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Abstract 

With the advent of recent deep learning techniques, computerized methods for automatic lesion 

segmentation have reached performances comparable to those of medical practitioners. However, 

little attention has been paid to the detection of subtle physiological changes caused by evolutive 

pathologies, such as neurodegenerative diseases. In this work, we leverage deep learning models 

to detect anomalies in brain diffusion tensor imaging (DTI) parameter maps of recently diagnosed 

and untreated (de novo) patients with Parkinson’s disease (PD). For this purpose, we trained 

auto-encoders on parameter maps of healthy controls (n=56) and tested them on those of de novo 

PD patients (n=129). We considered large reconstruction errors between the original and 

reconstructed images to be anomalies that, when quantified, allow discerning between de novo PD 

patients and heathly controls. The most discriminating brain macro-region was found to be the 

white matter with a ROC-AUC 68.3 (IQR 5.4) and the best subcortical structure, the GPi 
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(ROC-AUC 62.6 IQR 5.4). Our results indicate that our deep learning-based model can detect 

potentially pathological regions in de novo PD patients, without requiring any expert delineation. 

This may enable extracting neuroimaging biomarkers of PD in the future, but further testing on 

larger cohorts is needed. Such models can be seamlessly extended with additional parameter maps 

and applied to study the physio-pathology of other neurological diseases. 

Keywords: 

Machine learning; Unsupervised learning; Variational autoencoder; Neurodegenerative Disease; 

Parkinson’s Disease. 

1. Introduction 

Deep Learning (DL) is a growing trend in image analysis. Recent breakthroughs, notably 

the explosion of the available computer power and the availability of large datasets, have allowed 

artificial neural networks to obtain state-of-the art performances in several computer vision 

challenges. These developments have also been exploited successfully in several medical 

applications (Esteva et al., 2017; Poplin et al., 2018; Titano et al., 2018). DL methods are 

considered as promising components for the design of innovative decision support tools for 

radiologists, notably for tasks such as quantitative image analysis, lesion segmentation and the 

detection of subtle pathological changes (Hosny et al. (2018); Topol (2019); Bernal et al. (2019); 

Mazurowski (2021)). 

DL methods are hungry data consumers. Over the years, the Magnetic Resonance imaging 

(MRI) community has curated several public databases with annotated images to test lesion 

segmentation algorithms. Recently DL approaches have defeated all alternative methods in 

challenges such as MSSEG, for multiple sclerosis lesion segmentation (Commowick et al., 2018, 

2021); BRATS, for brain tumor segmentation (Menze et al. (2015)); ISLES, for ischemic stroke 
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lesion segmentation (Crimi et al. (2018)); and mTOP for mild traumatic injury outcome prediction 

(www.tbichallenge.wordpress.com). Indeed, the majority of medical applications based on DL 

techniques rely on supervised methods trained on a lot of datasets (Esteva et al., 2019) and few are 

evaluated in clinical routine conditions (Park and Han, 2018). It is why such promising methods 

are rarely deployed in clinics. Unsupervised techniques appear as an interesting alternative to the 

scarcity of annotated training examples (Lecun et al., 2015; Lundervold and Lundervold, 2019). 

The goal of our paper is to demonstrate that interesting results can be obtained by an unsupervised 

approach tasked with a difficult problem: the detection of subtle alterations in PD brain scans; a 

first step to open the way for their evaluation and use in various medical applications. 

Although they may vary in architecture and loss function, unsupervised methods often 

follow the same steps. First, they are trained exclusively with images from the â€œnormalâ€• 

class. Second, during testing, they are exposed to images that contain anomalies for which they 

cannot provide an accurate reconstruction. Finally, the resulting reconstruction errors are 

leveraged to locate extreme values, considered as anomalies. Auto-encoders (AE) and deep 

generative models, such as variational auto-encoders (VAE) (Kingma and Welling, 2019) and 

generative adversarial networks (GAN) (Goodfellow et al., 2014), have been extensively used as 

building blocks for unsupervised anomaly detection due to their ability to learn high-dimensional 

distributions. In particular, recent work by (Baur et al., 2019) has shown that AEs and VAEs 

provided good performances in detecting small brain lesions induced by Multiple Sclerosis. 

Inspired by these promising results, we chose to design an anomaly detection pipeline based on 

AEs and VAEs at its core to identify PD traits in MRI brain scans. 

 

1.1. Medical Context 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



PD is the second most prominent neurodegenerative disease in the world, affecting more 

than six million people worldwide (GBD and parkinson’s disease Collaborators, 2018). Symptoms 

generally develop slowly over the years. During the podromal phase, the loss of 

dopamine-producing neurons disrupts the functioning of several subcortical structures. Several 

non-motor symptoms appear such as visual and olfactory disturbances or mood disorders. 

However, generally, the diagnosis occurs once the patients start experiencing the well-known 

motor symptoms of PD, namely stiffness, akinesia and resting tremor. By this moment, it is 

estimated that more than 60% of dopaminergic neurons have already been lost or impaired (GBD 

and parkinson’s disease Collaborators, 2018, Poewe2017). 

The manifestation of non-motor symptoms (i.e. olfactory dysfunction, sleeping troubles, 

autonomic disturbances) during the prodromal stage of PD indicates the presence of physiological 

changes that could be used to characterize PD patients. Indeed, large research efforts are currently 

performed to find biomarkers that allow earlier diagnosis and patient sub-typing to improve 

treatment (Barber et al., 2017; Peran et al., 2010). 

MRI has the potential to reveal robust neuroimaging biomarkers for the disease 

progression monitoring and long-term drug impact analysis. As a matter of fact, MRI is not only 

useful to observe qualitative changes in the structural integrity of the brain but is also a valuable 

tool to characterize quantitative physiological features such as blood perfusion and water 

diffusion. Diffusion MRI monitors the displacement of water molecules in the brain. As their rate 

and direction of movement are dependent on their environment, diffusion measurements give 

indirect information on the structural composition of the brain (Le Bihan and Johansen-Berg 

(2012)). In order to better understand the progression of the disease, we used diffusion MRI to 

study the undergoing brain changes in de novo PD patients (i.e. newly diagnosed and without 
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dopaminergic treatment) compared to healthy controls (HC). 

