number of nonempty vehicles equals the minimum number of
necessary vehicles (i.e., popt = pmin).

Indeed, for C = 2, whenever two vehicles only serve one demand each,
those two demands can be merged into a single vehicle and the obtained
solution is as good as the initial one. Consequently the optimal solution
obtained through the procedure described in the proof of Theorem 1 can
easily be tweaked to only use pmin vehicles. Therefore popt = pmin for I-
USNP when C = 2.

Based on empirical observation, Pimenta et al. (2017) claimed that Prop-
erty 1 holds for USNP whatever the value of C is. This claim was disproven
by Baïou et al. (2021) who gave a counter-example for which popt > pmin.

For I-USNP with C ≥ 3, we now show that this property may not always
be satisfied. To do so, we consider the instance of I-USNP with C = 3 de-
picted in Figure 3. This instance is composed of 3 sets of 3 parallel demands,
all being picked up at station 1, and 3 pairs of demands δ+(2), δ+(3), and
δ+(4). Notice that v′ = 4. By assigning each of the 6 foregoing sets to
different vehicles we obtain a feasible solution using 6 vehicles and yielding
15 stops. Since the lower bound (1) on the number of stops equals 15, this
solution is optimal.

1 2 3 4 5 6 7 8 9 10

1

6

5 7

3

9

2

8

4

10

Figure 3: Counter-example I-USNP instance for proving pmin ̸= popt.

The minimum number of necessary vehicles clearly is pmin =
⌈
|∆(v′)|

C

⌉
=⌈

15
3

⌉
= 5. We claim that no optimal solution using pmin vehicles exists. In

any solution with 15 stops, exactly
⌈
max{|δ−(v)|,|δ+(v)|}

C

⌉
vehicles must stop

at every station v ∈ V , that is, one vehicle stops at each of the stations 2,
3, and 4, two vehicles at each of the stations 5, 6, and 7, and three vehicles
at station 1. Moreover if only five vehicles are used then every vehicle needs
to serve three demands. For i ∈ {2, 3, 4}, both demands in δ+(i) together
with one of the parallel demands hence need to be assigned to the same
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vehicle. We thus already have three vehicles that stop at station 1 but six of
the parallel demands have not been assigned yet. Consequently at least two
more vehicles need to stop at station 1. The number of vehicles stopping
at station 1 therefore exceeds the three vehicles required in any optimal
solution. So, no optimal solution with 5 vehicles exists.

A second property of optimal solutions to I-USNP, that seems quite intu-
itive, is about parallel demands being assigned to the same vehicle providing
no overloading happens.

Property 2. For any pair of parallel demands, there exists an optimal solu-
tion to Intersection-USNP, C = 2, where these parallel demands are served
by the same vehicle.

The optimal solution to I-USNP with C = 2 described in the proof of
Theorem 1 relies on Property 2. However for larger values of C, this second
property does not have to be satisfied by any optimal solution to I-USNP
as illustrated by the following counter-example. Consider the instance of I-
USNP with C = 4 described in Figure 4. This instance contains two parallel
demands, namely d and e. The solution {E1, E2} with E1 = {a, b, c, d} and
E2 = {e, f, g, h} is feasible to this instance and yields 8 stops. Notice that
parallel demands d and e are not assigned to the same vehicle. If these
parallel demands were assigned to the same vehicle then no feasible solution
with less than 9 stops would exist. In fact, every subset of 3 or 4 demands of
{a, b, c, f, g, h} assigned to the same vehicle would result in at least 4 stops
for that vehicle, and every subset of 2 demands in at least 3 stops. Overall,
the total number of stops would be at least 9.

a

b
c

d
e

f
g

h

1 2 3 4 5 6

2 5

4

6

1

3

Figure 4: Counter-example I-USNP instance for proving that parallel demands might need
to be served separately.

The fact that Properties 1 and 2 do not hold for higher capacities starts
to indicate that solving I-USNP might not be that easy. Before proving that
I-USNP with C ≥ 3 is indeed NP-Hard, we draw a tight connection between
I-USNP and the well-known k-Edge-Partitioning Problem (k-EPP).
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In the literature, k-EPP appears as a uniform version of the intra-ring
synchronous optical network design problem (Goldschmidt et al., 2003). This
latter problem is a network design problem arising from the deployment of
synchronous optical networks (i.e., a North-American standardized commu-
nication protocol, known as SONET, used to transmit a large amount of data
over relatively large distances using optical fibers). In SONET networks, a
set of telecommunication centers are linked in a circular way by a cable com-
posed of optic fibers, called rings, each having a fixed capacity. Given a set
of demands, each specified by two distinct centers and a requested band-
width, the intra-ring synchronous optical network design problem consists of
assigning the demands to the rings such that the total bandwidth assigned to
a ring does not exceed its capacity. For each ring, an electronic termination
called Add-Drop Multiplexer (ADM) must be placed at each center being the
endpoint of at least one demand assigned to this ring. Notice that several
demands assigned to the same ring and incident to the same center may use
the same ADM. Due to the high cost of an ADM and the insignificant cost
of using or opening a ring, the intra-ring synchronous optical network design
problem aims at minimizing the number of installed ADMs.

When all the requested bandwidths are equal and each ring can serve up
to k demands, the intra-ring synchronous optical network design problem is
known as k-EPP. This problem is formally defined as follows. Given a simple
graph G = (V,E), where V represents the set of n centers and E the set
of m demands (no parallel edges are allowed) and an integer k ≥ 1, find a
partition of E into R subsets E1, . . . , ER such that |Ei| ≤ k for i ∈ {1, . . . , R}
and

∑R
i=1 |V (Ei)| is minimized. Notice that if G is bipartite then k-EPP is

equivalent to I-USNP with no parallel demands.
Goldschmidt et al. (2003) proved that k-EPP is NP-Hard for general

graphs and any fixed k ≥ 3. Unfortunately, their proof cannot be directly
applied to bipartite graphs. A characterization of the complexity of I-USNP
cannot thus be deduced from the one of k-EPP. We next prove that I-USNP is
indeed NP-Hard even when G is planar bipartite. Therefore, the complexity
result of k-EPP may be extended to the more restricted class of planar
bipartite graphs.

To this end, we use a reduction from the 3-Dimensional Matching Prob-
lem (3DMP) which can be stated as follows. Given three disjoint sets X,Y, Z
with |X| = |Y | = |Z| = q and a set T ⊆ X × Y × Z of triples, 3DMP
problem consists of deciding whether or not there exists a 3-dimensional
matching, that is, a subset M ⊆ T such that |M | = q and every element
of S = X ∪ Y ∪ Z appears in exactly one triple of M . 3DMP is a well-
known NP-hard problem (Karp, 1972). In Dyer and Frieze (1986), 3DMP
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was showed to be NP-hard even when the bipartite graph G = (T, S,E),
where E =

⋃
t=(x,y,z)∈T {(t, x), (t, y), (t, z)}, is restricted to be planar. An

illustration of graph G is given in Figure 5.

...
t
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x
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y
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Y

z
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S

Figure 5: The bipartite graph G = (T, S,E) associated with an instance of 3DMP.

Theorem 2. Intersection-USNP is NP-Hard for any fixed odd capacity C ≥
3 even when G is restricted to be planar bipartite.

Proof. Consider a 3DMP instance as described above such that bipartite
graph G is planar. Let k ≥ 1. We first transform G into a graph G′ = (V ′, E′)
associated with an instance I = (V ′, E ′,∈∥ +∞) of I-USNP as follows. For
every node v ∈ Y ∪Z, we replace edge (t, v) in E with a path P t

v of length k

and add degG(v)− 1 node-disjoint paths P 1
v , . . . , P

degG(v)−1
v of length k+ 1,

all having v as an endnode. For every node x ∈ X, we add degG(x)−1 node-
disjoint paths P 1

x , . . . , P
degG(x)−1
x of length 2k, all having x as an endnode.

The number of nodes in G′ clearly equals (6k + 1)|T | − (4k − 1)q and its
number of edges (2k+1)(3|T | − 2q). Notice that since G is planar bipartite,
so is G′. See Figure 6 for an illustration of graph G′.

...
t

...

T

x
Additional (deg (i)− 1) 2k-paths

...

y Additional (deg (i)− 1) (k + 1)-paths

...

z
Additional (deg (i)− 1) (k + 1)-paths

...

X

Y

Z

k-path

Figure 6: Final construction of graph G′ = (V ′, E′).
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To obtain instance I of I-USNP, the stations in V ′ now need to be labeled
such that there exists a station v′ where all demands intersect. From G′ being
bipartite, V ′ can be partitioned into independent sets W and W . A feasible
labeling of V ′ thus consists of first mapping the nodes in W onto {1, . . . , |W |}
and then those in W onto {|W | + 1, . . . , |V ′|}. Notice that v′ is the node
in W with the largest label. The construction of I can clearly be done in
polynomial time. We claim that this 3DMP instance has a 3-dimensional
matching of cardinality q if and only if I-USNP instance I has a solution
with |E′|+ |E′|

2k+1 stops.
Consider a solution {E′

1, . . . , E
′
p} to I with |E′|+ |E′|

2k+1 stops. By defini-
ton, |E′

i| ≤ 2k + 1 for all i ∈ {1, . . . , p}. Since G′ contains no cycle of
size less than 2k + 2, every nonempty subgraph G′(E′

i) is a forest with
fi ≥ 1 components and every nonempty vehicle i ∈ {1, . . . , p} thus makes
|E′

i| + fi stops. The total number of stops of this given solution therefore
is |E′| +

∑p
i=1 fi. We then obtain

∑p
i=1 fi = |E′|

2k+1 = pmin, that is, only
pmin vehicles are nonempty and each of them serves 2k + 1 demands and
stops 2k + 2 times. Consequently for every station v in X ∪ Y ∪ Z, the
degG(v)−1 paths P 1

v , . . . , P
degG(v)−1
v are assigned to different vehicles. Each

of these 3|T | − q vehicles also serves either P t
v if v ∈ Y ∪Z or (t, v) if v ∈ X

as G′(E′
1), . . . , G

′(E′
p) are trees with 2k + 1 edges if nonempty. This last

property of G′(E′
1), . . . , G

′(E′
p), along with the number of nonempty vehicles

being |E′|
2k+1 , then implies that each of the remaining q nonempty vehicles

serves an edge (t, x) and two paths P t
y and P t

z for some t = (x, y, z) ∈ T .
The loads of these last q vehicles clearly induce a 3-dimensional matching of
cardinality q in G.

Conversely from any 3-dimensional matching of cardinality q in G, a
solution to I with |E′|+ |E′|

2k+1 stops can easily be obtained by following the
foregoing process in a reverse order.

Corollary 1. k-EPP is strongly NP-Hard even when G is restricted to be
planar bipartite.

Using a similar idea as in the proof of Theorem 2, we prove the NP-
Hardness of I-USNP for all even values of C greater than or equal to 6.

Theorem 3. Intersection-USNP is NP-Hard for any fixed even capacity C ≥
6 even when G is restricted to be planar bipartite.

Proof. The proof follows a similar approach as in Theorem 2. Let k ≥ 1.
To obtain an I-USNP instance I with C = 2k + 4 from a 3DMP instance
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with planar bipartite graph G, we construct graph G′ = (V ′, E′) from G
by (i) replacing every edge (t, v), v ∈ Y ∪ Z, with a path P t

v of length
k + 1, (ii) replacing every edge (t, x), x ∈ X, with a P t

v of length 2, (iii) at-
taching degG(v) − 1 node-disjoint paths P 1

v , . . . , P
degG(v)−1
v of length k + 3

to every node v ∈ Y ∪ Z, and (iv) attaching deg(x) − 1 disjoint paths
P 1
x , . . . , P

degG(x)−1
x of length 2k + 2 to every node x ∈ X. See Figure 7

for an illustration of bipartite planar graph G′ when C = 10 (i.e., k = 3).

...
t

...

T

x
Additional (deg(i)− 1) paths of length 2k + 2

...
X

y Additional (deg(i)− 1) paths of length k + 3

...
Y

z
Additional (deg(i)− 1) paths of length k + 3

...
Z

Path of length k + 1

Path
of leng

th 2

Path of length k + 1

Figure 7: Construction of graph G′ for Theorem 3 with k = 3.