 

1.2. Contributions 

We propose the use of fully convolutional auto-encoders and variational auto-encoders to 

provide a meaningful representation of MRI data from healthy brains. Once these models are 

trained, they are used to identify unusual patterns in data from de novo PD patients. This is not 

without challenge. In contrast to other medical imaging applications, such as the segmentation of 

brain tumors or MS lesions, we do not dispose of a ground truth that identifies, at the voxel level, 

values specific to PD, especially for de novo patients. This complicates model evaluation and 

selection. Indeed, the only available information is the classification of each individual as PD 

patient or HC. In addition, PD-related abnormalities may be very local and particularly subtle to 

detect in de novo patients. Indeed, at this stage PD affects only a few neighboring voxels, mainly 

located in subcortical structures, such as the Substantia Nigra (SN), as opposed to larger brain 

lesions such as brain tumors, stroke, or T2-hyperintense lesions in MS, clearly visible in MRI. At 

last, to eliminate additional sources of bias, it is wise to consider scans with homogeneous 

acquisition parameters, notably the same magnetic field and scanner manufacturer. As a 

consequence most medical studies tend to provide training data of reasonable size in a clinical 

context but limited with respect to the usual deep learning requirement. The neuroimaging 

database available for this study contains MRI volumes from 56 healthy controls (see section 3.1). 

For all these reasons, the task of finding subtle anomalies in PD brain scans is not the most 

straightforward for DL techniques. Despite the rising interest in uncovering biomarkers of PD and 

the advent of DL for anomaly detection, no studies have been published, to the best of our 

knowledge, concerning DL approaches for PD diffusion alterations discovery. The main 
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contribution of our work is then two-fold: 

1. We demonstrate the appropriateness of fully convolutional auto-encoders and variational 

auto-encoder architectures, which preserve spatial information in the latent space, for 

anomaly detection in MRI data of recently diagnosed PD patients. Although only two 

diffusion MRI measures were used for this study, the presented approach is extensible to 

explore the predicting power of additional parameters. 

2. We propose a performance evaluation method that may be used to analyze neuroimaging 

anomalies in other disorders where no voxel-level ground truth is available. 

This paper is organized as follows. Section 2 reviews state-of-the-art approaches to detect 

and characterize abnormal regions in MR brain scans of PD patients, as well as examines recently 

published DL frameworks for anomaly detection in other medical applications. Section 3 describes 

the datasets we used and the implemented models. The experimental setup and procedures are 

described in Section 4 while the obtained results are featured in Section 5. Finally, Section 6 

explores the significance of our results and Section 7 summarizes the impact of this study and 

gives directions for future work. 

 

2. Related Work 

2.1. Diffusion MRI for the study of Parkinson’s disease 

Diffusion changes in PD have been the subject of many studies over the years. They are 

generally based on two measures accounting for mean diffusivity (MD) and fractional anisotropy 

(FA). These measures describe the diffusion of water molecules in the brain, MD accounts for the 

their overall displacement and FA indicates the orientation of diffusion. The meta-analysis 

proposed by Cochrane and Ebmeier (2013) put into evidence important discrepancies between the 
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diffusion scans of PD patients across studies between 1946 and 2012, notably regarding 

acquisition parameters, analysis methods and the introduction of medication. Most studies focused 

on the SN as Region Of Interest (ROI) and often reported FA reductions in different segments with 

a slight tendency towards the caudal segment. However, no significant association was detected 

between disease severity and FA values. The first studies were carried out on small cohorts 

(around 50 individuals) and presented opposing results. We can notably cite the work of Schwarz 

et al. (2013) where, in contrast to the work of Du et al. (2011), no differences were found in SN for 

FA values between PD patients and controls but a significant increase of MD in the SN (P <  

0.005) was reported. 

A longitudinal study that follows de novo PD patients of 35 centers for five years has been 

carried out by the Parkinson’s Progression Markers Initiative (PPMI) (Marek et al., 2018). The 

corresponding database is openly available for researchers and contains, among other clinical and 

behavioral assessments, MR structural and diffusion imaging scans. Based on PPMI data, in a 

large study of SN abnormalities, Schuff et al. (2015) consider the laterality of the pathology. A 

significant FA reduction (p=0.04) in PD patients was found in the rostral part of the SN 

contralateral to the body side presenting the greater functional deficits. Furthermore, significant 

relationships were reported between these results and the dopaminergic deficits displayed in 

dopamine transporter (DAT) scan images. Nevertheless, contralateral rostral FA values allowed to 

only achieve a classification ROC AUC of 59% using a bootstrapped half-split cross-validation 

procedure. 

The meta-analysis presented by Atkinson-Clement et al. (2017)explored DTI alterations 

beyond the SN. The disease effect size ( ESD ) of FA and MD were analyzed in 27 anatomical ROIs. 

White matter fiber degradation in PD was associated to reduced values of FA- ESD  and increased 
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MD- ESD  in the SN, the corpus callosum, the cingular and temporal cortices. In contrast, the 

corticospinal tract displayed increased FA- ESD  and decreased MD- ESD . 

In the work of Cousineau et al. (2017), 50 white matter tracts connecting subcortical 

structures of the brain to different cortical areas were dissected. Welch’s unequal variance t-test 

was employed to identify the sections of those tract profiles that were significantly different 

between PD patients and controls from the PPMI. The analysis found statistically significant 

differences in tract profiles along the subcortico-cortical pathways between PD patients and 

healthy controls. In particular, significant increases in FA, apparent fiber density and tract-density 

were detected in some locations of the SN-STN-Putamen-Thalamus-Cortex pathway, which is one 

of the major motor circuits driving the coordination of motor output. 