With a partition of V ′ into two independent sets, we associate a feasible
labeling of the nodes in V ′ and we thus obtain instance I = (V ′, E′, 2k + 4)
in polynomial time. Using similar arguments as in the proof of Theorem 2 we
prove that the 3DMP instance has a 3-dimensional matching of cardinality
q if and only if I-USNP instance I has a solution with |E′|+ |E′|

2k+4 .

The only value of C for which the computational complexity of I-USNP
remains open is C = 4. The key argument the proofs of Theorems 2 and
3 rely on is twofold: G′ contains no cycle of size less than C + 1 and G′

contains for every node t ∈ T , a tree with C edges that covers t and its
three associated nodes in X ∪ Y ∪ Z. This was achieved through successive
subdivisions of the edges of G. If C was equal to 4, only one of the three
edges in {(t, x), (t, y), (t, z)} could be subdivided for each t = (x, y, z) ∈ T
and cycles of size 4 might thus appear. That therefore prevents us from using
a similar argument as in the two foregoing proofs to prove that I-USNP with
C = 4 is NP-Hard on planar bipartite graphs. Since there is no reason
to believe a polynomial-time algorithm could be devised for I-USNP with
C = 4, we consequently conjecture.

Conjecture 1. The Intersection-USNP is NP-Hard for C = 4 even when
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restricted to the case where G is a planar bipartite graph.

3. Polyhedral Analysis

This section is devoted to a polyhedral study of USNP. A usual ap-
proach when tackling NP-Hard problems is to first model them as Mixed
Integer Programs (MIPs) and then apply branch-and-cut based algorithms.
A natural integer programming formulation for USNP presented in Pimenta
et al. (2017) is described below

min
∑
v∈V

∑
i∈K

yiv (3)

subject to∑
i∈K

xie = 1 ∀e ∈ E, (4)∑
e∈∆E(v)

xie ≤ C ∀v ∈ V, i ∈ K, (5)

xie − yiv ≤ 0 ∀i ∈ K, e ∈ E, v ∈ {oe, de}, (6)

xie ∈ {0, 1} ∀e ∈ E, i ∈ K, (7)

yiv ∈ {0, 1} ∀v ∈ V, i ∈ K. (8)

For every vehicle i ∈ K and every demand e ∈ E, the variable xie indicates
whether or not demand e is served by vehicle i (i.e., xie = 1 iff e ∈ Ei). The
variable yiv represents the fact that vehicle i stops or not at station v (i.e.,
yiv = 1 iff v ∈ V (Ei)). Objective function (3) minimizes the total number of
stops. The assignment constraints (4) ensure that every demand is served by
exactly one vehicle. The capacity constraints (5) guarantee that the vehicle’s
capacity never is violated all along the circuit. The stop constraints (6)
impose that a vehicle must stop at the pick-up and drop-off stations of every
demand assigned to it. Finally, constraints (7) and (8) make the x- and
y-variables be binary. The formulation (3)-(8) is hereinafter referred to as
USNP-XY. Its linear relaxation is obtained by replacing constraints (7) and
(8) by the inequalities

0 ≤ xie ≤ 1 ∀e ∈ E, i ∈ K, (9)

0 ≤ yiv ≤ 1 ∀v ∈ V, i ∈ K. (10)

Given an instance I = (V,E,C) of USNP, let USNP(V,E,C) denote the
convex hull of the solutions to (4)-(8) and P(V,E,C) denote the feasible set
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of the linear relaxation of USNP-XY, that is,

P(V,E,C) = {(x, y) ∈ Rmp × Rnp : (x, y) satisfies (4)-(6),(9) and (10)}.

The next theorem states the dimension of polytope USNP(V,E,C) and
gives the necessary and sufficient conditions for inequalities (5), (6), (9), and
(10) to be facet-defining for USNP(V,E,C); the proofs are omitted, since
they use standard techniques. (See Colares (2019).)

Theorem 4. Let G = (V,E) be a graph and K be a set of p vehicles of same
capacity C ∈ Z+ such that p > pmin.

(i) dim(USNP(V,E,C)) = (n+m)p−m.

(ii) Inequality (5) associated with station v ∈ V and vehicle i ∈ K is facet-
defining for USNP(V,E,C) if and only if

a. ∆E(v) \∆E(u) ̸= ∅ for every station u ∈ V \ v and
b. |∆E(v) \ δ(u)| ≥ C for every station u ∈ V .

(iii) Inequalities (6) are facet-defining for USNP(V,E,C).

(iv) Inequality xie ≥ 0 for demand e ∈ E and vehicle i ∈ K is facet-defining
for USNP(V,E,C) if and only if p ≥ 3.

(v) Inequality yiv ≤ 1 for station v ∈ V and vehicle i ∈ K is facet-defining
for USNP(V,E,C).

3.1. The weakness of formulation USNP-XY
The strength of formulations for USNP can be measured by the dual

(lower) bounds its linear relaxations provide. The larger the bound is, the
stronger the formulation is. We next investigate how strong formulation
USNP-XY is.

Theorem 5. Let zP (V,E,C) = min{
∑
v∈V

∑
i∈k

yiv : (x, y) ∈ P (V,E,C)}. We

have zP (V,E,C) = |V | = n.

Proof. We first show that zP (V,E,C) ≥ n. For every station v ∈ V , consider
a demand ev ∈ δ+(v)∪ δ−(v). Summing up the p inequalities (6) associated
with v and ev yields

∑
i∈K yiv ≥

∑
i∈K xiev . The n inequalities thus obtained,

combined with (4), gives ∑
i∈K

yiv ≥ 1 ∀v ∈ V
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and therefore zP (V,E,C) ≥ n.
To complete the proof we now provide a feasible solution (x̄, ȳ) whose cost

equals n. Let x̄ie = 1
p for all e ∈ E, i ∈ K, and ȳiv = 1

p for all v ∈ V, i ∈ K.
Solution (x̄, ȳ) clearly satisfies constraints (4)-(6), (9), and (10). Therefore,
(x̄, ȳ) is a feasible solution whose cost is

∑
v∈V

∑
i∈K ȳiv = |V |.

Notice that n = |V | is a trivial lower bound on the number of stops. Since
each station is assumed to be the pick-up or drop-off station for at least one
demand, it indeed must be visited by at least one vehicle. The following
example illustrates how the lower bound given in Theorem 5 may be very
weak. Consider an instance where all demands go from station 1 to station
2. The optimal value of the linear relaxation of USNP-XY is equal to 2,
while the optimal value of USNP-XY is 2

⌈
m
C

⌉
. In other words one may find

a relative integrality gap as large as 1− 1

⌈m
C ⌉

. This negative result actually

indicates that there exists quite some room for improvements on formulation
USNP-XY. We therefore investigate new valid inequalities to strengthen it.

3.2. Strong capacity inequalities
The first family of inequalities we introduce relies on using C as an upper

bound on the number of demands a vehicle may pick up (or drop off) at a
station providing it stops there.

Theorem 6. The strong capacity inequalities∑
e∈δ−(v)

xie − Cyiv ≤ 0 ∀v ∈ V, i ∈ K, (11)

∑
e∈δ+(v)

xie − Cyiv ≤ 0 ∀v ∈ V, i ∈ K. (12)

are valid for USNP(V,E,C). Moreover, inequalities (11) (resp. (12)) asso-
ciated with v ∈ V are facet-defining if and only if |δ−(v)| ≥ C + 1 (resp.
|δ+(v)| ≥ C + 1).

Proof. Let i ∈ K be a vehicle and v ∈ V be a station. We first prove the
validity of (11) and (12). If vehicle i does not stop at station v (i.e., yiv = 0)
then it cannot serve any demand whose pick-up (or drop-off) station is v.
If vehicle i stops at station v (i.e., yiv = 1), then its capacity only allows
vehicle i to serve at most C demands whose pick-up (or drop-off) station is
v. Inequalities (11) and (12) hence are valid for USNP(V,E,C).

The proof of necessary and sufficient conditions under which inequalities
(11) and (12) are facet-defining for USNP(V,E,C) is given in the Appendix.
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Using Chvàtal-Gomory procedure (Chvatal, 1973; Gomory et al., 1958),
we derive new valid inequalities from (4), (11), and (12).

Theorem 7. The following min-stop inequalities∑
i∈K

yiv ≥
⌈
max{|δ−(v)|, |δ+(v)|}

C

⌉
∀v ∈ V (13)

are valid for USNP(V,E,C).

Proof. Let v ∈ V be a station. Summing up the p inequalities (11) associated
with v yields ∑

e∈δ−(v)

∑
i∈K

xie − C
∑
i∈K

yiv ≤ 0.

By (4), we have
∑

e∈δ−(v)

∑
i∈K

xie = |δ−(v)|. After having divided the previous

inequality by C and then rounded-up the constant term |δ−(v)|
C , we obtain∑

i∈K
yiv ≥

⌈
|δ−(v)|

C

⌉
. A similar argument gives

∑
i∈K

yiv ≥
⌈
|δ+(v)|

C

⌉
from (12).

Adding inequalities (13) to formulation USNP-XY guarantees that its
linear relaxation’s optimal value is at least the lower bound provided by
(1). It is also worth noticing that inequalities (11)-(13) cut off the fractional
extreme point considered in the proof of Theorem 5. To assess the effec-
tiveness of considering such inequalities in our formulation, we compare the
root node’s relative MIP gaps provided by CPLEX 12.8 when inequalities
(11)-(13) are added or not to formulation USNP-XY.

To the best of our knowledge, there are no standard test sets for USNP in
the literature. We therefore created our own set of 54 USNP instances that
is used throughout our study. Each instance is randomly generated with re-
spect to scenarios based on a number of demands m ∈ {30, 35, 40, 45, 50, 55},
a capacity C ∈ {2, 5, 8}, and a density ρ = m

n ∈ {1.5, 3.0, 4.5}. Each gener-
ated instance is then referred to as m_C_ρ.

Table 1 summarizes the results we obtained for instances with C = 5
and either low density (i.e., ρ = 1.5) or high density (i.e., ρ = 4.5). For
each formulation (i.e., USNP-XY and USNP-XY with (11)-(13)), Table 1
presents the lower bounds LBr and upper bound UBr obtained after having
processed the root node of our branch-and-cut framework. The relative MIP
gaps UBr−LBr

UBr then are given in columns labeled gapr(%), and for formula-
tion USNP-XY with (11)-(13) we also provide the numbers of added Strong
Capacity inequalities (11)-(12) in column labeled cut.
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Table 1: How Strong Capacity inequalities reinforce formulation USNP-XY.

Instances USNP-XY USNP-XY with (11)-(13)
m C ρ LBr UBr gapr(%) LBr UBr gapr(%) cut

30 5 1.5 19.5 27 27.78 20.4 29 29.66 71
35 5 1.5 23.4 34 31.18 23.8 39 38.97 83
40 5 1.5 28.3 49 42.24 28.3 39 27.44 50
45 5 1.5 30.6 42 27.14 30.6 42 27.14 0
50 5 1.5 34.5 52 33.65 35.7 69 48.26 146
55 5 1.5 37.6 76 50.53 37.7 73 48.36 81
30 5 4.5 9.4 16 41.25 14 14 0.00 210
35 5 4.5 10.3 21 50.95 16.6 19 12.63 337
40 5 4.5 10.8 24 55.00 15.2 20 24.00 436
45 5 4.5 12.6 34 62.94 19.6 28 30.00 926
50 5 4.5 13.9 45 69.11 21.6 33 34.55 979
55 5 4.5 14.5 54 73.15 22.2 36 38.33 1174

Inequalities (11)-(13) appear quite effective for high-density instances,
with an average lower-bound increase of 52.48%, a reduction in the upper-
bound values, and consequently smaller relative MIP gaps. For low-density
instances, the benefits of adding (11)-(13) seem very slim if any. Even though
the lower bound averagely increased by 1.68%, half the upper bounds did
worsen which thus led to larger relative MIP gaps. Such deterioration in
the upper bounds is due to the way CPLEX handles its calls for primal
heuristics.