Up until this point, the studies on PD diffusion alterations suffer from great heterogeneity. 

Some are carried out with a small number of participants and others are meta-analysis. They 

present inconsistent findings about the spatial location of brain abnormalities which raise 

questions as to whether standard statistical methods are capable of bringing out robust biomarkers 

for such a complex disease. Recently data mining classification tools such as support vector 

machines (SVM) have been applied to the identification of PD abnormalities. Talai et al. (2018) 

employed them to differentiate PD from other PD syndromes such as progressive supranuclear 

palsy (PSP). Using a feature selection method, the FA and MD average values of 17 ROIs were 

chosen to train a SVM in a leave-one-out cross-validation procedure. The classifier was able to 

differentiate PD and PSP patients with an accuracy of 87.7%. The main affected regions were the 

brainstem, putamen, palladium, thalamus and some areas of the frontal cortex. In a similar study, 

Correia et al. (2020) went farther and proposed to employ SVM to classify between controls, PD, 

PSP and corticobasal syndrome (CBS) patients with FA and MD measures in selected regions of 
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white matter. The mean accuracy for the leave-two-out cross-validation to separate controls from 

PD patients was of 61.3%. 

To conclude, different studies (Du et al., 2011; Schwarz et al., 2013; Atkinson-Clement et 

al., 2017; Schuff et al., 2015) have studied diffusion changes in PD patients. Most of them exploit 

standard statistical methods, such as two-sample t-tests, to analyze voxel-wise differences between 

MRI data from PD patients and healthy controls. However, inconsistent findings, as shown by 

Schwarz et al. (2013) and Atkinson-Clement et al. (2017), suggest that novel approaches are 

required to truly take advantage of the rich information captured by diffusion MRI and discover 

powerful biomarkers for such a complex neurodegenerative disease. 

 

2.2. Deep learning for anomaly detection in medical images 

Numerous techniques have been proposed for anomaly detection using artificial neural 

networks (see Chalapathy and Chawla (2019) for a recent review). Most state-of-the art DL 

anomaly detection techniques use Generative Adversarial Networks (GAN) or Auto-Encoders 

(AE) and their variations. One of the precursor works of anomaly detection applied to medical data 

was proposed by Schlegl et al. (2017) to identify anomalous regions in spectral-domain OCT scans 

of the retina. Their architecture, named AnoGAN, consisted on a convolutional GAN architecture 

trained with 2D patches that achieved a ROC-AUC of 89%. This work demonstrated that 

unsupervised learning on large-scale imaging data could lead to the detection of relevant 

anomalies. As presented by Alex et al. (2017), another possibility is to use the discriminator of the 

trained GAN architecture to output, for each query image, a probability map that gives an 

indication of the likelihood for every point of belonging to the learnt “normal” data distribution. 

The authors applied the proposed method to detect brain tumors from the multimodal MR images 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



(FLAIR, T2, T1, T1 post contrast) of the BRATS dataset. The model was trained with 2D patches 

and obtained a DICE score of 69 % for the whole tumor segmentation task. Recently, Ha Son et al. 

(2019) proposed to increase the training stability of GANs by employing two auto-encoders as 

generator and discriminator. Their model, called ADAE (Adversarial Dual Auto-encoders), was 

also trained on BRATS data and achieved a ROC AUC score of 89.2%. 

In contrast to models based on the reconstruction error, Zimmerer et al. (2018) claimed that 

a Variational Auto-Encoder (VAE) gradient-based score approximation is better suited for 

anomaly detection. The proposed method assigns an anomaly rating to each pixel: the derivative of 

the log-density with respect to the input, evaluated through backpropagation. These two 

frameworks leverage the available voxel-level ground truth and use strong post-processing 

techniques to smooth the output. In addition, they do not deal with image resolution higher than 

64 64  pixels. For these reasons, there is considerable uncertainty with regard to their usefulness 

when no ground truth is available at the voxel level. 

The first DL-based anomaly detection approach that operates on entire brain MRI slices 

(instead of patches) was proposed by Baur et al. (2019). The authors introduce AnoVAEGAN, 

combining concepts of VAE and GAN and alternating between two loss functions: one for the 

generator (VAE component aiming at faithfully reconstructing the inputs) and one for the 

discriminator (to distinguish between real and reconstructed MRI). To evaluate the preformances, 

the authors trained the model with healthy FLAIR scans and attempted to detect MS lesions. They 

compared their results to those obtained by the precursor AnoGAN (Schlegl et al., 2017) and by 

dense and spatial variants of VAEs and AEs. DICE scores showed that AnoVAEGAN beat 

AnoGAN (0.605 vs. 0.375) as well as dense and spatial variations of VAEs and AEs. However, 

spatial VAE (0.592) and spatial AE (0.585) performed only slightly worse than their model 
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without any adversarial training. AnoVAEGAN demonstrated that DL-based anomaly detection 

worked in fairly high-resolution images, and that abnormal regions could be identified by 

pixel-wise intensity difference between the input image and its reconstruction. Moreover, it 

showed that simple models (regular auto-encoders and VAE) may be used for anomaly detection 

with only marginally inferior results than more complex models, as long as spatial information is 

maintained in the latent space. While a DICE score of 60.5% may seem poor compared to the 

previous DL results here exposed, MS lesions are generally more challenging to segment than 

tumors (Commowick et al., 2018). 