For relatively sparse graphs, inequalities (11)-(13) may fail to effectively
strengthen formulation USNP-XY as illustrated in Table 1 when ρ = 1.5.
The most symptomatic instances are those where the degree of each node is
at most C. Inequalities (11)-(13) then become redundant and therefore yield
no reinforcement of formulation USNP-XY. The instance given in Figure 8
where C = 2 illustrates this fact. The lower bound provided by the linear
relaxation of USNP-XY with (11)-(13) is n, as stated in Theorem 5, while the
optimal value to (3)-(8) equals 3n

2 . To overcome this limitation, we introduce
a new family of facet-defining inequalities that are based on the notion of
k-cardinality tree.

3.3. k-cardinality tree inequalities
Given a positive integer k, a k-cardinality tree is an undirected, con-

nected, and acyclic graph having exactly k edges (Fischetti et al., 1994). Let
CT (G, k) denote the set of edge sets that induce k-cardinality trees of G,

19



n
2

1

n

n
2 + 1

Figure 8: Example of instance where the inclusion of strong capacity inequalities is useless
but k-cardinality tree inequalities are important.

that is, CT (G, k) = {S ⊆ E(G) : G(S) is a k-cardinality tree}.

Theorem 8. The k-cardinality tree inequalities∑
e∈S xie −

∑
u∈V (S)(degG(S)(u)− 1)yiu ≤ 0 ∀i ∈ K, v ∈ V, S ⊆ ∆E(v)

with S ∈ CT (G,C + 1)
(14)

are valid for USNP(V,E,C).

Proof. Let i ∈ K be a vehicle, v ∈ V be a station, and S ⊆ ∆E(v) with
T = G(S) being a (C + 1)-cardinality tree. We prove that the associated
inequality (14) can be obtained as a rank-1 Chvátal-Gomory cut. Select an
arbitrary node r of T and think about T as a tree rooted at r. For every
pair of distinct nodes t and u of T , we write t ≺ u if t lies on the path of
T from r to u. For every node u ∈ V (T ), let Tu denote the subtree of T
rooted at u. (Note that Tr = T .) Consider the following linear combination
of inequalities (5), (6), and (9)

(C − |E(Tu)|)(xie − yit) ≤ 0 ∀e = (t, u) ∈ S, t ≺ u,
|E(Tu)|(xie − yiu) ≤ 0 ∀e = (t, u) ∈ S, t ≺ u,∑

e∈∆E(v) x
i
e ≤ C,

−xie ≤ 0 ∀e ∈ ∆E(v) \ S.

The sum of the above inequalities results in

(C + 1)
∑
e∈S

xie − (C + 1)
∑

v∈V (S)

(degG(S)(v)− 1)yiv ≤ C.

Dividing it by (C+1) and rounding down the right-hand side yields (14).

For the instance given in Figure 8 where C = 2, the optimal value of
the linear relaxation of formulation USNP-XY reinforced with k-cardinality
tree inequalities (14) equals 3m

2 (i.e., the relative MIP gap has vanished).
Figure 9 plots the root node’s relative MIP gaps we obtained by considering
either USNP-XY with (11)-(13) or USNP-XY with (11)-(14) for the foregoing
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Figure 9: Improvement in the relative MIP gap at the root node after adding inequalities
(14) for instances where C = 2 and ρ = 1.5.

instances where C = 2 and ρ = 1.5. The addition of (14) makes these gaps
drop below 40% when they were around 60% before.

The next theorem provides necessary and sufficient conditions under
which inequalities (14) are facet-defining for USNP(V,E,C).

Theorem 9. The k-cardinality tree inequalities (14) are facet-defining if and
only if

(i.) there does not exist a node u ∈ V (S) such that S ⊂ δ−G(u) or S ⊂
δ+G(u), and

(ii.) there does not exist an edge (u1, u2) ∈ E \ S such that u1 and u2 are
the only internal nodes of G(S).

Proof. The complete proof can be found in the Appendix.

Although not used in the branch-and-cut framework described in Section
4, it is worth mentioning that a generalization of k-cardinality tree inequali-
ties to S ⊆ E such that G(S) is a forest with |S ∩∆E(v)| = C+1 have been
introduced by Colares (2019).

3.4. Girth inequalities
So far, we only have made use of sparsest structures, such as stars and

trees, to derive valid inequalities for USNP(V,E,C). We now introduced new
families of valid inequalities by looking at some denser structures. The girth
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of a graph G corresponds to the length of its smallest cycle. If G is a graph
of girth k, then G(S) is a forest for any S ⊆ E(G) such that |S| ≤ k − 1.
Our next family of valid inequalities is based on this remark. Let G(G, k)
denote the set of edge sets that induce subgraphs of girth at least k, that is,
G(G, k) = {S ⊆ E(G) : G(S) has girth at least k}.

Theorem 10. The girth inequalities∑
e∈S(C + 1)xie −

∑
u∈V (S)Cyiu ≤ 0 ∀i ∈ K, v ∈ V, S ⊆ ∆E(v)

with S ∈ G(G,C + 1)
(15)

are valid for USNP(V,E,C).

Proof. Let i ∈ K be a vehicle, v ∈ V be a station, and S ⊆ ∆E(v) with G(S)
of girth greater than or equal to C+1. Consider an arbitrary feasible solution
(x̄, ȳ) ∈ USNP(V,E,C)∩Z(n+m)p and let Si ⊆ S denote the set of demands
of S served by vehicle i in the solution (x̄, ȳ), that is, Si = {e ∈ S : x̄ie = 1}.
If Si = ∅, then (15), associated with i, v, and S, is obviously satisfied by
(x̄, ȳ). Hence assume |Si| ≥ 1. By definition,∑

e∈S
(C + 1)x̄ie =

∑
e∈Si

(C + 1) = C|Si|+ |Si|.

Since S ⊆ ∆E(v), we must have |Si| ≤ C. G[S] having girth greater than or
equal to C + 1 thus implies that G[Si] must be a forest and vehicle i hence
stops at at least |Si|+ 1 stations in V (S). Therefore,∑

u∈V (S)

Cȳiu ≥
∑

u∈V (Si)

C ≥ (|Si|+ 1)C = C|Si|+ C.

Consequently,∑
e∈S

(C + 1)x̄ie = C|Si|+ |Si| ≤ C|Si|+ C ≤
∑

u∈V (S)

Cȳiu,

and our proof is complete.

Using Chvàtal-Gomory procedure, we derive new valid inequalities from
girth inequalities (15).

Theorem 11. The following inequalities∑
u∈V (S)

∑
i∈K

yiu ≥ |S|+
⌈
|S|
C

⌉
∀v ∈ V, S ⊆ ∆E(v) with S ∈ G(G,C+1) (16)

are valid for USNP(V,E,C).
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Proof. Let v ∈ V be a station and S ⊆ ∆E(v) with G(S) of girth greater
than or equal to C + 1. Summing up the p inequalities (15) yields∑

u∈V (S)

∑
i∈K

Cyiu ≥
∑
e∈S

∑
i∈K

(C + 1)xie.

Using (4),we then obtain∑
u∈V (S)

∑
i∈K

yiu ≥ C + 1

C

∑
e∈S

∑
i∈K

xie =
C + 1

C
|S| = |S|+ |S|

C
.

Rounding up |S|+ |S|
C thus give inequalities (16). Note that S ∈ G(G,C+1)

implies |S| > C.

If (V,E,C) is an instance of I-USNP with G = (V,E) of girth greater
than or equal to C + 1, then Theorem 11 immediately provides

m+
⌈m
C

⌉
as a lower bound on the total number of stops.

4. Branch-and-cut and computational results

The branch-and-cut framework we have developed from the results ob-
tained in Section 3 is hereafter presented. To boost its performance, several
features, such as (i) breaking the symmetry inherent in USNP, (ii) eliminat-
ing variables, (iii) relaxing variables, and (iv) integrating the strengthening
inequalities of Section 3, have been carefully handled and are next reviewed.

4.1. Symmetry
In Margot (2010), a MIP is defined as being symmetric if its variables can

be permuted without changing the problem’s structure. In our case, since
vehicles are considered to be identical, USNP hides a complete symmetry
with respect to vehicles. In other words, a feasible solution {E1, . . . , Ep} en-
sures the existence of p! distinct equivalent solutions since every permutation
of {E1, . . . , Ep} is feasible and has the same number of stops.

Numerous authors have highlighted the importance of eliminating, or at
least reducing, symmetry that may appear in MIPs (e.g., Sherali and Smith
(2001); Kaibel and Pfetsch (2008); Denton et al. (2010); Ostrowski et al.
(2010)). When solving a symmetric MIP through a branch-and-bound-based
procedure, isomorphic subproblems are encountered in the enumeration tree
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yielding a useless duplication of efforts and slowing down the resolution pro-
cess.

Kaibel et al. (2011) proposed a linear-time algorithm called Orbitopal
Fixing that completely removes symmetry for partition problems. At each
node of the enumeration tree, the method fixes variables based on both a
predefined lexicographic order and the already-fixed variables at this cur-
rent node. With respect to USNP, such lexicographic order would amount
to impose that (i.) the e-th demand, e ∈ {1, . . . ,m}, must be assigned to
one of the first e vehicles, and (ii.) a demand e ∈ E cannot be assigned
to an empty vehicle i if there exists another empty vehicle i′ such that
i′ < i. In our branch-and-cut framework to solve USNP, we have applied
this Orbitopal-Fixing approach at every branching step. Classic symmetry-
breaking constraints were also investigated but did not perform as well as the
Orbitopal-Fixing approach. Detailed results on this feature may be found in
Colares (2019).

4.2. Variable elimination
In Section 2, we have showed that, unlike stated by Pimenta et al. (2017),

the minimum number of vehicles needed to obtain an optimal solution to
USNP may differ from the minimum number of vehicles needed to obtain
a feasible solution, that is, popt ̸= pmin. For this reason, the number of
available vehicles p has been so far assumed to be m. Notice however, that
the number of variables in our formulation is directly related to the number
of available vehicles. More precisely, formulation USNP-XY uses (m + n)p
variables. Providing a tighter upper bound on popt would therefore allow to
considerably reduce the number of variables in the formulation. Moreover,
as mentioned in the previous section, the symmetry inherent in USNP is
closely related to the number of available vehicles, for each feasible solution
corresponds to p! equivalent solutions. The benefits of decreasing the value
of p would hence be twofold: reducing the number of variables in formulation
USNP-XY and lessening the MIP symmetry. The next theorem provides a
better upper bound on popt.

Theorem 12. For any USNP instance I = (V,E,C), we have

popt ≤

⌈
m⌊

C
2

⌋
+ 1

⌉
.

Proof. Consider a USNP instance I for which popt =

⌈
m

⌊C
2 ⌋+1

⌉
+ 1.
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Let {E1, . . . , Epopt , . . . , Ep} be an optimal solution for I where without
loss of generality, Ei ̸= ∅ for 1 ≤ i ≤ popt and Ei = ∅ for popt+1 ≤ i ≤ p. We
clearly have |Ei1 |+ |Ei2 | > C for any distinct vehicles 1 ≤ i1, i2 ≤ popt since
otherwise, merging both vehicles i1 and i2 would yield an optimal solution
using one less vehicle. Therefore, at most one vehicle i ∈ {1, . . . , popt} serves
less than

⌊
C
2

⌋
+1 demands, that is, this vehicle serves 1 ≤ d ≤

⌊
C
2

⌋
demands.

All the other (popt−1) vehicles serve at least
⌊
C
2

⌋
+1 demands each, implying

m ≥ (popt − 1)

(⌊
C

2

⌋
+ 1

)
+ d =

(⌈
m⌊

C
2

⌋
+ 1

⌉)(⌊
C

2

⌋
+ 1

)
+ d. (17)

Since
m = (popt − 1)

(⌊
C

2

⌋
+ 1

)
+ r

with 0 ≤ r <
⌊
C
2

⌋
+ 1, we obtain from (17) d ≤ 0, a contradiction to vehicle

i being nonempty. Therefore, popt ≤
⌈

m

⌊C
2 ⌋+1

⌉
.

It is worth noticing that the upper bound on popt given in Theorem 12
is tight for some USNP instances. Indeed, if we consider an instance of
Intersection-USNP composed of C disjoint sets of

⌊
C
2

⌋
+1 parallel demands,

then the optimal solution consists of assigning each set to a different vehicle

and hence, popt =
⌈

m

⌊C
2 ⌋+1

⌉
= C.

4.3. Variable relaxation
It can be easily seen that once the x-variables are fixed to 0-1 values

(i.e., once the set of demands each vehicle serves is known), the problem of
deciding where the vehicles stop becomes trivial. For every vehicle i ∈ K and
every station v ∈ V , we simply set variable yiv to max{xie : e is incident to v}.
This means that the integrality constraints (8) for the y-variables can be
dropped. Let USNP-X denote the formulation defined by (3)-(7),(10).

The opposite question of deciding whether or not an optimal assignment
of demands to vehicles can be deduced in polynomial time once the stops
of each vehicle are known is not straightforward. Such question may be
answered by showing that the polytope associated with P (V,E,C) when the
y-variables are fixed to 0-1 values is integral. We next positively answer this
question for I-USNP but we provide a counterexample for general USNP.

For any ȳ ∈ {0, 1}n×p let

Px(V,E,C, ȳ) = {(x, y) ∈ P (V,E,C) : y = ȳ}
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denote the face of the polytope P (V,E,C) induced by y being fixed to ȳ.

Theorem 13. Given an instance (V,E,C) of Intersection-USNP and a vec-
tor ȳ ∈ {0, 1}n×p, the polyhedron Px(V,E,C, ȳ) is integral.

Proof. Since (V,E,C) is an instance of I-USNP, the capacity constraints (5)
reduce to ∑

e∈E
xie ≤ C ∀i ∈ K. (18)

The coefficient matrix of the system (4),(18) corresponds to the node-edge
incidence matrix of the complete bipartite graph whose node set is E ∪K,
and hence is well-known for being totally unimodular. Since appending
the identity matrix to a totally-unimodular matrix preserves the totally-
unimodular property and so does duplicating a row or multiplying a row by
-1, the coefficient matrix of the system defining Px(V,E,C, ȳ) also is totally
unimodular. Consequently, Px(V,E,C, ȳ) is an integral polytope.

The complete bipartite graph the proof of Theorem 13 relies on cannot be
achieved for USNP instances. The total unimodularity of the system defin-
ing Px(V,E,C, ȳ) then is not preserved for those instances. The following
example shows that if there is no station v ∈ V for which ∆E(v) = E, then
Px(V,E,C, ȳ) may have a fractional extreme point. Consider the instance
depicted in Figure 10 with C = 1. If ȳ = 1, then the following fractional
solution x̄ is an extreme point of Px(V,E, 1,1) as it is the unique solution
to the system of inequalities defining Px(V,E, 1,1) that are binding at x̄:

x̄1e =

{
1
2 if e ∈ {a, c, d},
0 if e ∈ {b}, x̄2e =

{
1
2 if e ∈ {a, b},
0 if e ∈ {c, d},

x̄3e =

{
1
2 if e ∈ {b, d},
0 if e ∈ {a, c}, x̄4e =

{
1
2 if e ∈ {c},
0 if e ∈ {a, b, d}.

a

b
c

d

1 2 3 4

Figure 10: Counter-example USNP instance to prove the nonintegrality of polyhedron
Px(V,E,C, ȳ) when C = 1.

For USNP, keeping the integrality of the y-variables while relaxing that
of the x-variables therefore does not guarantee the integrality of the asso-
ciate solution. So let USNP-Y denote the formulation USNP-XY with the
additional rules that prioritizes branching on a y-variable over an x-variable.
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In our computational experiments we therefore consider three formula-
tions, USNP-XY, USNP-X, and USNP-Y that, although equally strong as
their linear relaxations are identical, differ in how the integrality constraints
(7),(8) and the branching rules are managed. In USNP-XY, no particular
branching rule is applied and the optimization solver uses its default rules
to choose which variable it branches on. In USNP-X, where (8) are relaxed,
only x-variables can be branched on. In USNP-Y, branching on an x-variable
is only possible once all the y-variables have values in {0, 1}. Notice that the
information derived from fixing either an x-variable or a y-variable is much
different. On the one hand, for a station v ∈ V and a vehicle i ∈ K, fixing
yiv to 0 implies xie = 0 for every demand e ∈ δ(v). On the other hand, for a
demand e ∈ E and a vehicle i ∈ K, fixing xie to 1 only implies yioe = yide = 1.
Furthermore, the denser the associated graph G is the larger is the differ-
ence between the numbers of x- and y-variables. We may therefore expect
USNP-Y to produce better results when G is dense.

Table 2 provides a sample of the results obtained with each formulation
for the instances described in Section 3.2 where C = 5. In this experiment,
Orbitopal Fixing symmetry-breaking method is applied and the number of
available vehicles is set to the new upper bound on popt given by Theorem 12.
For each formulation, the total number of binary variables is given in column
bin. The total amount of time (in seconds) required by the branch-and-cut
framework is displayed in column CPU. A time limit of 2 hours is imposed
and once exceeded, the relative MIP gap is displayed in column gap. The
number of nodes (in thousands) explored in the enumeration tree is given in
column node.

Table 2: Comparison between formulations USNP-XY, USNP-X and USNP-Y.

Inst. USNP-XY USNP-X USNP-Y
m ρ bin CPU gap node bin CPU gap node bin CPU gap node

30 1.5 500 14.1 - 9.8 300 16.5 - 8.3 500 5 - 3.1
35 1.5 696 522 - 227 420 111 - 39.6 696 755 - 296
40 1.5 924 1896 - 546 560 2183 - 501 924 7200 4.8 1637
45 1.5 1125 7200 5.7 1144 675 7200 7.1 1205 1125 7200 8.4 1063
50 1.5 1411 7200 9.5 858 850 7200 11.0 781 1411 7200 11.8 827
55 1.5 1729 7200 15.3 533 1045 7200 12.7 507 1729 7200 12.9 416
30 4.5 360 1.8 - 0.6 300 68.9 - 48.9 360 1.8 - 0.9
35 4.5 504 7200 8.2 3070 420 4330 - 2012 504 186 - 67.5
40 4.5 672 7200 16.0 1310 560 7200 18.4 1388 672 2130 - 499
45 4.5 825 7200 26.2 1056 675 7200 25.0 1082 825 7200 19.5 809
50 4.5 1037 7200 27.9 755 850 7200 30.2 778 1037 7200 24.9 604
55 4.5 1273 7200 34.1 494 1045 7200 34.1 473 1273 7200 30.3 431
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As expected, formulation USNP-Y clearly outperforms the other two
formulations for instances with dense graphs (i.e., ρ = 4.5). Considering
only instances with ρ = 4.5, formulation USNP-Y was generally able to
either solve faster the problem to optimality or provide smaller relative MIP
gaps when compared to USNP-XY and USNP-X. For sparse instances (i.e.,
ρ = 1.5), formulation USNP-Y did not outperform USNP-X or USNP-XY.
Even if neither USNP-XY nor USNP-X seems to perform consistently better
than the other for sparse instances in Table 2, a deeper analysis over the
whole set of sparse instances shows that formulation USNP-X has, in average,
slightly better performance. For this reason in the follow-up experiments,
we have decided to only apply formulation USNP-X when the instance is
sparse (i.e., ρ = 1.5). For every other instance, we have chosen to only apply
formulation USNP-Y.

4.4. Integrating cuts
We now look at how the strengthening valid inequalities (11), (12), (13),

(14), (15), and (16) are managed throughout our branch-and-cut framework.
Since the strong-capacity inequalities (11), (12), and (13) appear in polyno-
mial numbers, storing them in a pool and checking whether they all are
satisfied remains an efficient way of handling them. For the k-cardinality
tree inequalities (14) and the girth inequalities (15), and (16), we next focus
on their separation problems. Recall that for a family F of valid inequalities,
the separation problem for F consists of either finding an inequality in F vi-
olated by a given a vector (x̄, ȳ) ∈ R(m+n)×p or proving that (x̄, ȳ) satisfies
all the inequalities in F .

Theorem 14. The separation problem for the k-cardinality tree inequalities
(14) is NP-Hard.

Proof. We give a reduction from the k-Minimum Spanning Tree decision
problem (k-MST) which can be defined as follows. Given a graph G = (V,E)
with edge-weight vector w ∈ RE and a scalar B, does there exist a tree
T = (V ′, E′) spanning exactly k edges (i.e., so that |E′| = k) with total
weight at most B? This problem can be solved in polynomial time when
G is itself a tree or when k is a fixed constant, but it is NP-Hard in the
general case. (See Fischetti et al. (1994); Ravi et al. (1996).) Notice that for
proving the NP-Hardness of k-MST, Fischetti et al. (1994) used a reduction
from the Steiner Tree problem that preserves bipartiteness. Since the Steiner
Tree problem is NP-Hard even on bipartite graphs (see Garey and Johnson
(2002, p. 208)), k-MST also is NP-Hard on bipartite graphs.
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Consider thus a k-MST instance specified by a bipartite graph G =
(V,E), negative edge-weights w ∈ RE , and a scalar B ∈ R, and the I-USNP
instance (V,E, k − 1). Let (x̄, ȳ) ∈ R(m+n)×p be defined by x̄ie = −we for
every vehicle i ∈ K and every demand e ∈ E, and ȳiv = − B

k−1 for every
vehicle i ∈ K and every station v ∈ V . We now show that any tree T ′ of G
spanning exactly k edges such that w(E(T ′)) ≤ B−ϵ for ϵ > 0 corresponds to
a k-cardinality tree inequality violated by (x̄, ȳ). Let T be any k-cardinality
tree in G. Notice that by definition, |V (T )| = k+1. Since all the y-variables
have the same value, we then obtain∑

u∈V (T )

(degT (u)− 1)ȳiu =
∑

u∈V (T )

degT (u)ȳ
i
u −

∑
u∈V (T )

ȳiu

= −2k
B

k − 1
+ (k + 1)

B

k − 1
= −B.

Therefore, the k-cardinality inequality (14) associated with vehicle i ∈ K
and set E(T ) ∈ CT (G, k) of demands is equivalent to∑

e∈E(T )

x̄ie ≤ −B.

If this inequality is violated by (x̄, ȳ), then the k-cardinality tree T solves
k-MST since

∑
e∈E(T ) x̄

i
e = −w(E(T )). Conversely, any k-cardinality tree

T of G such that w(E(T )) ≤ B − ϵ induces a k-cardinality tree inequality
violated by (x̄, ȳ).

Since the separation of inequalities (14) is NP-Hard, we have chosen to
heuristically solve it through a simple greedy procedure. Given a solution
(x̄, ȳ) ∈ R(m+n)×p and a vehicle i ∈ K, this heuristic constructs a maximum-
weight (C+1)-cardinality tree of graphs G[∆E(v)] with the restriction of x̄i

to ∆E(v) as edge weights and the restriction of −ȳi to V (∆E(v)) as node
costs, for v ∈ V , by iteratively adding the highest-valued edge to the tree.
Such algorithm runs in O(Cm) time.

Theorem 15. The separation problem for girth inequalities (15) is NP-Hard.

Proof. We show that the separation problem for the girth inequalities (15)
is equivalent to the Hamiltonian Cycle (HC) problem. Given a graph G =
(V,E), HC problem consists of finding a cycle H = (V, S) of G. This problem
was shown to be NP-Hard even if G is bipartite (see Krishnamoorthy (1975)).

From a bipartite graph G = (V,E), construct an I-USNP instance (V,E,
|V | − 1) and define (x̄, ȳ) ∈ R(m+n)×p as follows. For every vehicle i ∈ K
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and every demand e ∈ E, let x̄ie =
1
|V | and for every vehicle i ∈ K and every

station v ∈ V , let ȳiv = 1
|V | . We show that any girth inequality violated by

(x̄, ȳ) induces an Hamiltonian Cycle in G and conversely.
Let S ⊆ E be the edge set of an Hamiltonian cycle H of G. The left-hand

side of inequality (15) associated with vehicle i ∈ K and set S ∈ G(G, |V |)
of demands then satisfies∑

e∈S
|V |x̄ie −

∑
u∈V (S)

(|V | − 1)ȳiu = |V | − (|V | − 1) > 0

and this girth inequality is violated by (x̄, ȳ).
To complete the proof, let S ⊆ E be such that the girth of G[S] is greater

than or equal to |V | and G[S] is not an Hamiltonian cycle of G. Then, G[S]
is acyclic and hence |V | ≥ |V (S)| ≥ |S|+1. The left-hand side of inequality
(15) associated with vehicle i ∈ K and set S ∈ G(G, |V |) of demands then
satisfies ∑

e∈S
|V |x̄ie −

∑
u∈V (S)

(|V | − 1)ȳiu = |S| − |V (S)| |V | − 1

|V |
≤ 0.