Using such an anomaly detection approach for the investigation of alterations in the brain 

of PD patients constitutes a great challenge as early symptoms in PD have not yet been translated 

to identifiable characteristics in MR imaging. Regardless, in the last years some innovative 

methods have been devised to apply unsupervised deep learning to PD anomaly detection in MR 

imaging. Li et al. (2019) set out to employ a stacked sparse auto-encoder (SSAE) to discriminate 

between controls and PD patients from longitudinal data pooled from the PPMI database. T1 and 

DTI maps were collected for every subject at baseline, after 12 months and over 24 months. Gray 

matter, white matter and mean diffusivity features were extracted for every one of the 116 ROIs in 

the AAL2 atlas and served as input for the SSAE. The outputs of the architecture at the three 

time-points were classified with an SVM. The proposed method achieved a ROC AUC score of 

86% at baseline and 97% at 24 months. They compared their results with a simple sAE, a CNN and 

a DBN architecture. The sAE achieved the second best results with a ROC AUC of 82% at 

baseline and 92% at 24 months. Other studies preferred to employ CNNs to discriminate de novo 

PD patients from HC scans. Shinde et al. (2019) adapted the well known ResNet50 design to study 

2D NMS-MRI images of the SN from a local database. They achieved a good classification 
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performance (ROC-AUC = 90%) taking into account clinical laterality. Sivaranjini and Sujatha 

(2020) proposed to employ the popular AlexNet CNN to discriminate T2-weighted MR scans of 

HC and PD patients from the PPMI at various stages of the disease. One particularity of this 

investigation is the utilization of transfer learning, that is, the CNN architecture had been 

pre-trained with natural images before medical images were input. Their results showed an 

accuracy of 88.9% corresponding to 89.3% in sensitivity and 88.4% in specificity. 

In summary, few deep learning studies have ventured in the search of PD anomalies. The 

study presented in this paper covers an uncharted territory by studying brain abnormalities in de 

novo and untreated PD patients with reconstruction methods. 

 

3. Materials and methods 

3.1. Data description 

The dataset used in this work consists of DTI MR scans coming from the PPMI database. 

DTI data are particularly sensitive to various sources of bias (Jones and Cercignani, 2010). To 

moderate this effect, we selected DTI scans from 56 healthy controls and 129 de novo PD patients 

acquired with the same MR scanner model (3T Siemens Trio Tim) and configured with the same 

acquisition parameters. All DTI volumes were registered into the MNI space. From the DTI 

images, two parameter maps, mean diffusivity (MD) and fractional anisotropy (FA), were 

computed using MRtrix3.0. FA and MD values were normalized into the range [0,1]  using 

Min-Max scaling. The images were obtained in the NIfTI format as a 3-dimensional, 

121 145 121  , array with a voxel size of 31.5 1.5 1.5mm  . Only 21% 1.9%  of this volume 

was effectively occupied by the brain and cropped images of 40 axial slices around the center of 
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the brain were used to train the models. In addition, we considered the right and the left 

hemispheres images as two different samples. The left hemisphere images were flipped to 

resemble the right hemisphere images. This increased the number of images available for training 

and allowed us to study the laterality of PD. Hemispheres were preferred over smaller regions to 

preserve spatial information as advised in the work of Baur et al. (2019), which demonstrated the 

usefulness of spatial AE and VAE models for anomaly detection in high-resolution MRI. Finally, 

all 80 individual axial hemisphere slices were cropped to a 75 145  resolution keeping the brain 

at the center of the images and thus ensuring consistency for our models. The control dataset was 

divided into 41 training controls and 15 testing controls to avoid data leakage. As a result the 

models were trained with a duo (FA & MD) of 1680 images (2 hemispheres   40 slices   41 

controls). 

As stated in Poldrack et al. (2019), it is dangerous to infer predictive accuracy based on a 

model that is constructed for a specific population. To assess the influence of the training and test 

populations on the final results, a bootstrap procedure was carried out. We divided the control 

dataset into training and testing samples in 10 different manners, taking special care to maintain an 

age average around 61 years old for all the training and test population as well as a 40-60 

proportion of females and males. Table 1 shows the age and gender characteristics of the training 

and test sets of the ten sub-populations. 

 

Table 1: Training and test age distributions (mean and standard deviation) for the 10 control 

sub-populations 

 Training set Testing set 

Sample 1 60.9 ± 10.5 61.5 ± 8.2 
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Sample 2 61.3 ± 9.2 60.7 ± 11.9 

Sample 3 61.2 ± 10.2 60.9 ± 9.3 

Sample 4 61.0 ± 10.0 61.3 ± 9.8 

Sample 5 61.1 ± 9.5 61.1 ± 11.2 

Sample 6 61.1 ± 9.5 61.0 ± 11.2 

Sample 7 61.1 ± 10.2 61.1 ± 9.2 

Sample 8 61.1 ± 10.6 61.1 ± 7.8 

Sample 9 61.3 ± 10.1 60.4 ± 9.5 

Sample 10 61.1 ± 10.3 61.1 ± 9.0 

 

Once the models were trained with one of the 10 training sets, they were evaluated with the 

corresponding healthy control test set and the PD dataset. 

 

3.2. Architecture design 

We chose to introduce multiple MRI parameter maps as input in a joint manner, as evoked 

in the work of Baur et al. (2019). Our inputs were of dimension H W C  , where H  represents 

the height in pixels, W  the width in pixels and C  the number of channels (MRI measurements). 

For the PPMI data used in this work, =145H , = 75W  and = 2C . Our approach is 

straightforwardly adaptable to leverage the predicting capability of more MRI parameters by 

concatenating more channels in the input images. 

The anomaly detection task with an auto-encoder can be formally posed as follows. We 

consider an input image H W Cx    and a trained auto-encoder with encoder f  and decoder 

g . The encoder maps the input x  to a lower dimensional latent representation z , then the 
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decoder maps the latent vector z  to the reconstructed output ˆ H W Cx   : 

 ˆ= ( ) , = ( )z f x x g z   (1) 

The pixel-wise reconstruction errors are computed as ˆ| |i ix x . Depending on the network 

architecture, the latent code may be a simple vector ( dz ) or a third-order tensor ( h w cz   ). 

The former is referred as a dense bottleneck and the latter as a spatial bottleneck. 