Consequently if a girth inequality induced by a set S ⊆ E and violated by
(x̄, ȳ) is found, then the cycle G[S] solves HC problem.

Since the separation problem for inequalities (15) is NP-Hard, we pro-
pose a greedy procedure to solve it heuristically. Given a solution (x̄, ȳ) ∈
R(m+n)×p and a vehicle i ∈ K, this heuristic is based on the idea of building
a maximum-cost spanning tree T of graphs G[∆E(v)] with the restriction of
(C+1)x̄i to ∆E(v) as edge weights, for v ∈ V , and then including additional
edges to T such that the resulting graph does not contain any cycle of size
less than or equal to C. The proposed algorithm runs in O(m log n) time
and is also used to heuristically separate inequalities (16).

4.5. Numerical experiments
To implement the features described in this section, we have made use of

the callback functionality of CPLEX 12.8. When doing so, CPLEX deacti-
vates some of its default settings (e.g., dynamic search and dual reductions).
For a fair comparison, a dummy callback is used to deactivate such features
in our baseline CPLEX solver. This is a common practice in the literature
for proving the efficiency of branching, cutting planes, and node-selection
methods. (See, e.g., Carvajal et al. (2014), Sabharwal et al. (2012), Fis-
chetti and Monaci (2014).) Table 3 provides a performance comparison of
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the branch-and-cut framework described in Section 4 (displayed as scenario
branch-and-cut) and the formulation USNP-XY solved using CPLEX’s tra-
ditional branch-and-cut algorithm (displayed as scenario CPLEX).

Columns timeg, LBg, UBg, gapg, and Nodes provide information on the
global optimization process by showing, respectively, the total amount of
time (in seconds), the lower and upper bounds obtained at the end of the
optimization process, the relative MIP gap and the total number of nodes
investigated in the enumeration tree. Column CP refers to the total num-
ber of cuts CPLEX automatically generated during the whole optimization
process. Columns cutSC , cutKT , and cutG indicate the total numbers of
violated strong capacity inequalities (11)-(13), k-cardinality tree inequali-
ties (14), and girth inequalities (15)-(16), respectively, added during the
optimization process. Finally, columns cuttot and timecut provide the total
number of added user-defined cuts (11)-(16) and the total amount of time
spent solving the separation problems for (14)-(16), respectively. All numer-
ical experiments were performed on a 3.1 GHz Intel Xeon E5 computer with
32 Gb of memory.

The results achieved by branch-and-cut clearly outperform the ones
obtained with CPLEX. Indeed, while only one out of the 54 instances described
in Section 3.2 could be solved to optimality within the time limit of 2 hours
by CPLEX, branch-and-cut could optimally solve 24 of them. The only
instance solved by CPLEX required almost 40 minutes while branch-and-cut
solved it in only 2 seconds. Moreover, the number of nodes explored to prove
optimality for such instance went down from 538,000 to 100.

Even if the total number of explored nodes required to prove optimal-
ity is greatly reduced with branch-and-cut, the time spent at each node
of the enumeration tree might considerably increase. Despite the fact that
the linear-relaxation size (i.e., the numbers of variables and constraints) is
significantly reduced by the elimination of variables and the integration of
symmetry-breaking methods described in Section 4, longer node evaluation
does not come as a surprise since many violated cuts are added to the formu-
lation, yielding several re-optimization of the node’s linear program. Notice
that for some unsolved instances (e.g., 55_2_3.0), branch-and-cut spent
the whole optimization process at the root node, searching for violated cuts
and re-optimizing the root’s linear program with such new cuts. Such be-
havior reveals a trade-off between quickly solving the nodes’ linear programs
and hence further exploring the enumeration tree, or instead, strengthening
the nodes’ formulations with the continuous search for violated cuts. Using
our separation heuristics, we believe we have found a good balance between
these two aspects. Indeed, for the 30 instances that could not be solved
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Table 3: Final computational results.

Instances CPLEX Branch-and-Cut
m C ρ timeg LBg UBg gapg Nodes CP timeg LBg UBg gapg Nodes CP cutSC cutKT cutG cuttot timecut
30 2 1.5 7200 22.6 35 35.3 808.0 143 36.5 35.0 35 - 1.9 0 143 491 81 715 2.5
30 5 1.5 7200 19.5 25 22.1 1318 40 27.3 25.0 25 - 2.9 0 16 739 101 856 2.1
30 8 1.5 2351 24.0 24 - 538.0 4 2 24.0 24 - 0.1 1 0 190 9 199 0.2
35 2 1.5 7200 25.1 41 38.9 591.1 109 6007 41.0 41 - 433.1 0 207 835 75 1117 7.0
35 5 1.5 7200 23.4 31 24.6 627.6 26 571 31.0 31 - 24.8 0 24 1387 440 1851 11.5
35 8 1.5 7200 25.0 29 14.0 701.3 4 5.1 29.0 29 - 1.1 0 0 129 7 136 0.4
40 2 1.5 7200 26.8 51 47.4 356.9 15 7200 45.5 50 9.0 308.4 0 252 1662 115 2029 19.4
40 5 1.5 7200 27.7 37 25.0 572.7 6 6112 37.0 37 - 281.5 2 15 1283 109 1407 10.1
40 8 1.5 7200 26.6 32 17.0 394.5 3 9.7 32.0 32 - 1.9 0 0 147 9 156 0.3
45 2 1.5 7200 29.8 50 40.4 141.1 236 7200 45.7 49 6.7 206.4 0 287 1318 168 1773 14.5
45 5 1.5 7200 30.5 40 23.8 337.9 4 7200 36.9 40 7.8 390.4 3 0 1400 187 1587 10.2
45 8 1.5 7200 31.3 38 17.6 259.2 4 227 38.0 38 - 13.4 0 0 1197 103 1300 5.2
50 2 1.5 7200 35.5 63 43.6 59.5 231 7200 57.0 62 8.1 87.5 0 390 2109 335 2834 52.9
50 5 1.5 7200 33.0 46 28.3 192.6 5 7200 41.0 46 10.9 132.0 0 34 3406 727 4167 75.4
50 8 1.5 7200 33.1 41 19.3 193.7 4 1625 41.0 41 - 59.6 0 0 1216 129 1345 13.1
55 2 1.5 7200 37.2 65 42.8 47.4 290 7200 58.6 64 8.4 36.2 0 435 1913 171 2519 24.9
55 5 1.5 7200 35.8 52 31.1 69.2 19 7200 45.0 51 11.8 195.6 1 19 1701 152 1872 33.1
55 8 1.5 7200 34.7 44 21.1 99.9 3 7200 40.8 44 7.3 162.1 2 0 2983 260 3243 32.7
30 2 3.0 7200 18.0 31 42.1 775.0 170 7200 28.7 31 7.4 1155.4 9 160 509 82 751 6.1
30 5 3.0 7200 12.8 19 32.4 1040 59 64.3 19.0 19 - 14.5 2 43 476 53 572 1.2
30 8 3.0 7200 12.4 16 22.5 982.9 32 0.4 16.0 16 - 0.2 8 7 2 0 9 0.0
35 2 3.0 7200 14.1 35 59.6 616.4 121 7200 32.6 35 6.9 451.5 3 228 1389 156 1773 9.6
35 5 3.0 7200 13.2 22 39.8 588.6 14 762 22.0 22 - 19.5 6 52 3491 214 3757 9.5
35 8 3.0 7200 13.0 18 27.8 665.1 39 2 18.0 18 - 0.5 2 13 128 9 150 0.3
40 2 3.0 7200 16.7 38 56.0 244.0 161 7200 34.8 38 8.4 168.3 4 294 1861 36 2191 12.2
40 5 3.0 7200 16.0 26 38.4 361.8 91 7200 23.9 26 8.1 133.1 1 75 3675 975 4725 37.3
40 8 3.0 7200 14.5 22 34.1 402.4 8 423 22.0 22 - 92.5 2 0 628 30 658 2.5
45 2 3.0 7200 17.4 44 60.5 69.8 289 7200 39.7 44 9.8 125.2 1 360 1848 132 2340 24.0
45 5 3.0 7200 16.5 31 46.8 198.1 87 7200 24.8 31 20.0 23.3 2 64 6931 3147 10142 92.3
45 8 3.0 7200 16.5 25 34.1 276.9 21 416 25.0 25 - 16.1 3 30 1927 352 2309 16.4
50 2 3.0 7200 19.9 50 60.2 75.1 251 7200 45.5 50 9.0 34.9 1 490 2134 315 2939 45.4
50 5 3.0 7200 17.3 31 44.2 146.6 54 7200 26.6 33 19.4 37.6 1 108 6303 1650 8061 83.5
50 8 3.0 7200 17.0 28 39.3 155.6 6 7200 23.5 28 16.1 50.3 4 11 7749 1387 9147 63.1
55 2 3.0 7200 20.4 56 63.7 29.2 297 7200 48.0 57 15.8 0.0 0 609 1827 0 2436 11.5
55 5 3.0 7200 18.9 39 51.7 61.2 115 7200 29.8 41 27.3 7.9 0 140 9647 5309 15096 260.3
55 8 3.0 7200 18.8 32 41.4 99.7 10 7200 25.2 32 21.3 62.7 5 24 6806 1554 8384 114.9
30 2 4.5 7200 15.8 24 34.2 1251 124 10.7 24.0 24 - 0.9 1 141 333 18 492 0.8
30 5 4.5 7200 10.2 14 27.3 1282 73 1.3 14.0 14 - 0.6 1 49 0 0 49 0.0
30 8 4.5 7200 8.6 11 21.6 970.5 94 0.3 11.0 11 - 0.1 1 18 0 0 18 0.0
35 2 4.5 7200 19.3 32 39.7 253.8 745 7200 31.0 32 3.1 433.1 6 165 1052 160 1377 9.1
35 5 4.5 7200 10.9 18 39.6 717.0 99 13.3 18.0 18 - 2.6 4 69 6 1 76 0.1
35 8 4.5 7200 9.4 12 21.7 732.0 99 0.5 12.0 12 - 0.2 4 15 0 0 15 0.0
40 2 4.5 7200 13.9 35 60.4 284.2 173 7200 33.5 35 4.3 416.8 6 227 1031 139 1397 10.3
40 5 4.5 7200 10.7 19 43.6 348.9 108 1983 19.0 19 - 206.9 2 103 743 78 924 3.6
40 8 4.5 7200 10.2 14 27.4 432.8 96 0.9 14.0 14 - 0.2 1 16 0 0 16 0.0
45 2 4.5 7200 17.2 42 59.1 162.2 235 7200 39.0 42 7.1 220.7 3 286 1171 182 1639 15.9
45 5 4.5 7200 12.2 25 51.3 201.9 96 7200 20.7 25 17.2 215.9 3 121 2418 482 3021 23.8
45 8 4.5 7200 11.6 19 38.9 290.6 60 42.9 19.0 19 - 11.4 2 40 21 0 61 0.2
50 2 4.5 7200 12.9 47 72.6 54.5 203 7200 44.0 47 6.4 56.7 2 389 3198 585 4172 67.4
50 5 4.5 7200 12.6 29 56.7 117.0 127 7200 23.3 30 22.3 31.8 3 153 5319 3881 9353 128.1
50 8 4.5 7200 12.4 22 43.8 179.5 68 7200 18.7 22 15.0 510.3 3 33 1051 23 1107 8.4
55 2 4.5 7200 13.1 49 73.3 27.7 201 7200 46.0 49 6.1 50.3 1 548 1754 223 2525 41.9
55 5 4.5 7200 12.8 31 58.6 79.8 98 7200 23.0 32 28.1 10.7 0 199 12641 2448 15288 146.1
55 8 4.5 7200 13.0 24 45.8 130.5 20 7200 21.1 24 12.1 22.2 1 36 14472 517 15025 91.3
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to optimality within the time limit by any of the two approaches, the av-
erage lower bound obtained by CPLEX was 20.45 compared with 35.13 for
branch-and-cut. Moreover, the average relative MIP gap went down from
48.12% with CPLEX to 12.04% with branch-and-cut.