For a VAE, the difference is that the encoder generates the parameters of the approximate 

posterior of the latent variable given the input, constrained to follow a multivariate normal 

distribution, and a sampling operation is needed to obtain an actual value for z : 

 ˆ( ) , = ( )z f x x g z   (2) 

We constructed and evaluated three autoencoder-based models: a spatial variational 

auto-encoder (sVAE), a spatial auto-encoder (sAE) and a dense variational auto-encoder (dVAE). 

All models were implemented using Python 3.6.8, PyTorch 1.0.1, CUDA 10.0.130 and 

trained on a NVIDIA GeForce RTX 2080 Ti GPU with batches of 32 images. After each 

convolutional layer, batch normalization (Ioffe and Szegedy, 2015) was applied for its 

regularization properties and to avoid vanishing or exploding gradients. The nonlinear activation 

function in each layer except the last was the rectified linear unit (ReLU), which was defined as 

( ) = (0, )f x max x . In the last layer, the activation function was a sigmoid, defined as 

( ) =1/ (1 )xf x e , in order to have output pixels normalized between [0,1] . The loss functions 

were optimized using Adam (Kingma and Ba, 2015), a popular optimization algorithm for training 

deep neural networks. The differences between each of the four models are detailed below. 

 

Figure 1: A) General architecture of the implemented auto-encoder with an unspecified 

bottleneck; B) sAE spatial bottleneck; C) sVAE spatial bottleneck and D) convolutional layer of 
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the dVAE along with its fully connected layers and dense bottleneck.   and   describe the 

approximate posterior of the latent variable, z  was obtained by a sampling operation. 

 

3.2.1. Spatial auto-encoder 

The spatial auto-encoder model was fully convolutional, five convolutional layers 

connected inputs to bottleneck and five transposed convolutional layers from bottleneck to 

outputs. As depicted in Figure 1-B, the output of the encoder network was directly the latent vector 

z  and the loss function was simply the 1L -norm reconstruction error: 

 1
ˆ= x x  (3) 

This model was trained for 160 epochs, with a learning rate of 30.8 10 . 3 3  kernels 

were convoluted using padding of 1 pixel and a stride of (2, 2) in the first four layers and a stride of 

(1,1) in the last one. The bottleneck dimensions were h=10, w=5 and c=256. There were no 

pooling layers. 

 

3.2.2. Spatial variational auto-encoder 

Similar to the sAE, the model was fully convolutional, however, the encoder generated the 

parameters of the approximate posterior of the latent variable given the input, constrained to 

follow a multivariate normal distribution. A sampling operation was needed to obtain an actual 

value for z  as depicted in Figure 1-C. 

Training lasted for 200 epochs using a learning rate of 30.3 10 . As in the previously 

presented model, a 3 3  kernel was chosen as filter, along with a padding of 1 and stride of (2, 2) 

in the first four layers and of (1,1) in the last one, resulting in bottleneck dimensions h=10, w=5 

and c=256. No pooling layers were used. The loss function was computed as follows: 
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where   and   denote the mean and the variance of the approximate posterior, J  is 

the number of elements in the latent space and   controls the proportion between the two terms. 

The first term is the reconstruction error and the second term is the Kullback-Leibler (KL) 

divergence between the approximate posterior and the prior of the latent variable, for the Gaussian 

case (Kingma and Welling, 2019). To favor good reconstructions over a Gaussian-like distribution 

of the latent variables, we put more weight (90%) in the reconstruction term and less weight (10%) 

in the KL divergence term. This proportion was empirically determined to reduce reconstruction 

error while improving anomaly detection. 

 

3.2.3. Dense variational auto-encoder 

The main difference of the dense variational auto-encoder when compared to the sVAE is 

its dense bottleneck. Encoder and decoder also have fully connected layers in addition to the 

convolutional layers, as shown in Figure 1-D. The number of units is depicted below each fully 

connected layer. The dimensions of the outputs of each convolutional layer (not shown in Figure 

1) were the same as for the sVAE model. 

For regularization purposes, the dropout technique (Srivastava et al., 2014) was used to 

turn off 30% of the units in fully-connected layers during training. This model was trained for 100 

epochs with a learning rate of 30.3 10 . There were no pooling layers. Kernels for all 

convolutional layers were 3 3 , and convolutions were performed with a padding of 1 and stride 

of (2, 2). The bottleneck vector was of size d=256. 

The same modification in the VAE loss function was implemented in this model, as shown 
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in Equation 4, and we kept the same 90/10 proportion between the reconstruction term and the KL 

divergence term. 

 

3. Evaluation procedure 

After training, the models were fed with the images from the test controls and PD patients 

datasets. As already mentioned (Table 1), this was done 10 times using different training sets. 

The idea was to identify diffusion anomalies in PD patients by observing for which brain 

regions the models provided an inaccurate reconstruction while providing accurate ones for 

healthy test controls. We expected the reconstructions of healthy subjects be superior to those of 

patients because the models were trained solely with healthy scans. That being said, we also 

expected to reveal, if any, subtle anomalies since all patients were only recently diagnosed. For 

this purpose we computed a joint reconstruction error map for all outputs where the value for each 

voxel i was calculated as: 

 2 2ˆ ˆ(FA FA ) (MD MD )i i i i    (5) 

FAi  and MDi  denote the original FA and MD values while F̂A i  and M̂Di , the reconstructed 

values. 

We could infer that reconstruction errors come from at least four different sources: 1) noise 

in the input data, 2) loss of information due to dimension reduction in the latent space, 3) 

variability of healthy controls not captured by the model and 4) finally real anomalies caused by 

PD. Because we were only interested in the latter, the best way to evaluate and compare the models 

was by measuring their ability to discriminate between controls and PD patients, based on the 

intensity and localization of the reconstruction errors. 
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4.1. Regions of Interest 

In order to evaluate the reconstruction of specific ROIs, we used two brain atlases. The 

Neuromorphometrics atlas (Bakker et al., 2015) was used to localize the Frontal, Temporal, 

Occipital and Parietal lobes, the Cingulate and Insular cortex and the overall White Matter. The 

MNI PD25 atlas (Xiao et al., 2015), specifically designed for PD patients MRI analysis, was used 

to localize several subcortical structures, the Red Nucleus (RN), the Substantia Nigra (SN), the 

Subthalamic Nucleus (STN), the Caudate Nucleus, the Putamen, the external and internal Globus 

Pallidus and the Thalamus. 