It is important to highlight that even if the CPLEX automatic cut
generation was not disabled in branch-and-cut, very few cuts were in-
troduced through this feature when compared with CPLEX. In average, 105
such cuts were added using CPLEX while only 2 such cuts were added in
branch-and-cut. This reveals that the vast majority of the cuts automat-
ically added by CPLEX might be actually dominated by the ones added
through our separation routines. This presumption is enhanced by the fact
that the cuts we add are often facet-defining inequalities. Moreover, our
heuristics presented in Section 4.4 have proved to be quite effective in the
search for violated cuts. Indeed, we added in average 2445.3 k-cardinality
tree inequalities (14) and 505.8 girth inequalities (15)-(16) during the whole
optimization process. The relatively small number of generated girth in-
equalities generated is explained by the fact their separation routine is run
only when no violated strong capacity inequality nor k-cardinality tree in-
equality is identified. This explains why no girth inequality was included for
some instances (e.g., 55_2_3.0). The total number of cuts added was, in
average, of 2983.4 cuts.

5. Concluding remarks

In this paper we have focused on USNP for which we have obtained
some complexity results and new facet-defining inequalities that, combined
with variable elimination and symmetry-breaking rules, have significantly
improved the behavior of our branch-and-cut framework. These valid in-
equalities can be easily generalized to SNP, that is, when demands may re-
quest as many places as needed and the vehicles may perform several tours
of the circuit. Intensive computational experiments would then definitely as-
sess the impact that such inequalities would have on the performance of our
branch-and-cut framework to solve SNP (and for other related problems such
as the k-Edge Partitioning as well). Future research lines may also involve
the investigation of reformulating our formulation to provide tighter linear
relaxations. This might be a way to bypass the need of so many additional
cuts to reinforce the formulation.

For the complexity aspect, we have showed that I-USNP for C = 2
can be solved in polynomial time by reducing it to a maximum-cardinality
matching problem. It follows that a complete description of the I-USNP
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polytope for C = 2 can be obtained from the matching polytope. The
study of the projection of that polytope onto R(m+n)p (i.e., the (x, y)-space
of natural variables) may reveal new families of facet-defining inequalities
for SNP. Finally, the answer to our conjecture stating that the I-USNP is
NP-Hard for C = 4 even when G is restricted to be planar bipartite remains
an open question that deserves attention.
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Appendix A. Additional notations

Next we present the complete proofs of Theorems 6 and 9. Before doing
so we introduce some additional notation and present two auxiliary lemmas.

Definition 1 (Idleness). Given an instance I = (V,E,C) of USNP and a
solution (x̄, ȳ) in USNP(V,E,C), vehicle i ∈ K is said to be perfectly idle if
x̄ie = 0 for every e ∈ E and ȳiv = 0 for every v ∈ V .

Definition 2 (Sequential permutation). Given an instance I = (V,E,C)
of USNP, a solution (x̄, ȳ) in USNP(V,E,C), and a subset of vehicles S =
{s1, . . . , s|S|} ⊆ K, the solution (x̂, ŷ) in USNP(V,E,C) is said to be a
sequential permutation of (x̄, ȳ) over S if for every i ∈ K and every e ∈ E

x̂ie =


x̄
sℓ+1
e if i = sℓ with ℓ ∈ {1, . . . , |S| − 1},

x̄s1e if i = s|S|,

x̄ie if i ̸∈ S,

and for every i ∈ K and every v ∈ V

ŷiv =


ȳ
sℓ+1
v if i = sℓ with ℓ ∈ {1, . . . , |S| − 1},
ȳs1v if i = s|S|,

ȳiv if i ̸∈ S.

Notice that if S = K, a solution {Ê1, . . . , Êp} is said to be a sequential
permutation of solution {Ē1, . . . , Ēp} if for every i ∈ {1, . . . , p}, we have
Êi = Ēi+1. (All the indices are interpreted modulo p.)
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Appendix B. Auxiliary lemmas

Lemma 1. Given an instance (V,E,C) of USNP, a station v′ ∈ V , and a
vehicle i′ ∈ K, let (x̄, ȳ) in USNP(V,E,C) with ȳi

′
v′ = 0, and let (x̂, ŷ) be the

solution in USNP(V,E,C) such that x̂ = x̄ and for every i ∈ K and every
v ∈ V,

ŷiv =


ȳiv if i ∈ K \ i′,
ŷi

′
v if i = i′ and v ∈ V \ v′,
1 if i = i′ and v = v′.

If both (x̄, ȳ) and (x̂, ŷ) belong to the same face

F ′ =
{
(x, y) ∈ USNP(V,E,C) : αTx+ βT y = γ

}
,

then βi′
v′ = 0.

Proof. If (x̄, ȳ) ∈ F ′, the following equality holds∑
e∈E

∑
i∈K

αi
ex̄

i
e +

∑
v∈V

∑
i∈K

βi
vȳ

i
v = γ. (B.1)

If (x̂, ŷ) ∈ F ′, the following equality holds∑
e∈E

∑
i∈K

αi
ex̄

i
e +

∑
v∈V

∑
i∈K

βi
vȳ

i
v + βi′

v′ = γ. (B.2)

By subtracting (B.1) from (B.2), one obtains βi′
v′ = 0.

Lemma 2. Given an instance (V,E,C) of USNP, a demand e′ ∈ E and
vehicle i′ ∈ K, let (x̄, ȳ) ∈ USNP(V,E,C) be a solution where vehicle i′

is perfectly idle, and let (x̂, ŷ) ∈ USNP(V,E,C) constructed by transferring
demand e′ that was served by some vehicle k ∈ K \ {i′} to vehicle i′. If both
(x̄, ȳ) and (x̂, ŷ) belong to the same face

F ′ =
{
(x, y) ∈ USNP(V,E,C) : αTx+ βT y = γ

}
,

then αi′
e′ + βi′

oe′
+ βi′

de′
= αk

e′ .

Proof. If (x̄, ȳ) ∈ F ′, the following equality holds∑
e∈E

∑
i∈K

αi
ex̄

i
e +

∑
v∈V

∑
i∈K

βi
vȳ

i
v = γ. (B.3)

If (x̂, ŷ) ∈ F ′, the following equality holds∑
e∈E

∑
i∈K

αi
ex̄

i
e − αk

e′ + αi′
e′ +

∑
v∈V

∑
i∈K

βi
vȳ

i
v + βi′

oe′
+ βi′

de′
= γ. (B.4)

By subtracting (B.3) from (B.4), one obtains αi′
e′ + βi′

oe′
+ βi′

de′
= αk

e′ .
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Appendix C. Proof of Theorem 6.

Theorem 6. The following holds:

(i) Strong Capacity inequalities (11) (resp. (12)) are valid for USNP(V,E,C),
and

(ii) are facet-defining if and only if |δ−(v)| (resp. |δ+(v)|) ≥ C + 1.

Proof. Let i ∈ K be a vehicle and v ∈ V be a station. We first prove the
validity of (11) and (12). If vehicle i does not stop at station v (i.e., yiv = 0)
then it cannot serve any demand whose pick-up (or drop-off) station is v.
If vehicle i stops at station v (i.e., yiv = 1), then its capacity only allows
vehicle i to serve at most C demands whose pick-up (or drop-off) station is
v. Inequalities (11) and (12) hence are valid for USNP(V,E,C).

We now prove the necessary and sufficient conditions for the face F in-
duced by inequality (11) associated with i and v to be a facet of UNSP(V,E,C).
The proof for the face induced by inequality (12) is analogous. Assume
|δ−(v)| ≤ C. Summing up the |δ−(v)| inequalities (6) associated with i and
v then yields the inequality∑

e∈δ−(v)

xie − |δ−(v)|yiv ≤ 0

which dominates (11) if |δ−(v)| < C since∑
e∈δ−(v)

xie − Cyiv ≤
∑

e∈δ−(v)

xie − |δ−(v)|yiv ≤ 0.

Notice that if C = |δ−(v)| then F ⊊ {(x, y) ∈ USNP(V,E,C) : xie − yiv =
0} ⊊ USNP(V,E,C) for all e ∈ δ−(v). The necessity of |δ−(v)| ≥ C + 1 for
inequality (11) to be facet-defining of USNP(V,E,C) thus is proven.

For the sufficiency of this condition, we prove that if |δ−(v)| ≥ C+1, then
F is an inclusionwise maximal proper face of USNP(V,E,C). More specifi-
cally, we show that if F ⊆ F ′, where F ′ is a proper face of USNP(V,E,C)
defined as

F ′ =

{
(x, y) ∈ USNP(V,E,C) :

∑
e∈E

∑
k∈K

αk
ex

k
e +

∑
u∈V

∑
k∈K

βk
uy

k
u = γ

}
,

for α ∈ Rmp, β ∈ Rnp, and γ ∈ R, then F ′ is induced by a linear combination
of inequality (11) associated with i and v, and equations (4), that is,

F ′ =

(x, y) ∈ USNP(V,E,C) :
∑
e∈E

∑
k∈K

λex
k
e +

∑
e∈δ−(v)

ωxie − ωCyiv =
∑
e∈E

λe

 ,
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for ω ∈ R and λ ∈ Rm. This implies F = F ′.
To do so, we follow this six-step process:

(i) show all the components of vector β, but βi
v, equal 0;

(ii) for every demand e ∈ E, show all the components αk
e , but αi

e, of vector
α, equal λe;

(iii) for every demand e ∈ E not having v as its drop-off station and every
vehicle k ∈ K, show all the components αk

e of vector α equal λe;

(iv) for every two demands e1 and e2 in E having v as their drop-off station
and every vehicle k ∈ K different from i, show αi

e1 − λe1 = αi
e2 − λe2 ;

(v) for every demand e having v as its drop-off station and every vehicle
k ∈ K different from i, show αi

e − λe = ω = −βi
v
C ;

(vi) for every vehicle k ∈ K different from i, show γ =
∑
e∈E

λe.

Step (i) Let (x̄, ȳ) ∈ USNP(V,E,C) be such that vehicle i is perfectly
idle. We immediately have (x̄, ȳ) ∈ F . Lemma 1 then yields

βi
u = 0 ∀u ∈ V \ {v}.

For every vehicle k ∈ K \ {i}, consider (x̃, ỹ) in USNP(V,E,C) such that
k is perfectly idle and C demands of δ−(v) are served by vehicle i. Clearly
(x̃, ỹ) ∈ F . Lemma 1 then implies βk

u = 0 for every u ∈ V . We therefore
have

βk
u = 0 ∀u ∈ V, k ∈ K \ {i}.

Defining ω = −βi
v
C , we thus obtain

F ′ =

{
(x, y) ∈ USNP(V,E,C) :

∑
e∈E

∑
k∈K

αk
ex

k
e − ωCyiv = γ

}
.

Step (ii) For every vehicle k ∈ K \ {i}, consider (x̃, ỹ) ∈ F defined in
Step (i). Since |δ−(v)| ≥ C + 1, we may additionally suppose that demand
e ∈ E is served by vehicle k′ ∈ K \ {i, k}, that is, x̃k′e = 1. Lemma 2 then
yields αk

e = αk′
e . Since vehicles k and k′ were arbitrarily chosen in K \ {i}

and demand e in E, we have

αk
e = λe ∀e ∈ E, k ∈ K \ {i},
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with λe ∈ R. Face F ′ can therefore be rewritten as

F ′ =

(x, y) ∈ USNP(V,E,C) :
∑
e∈E

∑
k∈K\{i}

λex
k
e +

∑
e∈E

αi
ex

i
e − ωCyiv = γ

 .

Step (iii) Consider (x̄, ȳ) ∈ F defined in Step (i). Suppose demand
e ∈ E \ δ−(v) is served by vehicle k ∈ K \ {i}, that is, x̄ke = 1. From Lemma
2, we obtain αi

e = αk
e . Consequently we have

αi
e = λe ∀e ∈ E \ δ−(v)

and

F ′ =

(x, y) ∈ USNP(V,E,C) :
∑
e∈E

∑
k∈K\{i}

λex
k
e +

∑
e∈E\δ−(v)

λex
i
e

+
∑

e∈δ−(v)

αi
ex

i
e − ωCyiv = γ

 .