 

4.2. Anomaly identification 

In order to detect abnormal voxels in subjects, we needed to decide above which error 

value (hereafter the abnormality threshold (a.t.)), a given voxel was considered as poorly 

reconstructed. While large error values could also occur for voxels in healthy subjects, they should 

appear much less frequently than for PD patients as the later were not used to train the network. 

Therefore, the a.t. value was fixed to an extreme quantile (e.g. the 98% quantile) of the distribution 

of errors in the control population. This meant that only a very small percentage (2%) of the voxels 

in the control population were classified as abnormal due to subject variability and learning 

imperfections. We performed several experiments in varying the abnormality threshold (see 

Supplementary Material). As shown, there were few differences between the levels and small 

structures presented a less stable evolution than macro-regions. At the end, the 98% threshold 

chosen empirically, corresponded to the inflection point for many ROIs and was the threshold with 

less inter-population variations. Next, for each control and PD subject in the test set, we counted 
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the number of abnormal voxels detected in each ROI as a percentage. A subject was then classified 

as PD if this percentage was above a certain value that had to be decided. The classification 

performance depends on this choice. In practice, we proposed a ROC curve analysis to set a 

reasonable value of this threshold referred to as pathological threshold (p.t.). 

Due to the imbalanced nature of the test set (30 healthy and 258 pathological brain 

hemispheres), considerable care was taken to choose a reliable criterion for classification 

performance evaluation. The trade-off between sensitivity and specificity depicted by the ROC 

curve deemed itself the best adapted as it takes into account the ability to identify both classes 

independently from class prevalence. The area under the ROC curve (AUC) can be directly used as 

a measure of classification performance. In addition, as each point in the ROC curve corresponds 

to the sensitivity and specificity values obtained for a given threshold, the point closest to a perfect 

sensitivity and specificity can be considered as the p.t. This is illustrated on Figure 2. And so, the 

abnormality threshold serves for classification at the voxel-level, while the pathological threshold 

differentiates subjects at the hemisphere-level or ROI-level. The classification performance of the 

pathological threshold can be evaluated using the geometric mean (g-mean) between sensitivity 

and specificity : 

 mean = Sensibility Specificityg    (6) 

For all of the before-mentioned ROI, we calculated the ROC-AUC and the g-mean of the 

associated pathological threshold. The results across all 10 sub-populations for all models are 

reported in Section 5.1. 

 

Figure 2: The ROC curve is traced from the sensitivity and specificity scores obtained when 

varying the percentage of abnormal voxels in white matter (WM) above which a subject is 
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classified as PD in the first sub-population. The retained threshold for PD patient vs Control 

classification corresponds to the red point. 

 

We also investigated the classification performances obtained with different sub-types of 

patients depending on their clinical history, mainly concentrating on cognitive compliance and 

motor symptoms. Some studies have found that at the early stages of PD, anomalies were often 

detected in patients that present mild cognitive impairment (MCI) versus patients without 

cognitive symptoms (Tessa et al., 2014; Zeighami et al., 2017; Malek et al., 2015; Guimarães et al., 

2018). To test for this possibility in our dataset, we divided the patients into two categories based 

on their MoCA test scores that reflect their cognitive skills. The patients with a score below 26 

points were classified as MCI. PD patients often present unilateral motor symptoms at the early 

stages of the disease. In this case, we expect a brain alteration in the contralateral hemisphere. 

Inspired by other studies (Schuff et al., 2015; Shinde et al., 2019) we tested the prediction 

differences between hemispheres based on the UPDRS III test scores, which reflect motor 

dysfunctions. An hemisphere was considered as altered when the sum of the UPDRS III scores 

related to the contralateral motor side was equal or above 10 points. 

 

5. Results analysis 

As it can be observed in Figure 3, the best reconstructions were achieved by the sAE. This 

was expected as there were no regularization constraints for the reconstructions. The sVAE 

generated quite good reconstructions as well. On the contrary, the dVAE was unable to reconstruct 

fine details in the images, specially around the circonvolutions and the subcortical structures. This 

may be caused by the loss of information in its fully connected layers. Supervised learning 
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applications of auto-encoders in the literature have also shown that dVAE are very sensitive to 

outliers and often struggle to reconstruct detailed structures in brain scans (Baur et al., 2019). 

However, due to the lack of ground truth, we cannot conclude on which model provides the better 

performances. 

 

5.1. Most discriminant ROIs 

It would be beneficial to find a structure which, when abnormal, is both PD specific and 

sensitive enough to discriminate de novo PD patients from controls. The first performance 

evaluation corresponds to the ROC-AUC (sensitivity vs. specificity) obtained when comparing, 

for each ROI and each sub-population, the percentage of values above the 98% quantile of the 

reconstruction error distribution for HC. The results displayed in Figure 3 show that comparing the 

percentages of abnormal voxels in the whole hemisphere yields satisfactory classifications with an 

median AUC of 68.2%, 67.6% and 62.8% for the sAE, sVAE and dVAE respectively. 

 

Figure 3: Original FA (top) and MD (middle) axial brain slices of a PD patient with their 

corresponding reconstructions using the sAE, sVAE and dVAE models. The joint reconstruction 

error maps are displayed in the bottom row. 

 

As explained in Section 4.2, each ROC curve provides a specific pathological threshold 

from which the g-mean score can be computed to assess how this ROI threshold differentiates 

controls from patients. For each considered ROI, the average over the 10 sub-populations (Table 

1) of the ROC-AUC scores, of the retained pathological thresholds (p.t.) and of their associated 

g-mean scores provided by sAE are presented in Table 2. 
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Table 2: AE reconstruction performance median scores with interquartile ranges (IQR), expressed 

in percentages for the 10 sub-populations and 16 different ROIs (first column): ROC-AUC scores 

(2nd column), pathological thresholds retained from the ROC curves (3rd column) and associated 

g-mean scores (4th column). 

Structure ROC-AUC p.t. G-mean 

Hemishpere 68.2 (IQR 5.9) 2.18 64.6 (IQR 3.9) 

Subcortical 60.0 (IQR 7.2) 1.02 61.0 (IQR 6.0) 

White Matter 68.3 (IQR 5.4) 4.24 66.4 (IQR 5.6) 

Frontal 56.4 (IQR 7.4) 1.02 59.2 (IQR 6.6) 

Temporal 63.6 (IQR 8.4) 1.70 64.1 (IQR 5.4) 

Parietal 63.1 (IQR 4.7) 0.80 60.5 (IQR 5.3) 

Occipital 63.1 (IQR 4.1) 1.98 62.5 (IQR 5.3) 

Cing./Ins. 59.9 (IQR 7.3) 1.66 57.2 (IQR 4.2) 

RN 55.0 (IQR 5.9) 9.21 56.8 (IQR 3.6) 

SN 59.5 (IQR 6.2) 20.96 57.7 (IQR 5.7) 

STN 53.7 (IQR 7.1) 19.35 52.8 (IQR 7.0) 

Cau 58.7 (IQR 7.3) 1.03 56.3 (IQR 4.1) 

Put 59.7 (IQR 12.9) 1.08 59.4 (IQR 6.3) 

GPe 56.2 (IQR 9.2) 2.91 56.3 (IQR 7.4) 

GPi 62.6 (IQR 5.4) 5.11 61.8 (IQR 3.5) 

Th 58.4 (IQR 8.0) 1.54 60.5 (IQR 4.9) 
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For a given ROI, the higher the p.t. the higher the percentage of abnormal voxels needs to 

be considered as pathological. A high pathological threshold indicates then that for HC in the test 

set, the auto-encoder has detected a relatively large number of abnormal voxels above the 2% 

expected errors. This means that HC in the test set exhibited more variability than the one captured 

by the network only built from HC in the learning set. For example, we then expected that any 

hemisphere reconstructed with sAE with more than 2.18% of abnormal voxels, most likely 

belongs to a PD patient. 

 

Figure 4: Obtained ROC-AUC scores for the whole brain and several ROIs using the sAE, sVAE 

and dVAE models. RN: Red Nucleus; SN: Substancia Negra; STN: Sub-thamic Nucleus, Cau: 

Caudate nucleus; GPe: Globus Pallidus external; GPi: Globus Pallidus internal; Th: Thalamus. 

 

Figure 5: Obtained g-mean scores for the whole brain and several ROIs using the sAE, sVAE and 

dVAE models. For the abbreviations see the legend of Figure 4. 

 

The g-mean classification scores for all models obtained for each ROI and each 

sub-population, are presented in Figure 5. We notice that the brain regions that obtain the highest 

scores for the sAE reconstructions are the White Matter and the Temporal lobe with a g-mean 

median value of 66.4% (p.t. 4.24%) and 64.1% (p.t. 1.7%) respectively. For the subcortical 

structures, the internal part of the Globus Pallidus (GPi) and the Thalamus achieve the best 

performances with a median g-mean score of 61.8% for the former and 60.5% for the latter. While 

the g-mean scores are clearly poorer for the dVAE than for the sAE model, with the exception of 

the caudate nucleus (sAE: 56.33% IQR (Interquartile range), 4.07, dVAE: 58.95% IQR 4.83) and 
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the external segment of the Globus Pallidus (sAE: 56.29% IQR 7.45, dVAE: 57.35 IQR 5.81); 

when using the sVAE model, the differences between the g-mean scores across the ten 

sub-populations are quite subtle. The most notable differences figure in the White Matter (sAE: 

66.36% IQR 5.64, sVAE: 64.71% IQR 3.05), the parietal lobe (sAE: 60.49% IQR 5.3, sVAE: 

62.49% IQR 3.08) and the GPi (sAE: 61.82% IQR 3.49, sVAE: 59.28% IQR 2.6). 

 

5.2. Sub-types of patients 

According to the sub-typing criteria mentioned in Section 4.2, 34 out of the 129 PD 

patients were categorized as MCI, i.e. 68 hemispheres in our classification task. Sixty-six (66) 

patients had at least one hemisphere with a contralateral UPDRS III motor score above ten points, 

out of which fifty-nine (59) had a dominant hemisphere and seven (7) had bilateral motor 

disturbances. The classification procedure was repeated for these three subsets of patients 

compared to the ten previously defined control sub-populations using only sAE reconstructions. 

The g-mean score results are displayed on Figure 6. 

 

Figure 6: Obtained g-mean scores for the whole brain and several ROIs using the sAE model 

reconstructions in four classification tasks. Control hemispheres are compared to hemispheres 

from: 1. the full patient population (red), 2. the MCI subgroup (patients with MoCA score <  26) 

(blue), 3. patients with unilateral motor issues (UPDRS III score >  10 for only one hemisphere) 

(green), and 4. patients with bilateral motor issues (UPDRS III scores >  10 for both hemispheres) 

(purple). For the abbreviations see the legend of Figure 4. 

 

Regarding whole hemisphere classification, the hemispheres belonging to patients with 
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bilateral motor symptoms obtained the highest g-mean scores with a median value of 76.4% IQR 

1.6 followed by patients with MCI (73.56% IQR 1.99). The g-mean scores for hemispheres of 

subjects with unilateral motor symptoms were the lowest with a median score of 61.06% IQR 2.81. 