(C.1)

Step (iv) Consider (x̃, ỹ) ∈ F defined in Step (i). Let S denote the set of
C demands of δ−(v) that are served by vehicle i. Notice that δ−(v) \ S ̸= ∅.
Suppose that demand e1 ∈ δ−(v) \ S is the only demand served by vehicle
k1 ∈ K \ {i}. Since F ⊆ F ′, we have∑

e∈E

∑
k∈K\{i}

λex̃
k
e +

∑
e∈E\δ−(v)

λex̃
i
e +

∑
e∈δ−(v)

αi
ex̃

i
e − ωCỹiv = γ.

Let (x̂, ŷ) be the solution obtained from (x̃, ỹ) by swapping demand e1 and
any demand e2 ∈ S. We clearly have (x̂, ŷ) also belong to F and∑
e∈E

∑
k∈K\{i}

λex̃
k
e+

∑
e∈E\δ−(v)

λex̃
i
e+

∑
e∈δ−(v)

αi
ex̃

i
e−ωCỹiv−λe1+αi

e1−αi
e2+λe2 = γ.

From (C.1), we then deduce αi
e1 − λe1 = αi

e2 − λe2 . Consequently, we obtain

αi
e1 − λe1 = αi

e2 − λe2 ∀e1 ∈ δ−(v), e2 ∈ δ−(v).

Step (v) Consider (x̄, ȳ) ∈ F defined in Step (i). We then have∑
e∈E

∑
k∈K\{i}

λex̄
k
e = γ. (C.2)

38



Suppose now that C demands of δ−(v) are served by vehicle k ∈ K \ {i}.
Let S denote the set of these C demands. The solution obtained from (x̄, ȳ)
by making all the demands in S be served by vehicle i clearly belongs to F .
We therefore have∑

e∈E

∑
k∈K\{i}

λex̄
k
e +

∑
e∈S

αi
e −

∑
e∈S

λe − ωC = γ. (C.3)

Subtracting (C.2) from (C.3) yields∑
e∈S

(αi
e − λe)− ωC = 0.

Using Step (iv), this equation implies

αi
e − λe = ω = −βi

v

C
∀e ∈ δ−(v)

and consequently

F ′ =

(x, y) ∈ USNP(V,E,C) :
∑
e∈E

∑
k∈K

λex
k
e +

∑
e∈δ−(v)

ωxie − ωCyiv = γ

 .

Step (vi) Consider (x̄, ȳ) ∈ F defined in Step (i). Construct (p − 2)
solutions, starting from (x̄, ȳ) ∈ F , by sequentially permuting the vehicles
in K \ {i}. Since vehicle i is perfectly idle in these (p− 1) solutions, they all
belong to F and satisfy the following equation∑

e∈E

∑
k∈K\{i}

λex
k
e = γ. (C.4)

Notice that this construction guarantees that no demand in E is assigned
twice to the same vehicle of K \ {i} in these (p− 1) solutions. Summing up
the equations associated with these (p− 1) solutions then yields

(p− 1)
∑
e∈E

λe = (p− 1)γ,

that is, γ =
∑
e∈E

λe. We therefore deduce

F ′ =

(x, y) ∈ USNP(V,E,C) :
∑
e∈E

∑
k∈K

λex
k
e +

∑
e∈δ−(v)

ωxie − ωCyiv =
∑
e∈E

λe


and thereby F ′ = F .
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Appendix D. Proof of Theorem 9

Theorem 9. The k-cardinality tree inequalities (14) are facet-defining if and
only if

(i.) there does not exist a node u ∈ V (S) such that S ⊂ δ−G(u) or S ⊂
δ+G(u), and

(ii.) there does not exist an edge (u1, u2) ∈ E \ S such that u1 and u2 are
the only internal nodes of G(S).

Proof. Let i ∈ K be a vehicle, v ∈ V be a station, and S ⊆ ∆E(v) with
S ∈ CT (G,C + 1).

We first prove the necessity. Suppose there exists u ∈ V (S) such that
S ⊂ δ−G(u) or S ⊂ δ+G(u), that is, G(S) is a star with internal node u. Since
degG(S)(u) = C + 1, inequality (14) reads∑

e∈S
xie − Cyiu ≤ 0

which is dominated by either (11) or (12).
Suppose there exists an edge e′ = (u1, u2) ∈ E \ S with u1 and u2 being the
only internal nodes of G(S). (See Figure D.11.) By definition, degG(S)(u1)−
1 + degG(S)(u2)− 1 = C. Since S ∪ e′ ⊆ ∆E(v) and hence xie′ +

∑
e∈S

xie ≤ C,

the inequality

xie′ +
∑
e∈S

xie −
∑

u∈V (S)

(degG(S)(u)− 1)yiu ≤ 0

is valid and clearly dominates (14). (Notice that such idea can be used to
lift inequalities (14) whenever Condition (ii.) does not hold.)

u1

u2

e′

Figure D.11: Nonfacet-inducing k-cardinality tree where C = 4; solid edges belong to S,
dashed edge does not.

Let F be the face of USNP(V,E,C) induced by inequality (14) associated
with i, v, and S. For the sufficiency of Conditions (i.) and (ii.), we show that
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if F ⊆ F ′, where F ′ is a proper face of USNP(V,E,C) defined as

F ′ =

{
(x, y) ∈ USNP(V,E,C) :

∑
e∈E

∑
k∈K

αk
ex

k
e +

∑
u∈V

∑
k∈K

βk
uy

k
u = γ

}
,

for α ∈ Rmp, β ∈ Rnp, and γ ∈ R, then F ′ is induced by a linear combination
of inequality (14) associated with i, v, and S and equations (4), that is,

F ′ =

{
(x, y) ∈ USNP(V,E,C) :

∑
e∈E

∑
k∈K

λex
k
e +

∑
e∈S

ωxie

−
∑

u∈V (S)

ω(degG(S)(u)− 1)yiu =
∑
e∈E

λe

 ,

for ω ∈ R and λ ∈ Rm. This implies F = F ′.
We first notice that if there exists u ∈ V (S) such that S = δ−G(u) or S =

δ+G(u), then inequality (14) is nothing but inequality (11) or (12) associated
with station u and vehicle i. By Theorem Appendix C, F thus is a facet of
USNP(V,E,C). So, in the remainder of the proof, Condition (i.) corresponds
to G(S) not being a star. We now follow this seven-step process:

(i) for every station u ∈ V and every vehicle k ∈ K different from i, show
βk
u = 0;

(ii) for every demand e ∈ E and every two vehicles k and k′ in K different
from i, show αk

e = αk′
e ;

(iii) for every station u ∈ V not being an internal node of G(S), show
βi
u = 0;

(iv) for every vehicle k ∈ K different from i, show γ =
∑
e∈E

αk
e ;

(v) for every two demands e1 and e2 in S and every vehicle k ∈ K different
from i, show αi

e1 − αk
e1 = αi

e2 − αk
e2 ;

(vi) for every demand e ∈ E \ S and every vehicle k ∈ K, show αi
e = αk

e ;

(vii) for every station u ∈ V (S), every demand e ∈ S, and every vehicle
k ∈ K different from i, show βi

u = −(degG(S)(u)− 1)(αi
e − αk

e).
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Step (i) For every vehicle k ∈ K \ {i} and every demand e′ ∈ S, consider
(x̄, ȳ) ∈ USNP(V,E,C) such that vehicle k is perfectly idle and all the de-
mands in S \ {e′} are served by vehicle i. We immediately have (x̄, ȳ) ∈ F .
Lemma 1 then yields βk

u = 0 for every u ∈ V . We therefore deduce

βk
u = 0 ∀u ∈ V, k ∈ K \ {i}.

Face F ′ can now be rewritten as

F ′ =

{
(x, y) ∈ USNP(V,E,C) :

∑
e∈E

∑
k∈K

αk
ex

k
e +

∑
u∈V

βi
uy

i
u = γ

}
.

Step (ii) For every vehicle k ∈ K \{i} and every demand e′ ∈ S, consider
(x̄, ȳ) ∈ USNP(V,E,C) defined in Step (i). We may additionally suppose
that demand e ∈ E is served by vehicle k′ ∈ K \ {i, k}, that is, x̃k

′
e = 1.

Lemma 2 then yields αk
e = αk′

e . Since vehicles k and k′ were arbitrarily
chosen in K \ {i} and demand e in E, we have

αk
e = λe ∀e ∈ E, k ∈ K \ {i},

with λe ∈ R. Face F ′ can therefore be rewritten as

F ′ =

(x, y) ∈ USNP(V,E,C) :
∑
e∈E

∑
k∈K\{i}

λex
k
e +

∑
e∈E

αi
ex

i
e +

∑
u∈V

βi
uy

i
u = γ

 .

Step (iii) Let I(S) denote the set of internal nodes of G(S), that is,
I(S) = {u ∈ V (S) : degG(S) ≥ 2}. Let (x̃, ỹ) ∈ USNP(V,E,C) be such that
vehicle i is perfectly idle. We immediately have (x̃, ỹ) ∈ F . For every station
u ∈ V (S) \ I(S), Lemma 1 yields βi

u = 0. Therefore, face F ′ can now be
rewritten as

F ′ =

(x, y) ∈ USNP(V,E,C) :
∑
e∈E

∑
k∈K\{i}

λex
k
e +

∑
e∈E

αi
ex

i
e +

∑
u∈I(S)

βi
uy

i
u = γ

 .

Step (iv) Consider (x̃, ỹ) ∈ F defined in Step (iii). Construct (p − 2)
solutions, starting from (x̃, ỹ) ∈ F , by sequentially permuting the vehicles
in K \ {i}. Since vehicle i is perfectly idle in these (p− 1) solutions, they all
belong to F and satisfy the following equation∑

e∈E

∑
k∈K\{i}

λex
k
e = γ.
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Notice that this construction guarantees that no demand in E is assigned
twice to the same vehicle of K \ {i} in these (p− 1) solutions. Summing up
the equations associated with these (p− 1) solutions then yields

(p− 1)
∑
e∈E

λe = (p− 1)γ,

that is, γ =
∑
e∈E

λe. We therefore deduce

F ′ =

(x, y) ∈ USNP(V,E,C) :
∑
e∈E

∑
k∈K\{i}

λex
k
e +

∑
e∈E

αi
ex

i
e

+
∑

u∈I(S)

βi
uy

i
u =

∑
e∈E

λe

 .

Step (v) For every demand e1 ∈ S, let (x̂, ŷ) ∈ USNP(V,E,C) be such
that all the demands in S\{e1} are served by vehicle i. Suppose that demand
e1 is the only demand served by vehicle k ∈ K \ {i}. Since (x̂, ŷ) ∈ F , the
equation ∑

e∈E

∑
k∈K\{i}

λex̂
k
e +

∑
e∈E

αi
ex̂

i
e +

∑
u∈I(S)

βi
uŷ

i
u =

∑
e∈E

λe

holds. Considering the solution in F , obtained from (x̂, ŷ) by swapping e1
and any demand e2 ∈ S \ {e1} yields∑
e∈E

∑
k∈K\{i}

λex̂
k
e +

∑
e∈E

αi
ex̂

i
e +

∑
u∈I(S)

βi
uŷ

i
u − λe1 + αi

e1 − αi
e2 + λe2 =

∑
e∈E

λe.

holds. Therefore αi
e1 − λe1 = αi

e2 − λe2 . Consequently, we obtain

αi
e = λe + ω ∀e ∈ S

with ω ∈ R, and face F ′ can then be rewritten as

F ′ =

(x, y) ∈ USNP(V,E,C) :
∑
e∈E

∑
k∈K\{i}

λex
k
e +

∑
e∈E\S

αi
ex

i
e

+
∑
e∈S

(λe + ω)xie +
∑

u∈I(S)

βi
uy

i
u =

∑
e∈E

λe

 .
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Step (vi) Let e′ be any demand in E \ S. We consider three cases de-
pending on whether e′ has zero, one, or two stations of I(S) appearing as its
endpoints (i.e., |I(S) ∩ {oe′ , de′}| equals 0, 1, or 2).
Case 1: Demand e′ is incident with no internal nodes of G(S). Consider
(x̃, ỹ) ∈ F defined in Step (iii). The equation∑

e∈E

∑
k∈K\i

λex̂
k
e =

∑
e∈E

λe

clearly holds. Suppose that demand e′ is served by vehicle k ∈ K \ {i}. The
solution, obtained from (x̃, ỹ) by making demand e′ be served by vehicle i,
still belongs to F , and hence∑

e∈E

∑
k∈K\i

λex̄
k
e + αi

e′ − λe′ =
∑
e∈E

λe.

Therefore, αi
e′ = λe′ for every demand e′ ∈ E \S such that I(S)∩{oe′ , de′} =

∅.
Case 2: Demand e′ is incident with exactly one internal node u of G(S).
Consider any leaf node r ∈ V (S) such that u and r are not adjacent in
G(S). Since G(S) is not a star, node r always exists. Thinking about G(S)
as a tree rooted at r, let Tu denote the subtree of G(S) rooted at u. We
clearly have |E(Tu)| < C. Let (x̆, y̆) ∈ USNP(V,E,C) be such that the only
demands served by vehicle i are those in E(Tu). We then have∑

e∈S
x̆ie = |E(Tu)|

and since u ∈ I(S),∑
t∈V (S)

(degG(S)(t)− 1)y̆it =
∑

t∈V (Tu)

(degG(S)(t)− 1) = |E(Tu)|.

Consequently, (x̆, y̆) ∈ F and the equation∑
e∈E

∑
k∈K\{i}

λex̆
k
e +

∑
e∈E\S

αi
ex̆

i
e +

∑
e∈S

(λe + ω)x̆ie +
∑

t∈I(S)

βi
t y̆

i
t =

∑
e∈E

λe

holds. Suppose that demand e′ is served by vehicle k ∈ K \ {i}. Since
|E(Tu)| < C, the solution, obtained from (x̆, y̆) by making demand e′ be
served by vehicle i, still belongs to F , and hence∑
e∈E

∑
k∈K\{i}

λex̆
k
e+

∑
e∈E\S

αi
ex̆

i
e+
∑
e∈S

(λe+ω)x̆ie+
∑

t∈I(S)

βi
t y̆

i
t+αi

e′−λe′ =
∑
e∈E

λe.
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Thus αi
e′ = λe′ for every demand e′ ∈ E \S such that |I(S)∩ {oe′ , de′}| = 1.

Case 3: Demand e′ is incident with two internal nodes u and u′ of G(S).
Suppose first that e′ is parallel to no demands in S. Let P denote the
path between u and u′ in G(S). Path P clearly has at least one internal
node. Thinking about G(S) as a tree rooted at any internal node of P , let
Tu and Tu′ be the subtrees of G(S) rooted at u and u′, respectively. Since
|E(Tu)|+|E(Tu′)| < C, following a similar approach as in Case 2 with respect
to the solution in USNP(V,E,C) where the only demands served by vehicle
i are those in E(Tu) ∪ E(Tu′) yields αi

e′ = λe′ for every demand e′ ∈ E \ S
such that {oe′ , de′} ⊆ I(S) and e′ is parallel to no demands in S.

Suppose now that there exists a demand in S whose endpoints are u
and u′. Consider any node r ∈ I(S) \ {u, u, }. By Condition (ii.), node
r exists. W.l.o.g., suppose that u is closer to r in G(S) than u′ is. Since
|E(Tu)| < C, following a similar approach as in Case 2 with respect to the
solution in USNP(V,E,C) where the only demands served by vehicle i are
those in E(Tu) yields αi

e′ = λe′ for every demand e′ ∈ E \ S such that
{oe′ , de′} ⊆ I(S) and e′ is parallel a demand in S. This completes Step (vi)
and face F ′ can now be rewritten as

F ′ =

(x, y) ∈ USNP(V,E,C) :
∑
e∈E

∑
k∈K

λex
k
e +

∑
e∈S

ωxie +
∑

u∈I(S)

βi
uy

i
u =

∑
e∈E

λe

 .

Step (vii) Consider any leaf node r of G(S) and think about G(S) as
a tree rooted at r. Let u′ be the parent in G(S) of a deepest leaf node of
G(S) and Tu′ be the subtree of G(S) rooted at u′. Notice that Tu′ is star
and since G(S) is not a star, |E(Tu′)| = degG(S)(u

′) − 1 < C. Let (ẋ, ẏ) ∈
USNP(V,E,C) be such that the only demands served by vehicle i are those
in E(Tu′). We then have (ẋ, ẏ) ∈ F and the equation∑

e∈E\E(Tu′ )

∑
k∈K\{i}

λeẋ
k
e +

∑
e∈E(Tu′ )

(λe + ω) + βi
u′ =

∑
e∈E

λe

holds. Constructing (p− 2) solutions from (ẋ, ẏ) by sequentially permuting
the vehicles in K \ {i} and applying the same reasoning as in Step (iv), we
obtain

(p− 1)
∑

e∈E\E(Tu′ )

λe + (p− 1)
∑

e∈E(Tu′ )

(λe + ω) + (p− 1)βi
u′ = (p− 1)

∑
e∈E

λe,

that is,

βi
u′ = −

∑
e∈E(Tu′ )

ω = −|E(Tu′)|ω = −(degG(S)(u
′)− 1)ω.
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For any internal node u of G(S), let Tu denote the subtree of G(S) rooted
at u and C(u) denote the set of nodes adjacent to u in Tu. We clearly have

E(Tu) =
⋃

c∈C(u)

(E(Tc) ∪ {(u, c)}).

We now use this decomposition of the edge sets of the subtrees of G(S) rooted
at the internal nodes and a similar approach as above for determining βi

u′

to recursively obtain βi
u for u ∈ I(S). Starting from the internal nodes of

G(S) only having leaf nodes in their rooted subtree and moving towards the
only internal node adjacent to r in G(S), we deduce for any internal node
u ∈ I(S)

βi
u+

∑
c∈C(u)

∑
u′∈V (Tc)

βi
u′ = −(degG(S)(u)−1)ω−

∑
c∈C(u)

∑
u′∈V (Tc)

(degG(S)(u
′)−1)ω.

that is, βi
u = −(degG(S)(u)−1)ω for every u ∈ V (S). Therefore, face F ′ can

finally be rewritten as

F ′ =

{
(x, y) ∈ USNP(V,E,C) :

∑
e∈E

∑
k∈K

λex
k
e +

∑
e∈S

ωxie

−
∑

u∈V (S)

ω(degG(S)(u)− 1)yiu =
∑
e∈E

λe


which concludes the proof.

References

Baïou, M., Colares, R., Kerivin, H., 2021. The complexity of the Unit Stop
Number Problem and its implications to other related problems. URL:
https://hal.archives-ouvertes.fr/hal-03120087. preprint.

Braekers, K., Caris, A., Janssens, G.K., 2014. Exact and meta-heuristic
approach for a general heterogeneous dial-a-ride problem with multiple
depots. Transportation Research Part B: Methodological 67, 166–186.

Bsaybes, S., Quilliot, A., Wagler, A.K., 2018. Fleet management for au-
tonomous vehicles using multicommodity coupled flows in time-expanded
networks, in: 17th International Symposium on Experimental Algorithms
(SEA 2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

46



Carvajal, R., Ahmed, S., Nemhauser, G., Furman, K., Goel, V., Shao, Y.,
2014. Using diversification, communication and parallelism to solve mixed-
integer linear programs. Operations Research Letters 42, 186–189.

Chvatal, V., 1973. Edmonds polytopes and a hierarchy of combinatorial
problems. Discrete mathematics 4, 305–337.

Colares, R., 2019. Exploring combinatorial aspects of the stop number prob-
lem. Ph.D. thesis. University Clermont Auvergne, France.

Cordeau, J.F., 2006. A branch-and-cut algorithm for the dial-a-ride problem.
Operations Research 54, 573–586.

Cordeau, J.F., Laporte, G., 2007. The dial-a-ride problem: models and
algorithms. Annals of operations research 153, 29–46.

Denton, B.T., Miller, A.J., Balasubramanian, H.J., Huschka, T.R., 2010.
Optimal allocation of surgery blocks to operating rooms under uncertainty.
Operations research 58, 802–816.

Dyer, M.E., Frieze, A.M., 1986. Planar 3dm is np-complete. Journal of
Algorithms 7, 174–184.

EasyMile, 2015. Ez10 passenger shuttle.
www.easymile.com/vehicle-solutions/ez10-passenger-shuttle.

Fagnant, D.J., Kockelman, K., 2015. Preparing a nation for autonomous ve-
hicles: opportunities, barriers and policy recommendations. Transporta-
tion Research Part A: Policy and Practice 77, 167–181.

Fischetti, M., Hamacher, H.W., Jørnsten, K., Maffioli, F., 1994. Weighted
k-cardinality trees: Complexity and polyhedral structure. Networks 24,
11–21.

Fischetti, M., Monaci, M., 2014. Exploiting erraticism in search. Operations
Research 62, 114–122.

Garey, M.R., Johnson, D.S., 2002. Computers and intractability. volume 29.
W.H. Freeman and Company, New York.

Goldschmidt, O., Hochbaum, D.S., Levin, A., Olinick, E.V., 2003. The sonet
edge-partition problem. Networks: An International Journal 41, 13–23.

47



Gomory, R.E., et al., 1958. Outline of an algorithm for integer solutions
to linear programs. Bulletin of the American Mathematical society 64,
275–278.

Ho, S.C., Szeto, W., Kuo, Y.H., Leung, J.M., Petering, M., Tou, T.W., 2018.
A survey of dial-a-ride problems: Literature review and recent develop-
ments. Transportation Research Part B: Methodological 111, 395–421.

Kaibel, V., Peinhardt, M., Pfetsch, M.E., 2011. Orbitopal fixing. Discrete
Optimization 8, 595–610.

Kaibel, V., Pfetsch, M.E., 2008. Packing and partitioning orbitopes. Math-
ematical Programming 114, 1–36.

Karp, R.M., 1972. Reducibility among combinatorial problems, in: Com-
plexity of computer computations. Springer, pp. 85–103.

Krishnamoorthy, M.S., 1975. An np-hard problem in bipartite graphs. ACM
SIGACT News 7, 26–26.

Liu, M., Luo, Z., Lim, A., 2015. A branch-and-cut algorithm for a realistic
dial-a-ride problem. Transportation Research Part B: Methodological 81,
267–288.

Margot, F., 2010. Symmetry in integer linear programming, in: 50 Years of
Integer Programming 1958-2008. Springer, pp. 647–686.

Masuyama, S., Ibaraki, T., 1991. Chain packing in graphs. Algorithmica 6,
826–839.

Ostrowski, J., Anjos, M.F., Vannelli, A., 2010. Symmetry in scheduling
problems. Citeseer.

Parragh, S.N., 2011. Introducing heterogeneous users and vehicles into mod-
els and algorithms for the dial-a-ride problem. Transportation Research
Part C: Emerging Technologies 19, 912–930.

Parragh, S.N., Doerner, K.F., Hartl, R.F., 2008. A survey on pickup and
delivery problems. Journal für Betriebswirtschaft 58, 21–51.

Pelletier, S., Jabali, O., Laporte, G., 2016. 50th anniversary invited arti-
cle—goods distribution with electric vehicles: review and research per-
spectives. Transportation Science 50, 3–22.

48



Pimenta, V., Quilliot, A., Toussaint, H., Vigo, D., 2017. Models and algo-
rithms for reliability-oriented dial-a-ride with autonomous electric vehicles.
European Journal of Operational Research 257, 601–613.

Ravi, R., Sundaram, R., Marathe, M.V., Rosenkrantz, D.J., Ravi, S.S., 1996.
Spanning trees—short or small. SIAM Journal on Discrete Mathematics
9, 178–200.

Ropke, S., Cordeau, J.F., Laporte, G., 2007. Models and branch-and-cut
algorithms for pickup and delivery problems with time windows. Networks:
An International Journal 49, 258–272.

Sabharwal, A., Samulowitz, H., Reddy, C., 2012. Guiding combinatorial opti-
mization with uct, in: International Conference on Integration of Artificial
Intelligence (AI) and Operations Research (OR) Techniques in Constraint
Programming, Springer. pp. 356–361.

Sherali, H.D., Smith, J.C., 2001. Improving discrete model representations
via symmetry considerations. Management Science 47, 1396–1407.

49