Patients with MCI achieved better results than the general population for all 

macro-structures of the brain, that is the white matter (All: 66.4% IQR 5.6, MCI: 72.2% IQR 6.1), 

the corpus callosum (All: 57.7% IQR 3.2, MCI: 59.8% IQR 3.1)) and the gray matter lobes, 

however, they obtained poorer or similar results in subcortical structures. 

The subgroup of patients with bilateral motor symptoms had the best g-mean scores in all 

of the studied ROIs apart from the putamen and the corpus callosum. Particularly good results 

were observed in subcortical structures such as the GPi (All: 61.8% IQR 3.5, Bilateral: 71.5% IQR 

3.7)) and the thalamus (All: 60.5% IQR 4.9, Bilateral: 70.5% IQR 4.2)). 

On the contrary, classification g-mean scores for patients with unilateral motor symptoms 

were systematically below those of the general population and, by consequence, those of patients 

with bilateral motor symptoms in all ROIs other than the corpus callosum (Unilateral: 59.7% IQR 

3.5, Bilateral: 53.6% IQR 7.3))). 

 

6. Discussion 

Auto-encoders, and in general unsupervised deep anomaly detection techniques, are cost 

effective techniques that do not require annotated data for training. They are very promising for 

medical applications where annotated training examples are difficult to obtain. In this domain, 

they can learn the inherent features of a set of data, i.e. representative of the normal population, 

from which a patient can then be detected as an outlier. In this paper, we proposed to analyze MR 

brain scans with a deep learning anomaly detection technique, using either an auto-encoder or a 
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variational auto-encoder as the main building block. We demonstrated that, when trained in an 

unsupervised manner with a medium-size collection of healthy MR brain scans, such a technique 

allowed the detection of subtle abnormalities in de novo PD diffusion feature maps. 

An original evaluation procedure was designed to compare the reconstruction error profiles 

of healthy individuals versus PD patients. As a result, thresholds of abnormality were established 

for the whole brain and fifteen other structures, among which subcortical structures that are 

preferentially impacted by the disease. 

With an unbalanced dataset (56 controls vs 129 PD patients) we took special care in 

employing convenient metrics such as the geometric mean between specificity and sensibility, but 

also in generalizing our results by performing a 10-fold cross-validation to train and test our 

models. This turned out to be a key part in the study. As a matter of fact, for no obvious reason the 

first sub-population achieved much better performances than the average of our ten populations, 

with an sAE hemispheric g-mean score of 74.3% when the average was 64.6% (see Figure 5 and 

Supplementary Material). 

While our results did not strongly highlight a particular biomarker for early PD, they 

provided an indication on the presence of diffuse anomalies mainly located in the white matter, all 

the more so in patients presenting cognitive decline. However, good performances in white matter 

are not very surprising, considering that DTI has been introduced to study white matter tracts 

through water molecules diffusion along myelin fibers. 

In contrast, we suspect that the large pathological thresholds (see Table 2) obtained for 

small subcortical gray-matter structures, like the substantia nigra (20.96%) and the STN (19.35%), 

are indicative that the spatial auto-encoder was unable to produce an accurate reconstruction of 

these regions in the HC population. This could be related to the size of these structures and various 
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registration issues induced by partial volume effects resulting in a somewhat bias control model. In 

that case, we may expect that the enlargement of the training healthy population would moderate 

such effects and allow to reinforce abnormalities detection in these subcortical structures for PD 

patients. 

In terms of comparison with the literature, our approach achieved similar performances 

than other diffusion based studies. Notably, the cross-validation procedure of Schuff et al. (2015) 

obtained a ROC AUC of 59% for the rostral segment of the SN which is comparable to our mean 

ROC AUC of 57.6% for the complete SN (see Figure 4). In contrast, our results fall below those 

achieved by Li et al. (2019) employing a stacked spatial auto-encoder using morphometric (tissue 

concentration) and diffusion (mean diffusivity) features for 116 ROIs as input. Indeed, they got a 

ROC AUC of 86% but they did not indicate any cross-validation or generalization procedure. Still, 

it is possible that the relationship between white matter quantity, gray matter quantity and mean 

diffusion brings out anomalies that are not significant when studying diffusion properties alone. 

Considering sub-types of patients based on their clinical scores, we found that patients with 

MCI were easier to identify. The classification g-mean scores of these patients hemispheres were 

better than those of the complete pool of patients when considering the whole hemisphere, the 

white matter and the gray matter lobes. In contrast, the classification performances for MCI 

patients were worse when focusing on subcortical structures, with the exception of the STN, the 

putamen and the thalamus. This could indicate a different type of diffusion anomalies in MCI 

patients. 

The sub-typing of patients based on motor symptoms revealed that the hemispheres 

belonging to patients with bilateral motor symptoms were easier to differentiate from healthy 

hemispheres than hemispheres where motor symptoms were lateralized (see Figure 6). We note 
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that this was the only classification task performed with more healthy samples (30) than patient 

samples (14). Also the average age of these patients (66.7 ± 9.2) was higher than those of controls 

(see Table 1). This could be at the root of the superior variance displayed in the results of ROIs like 

white matter and SN. 

For the patients exhibiting lateralized motor symptoms, the classification scores achieved 

by their contralateral hemispheres were only superior in average to the results of the complete pool 

of patients for the occipital lobe, the caudate nucleus and the corpus callosum (see Figure 6). 

Interestingly, this latter structure was the only ROI providing superior classification score for 

patients with lateralized motor symptoms compared to bilateral motor symptoms. This is all in 

accordance with the literature. Indeed, while all the patients in the study are considered ’de novo’, 

it is of common understanding that in the first stage of PD, motor symptoms are unilateral and only 

develop to bilateral disturbances over time (Hoehn and Yahr (1967)). What is more, the corpus 

callosum is constituted by white matter tracts that enable the communication between the left and 

the right hemispheres. Unilateral motor symptoms could then result from diffusion abnormalities 

in this structure. 

In addition to the difficulty to interpret and relate our findings to the physio-pathology of 

the disease, the reliability of conclusions that can be drawn is subject to one of the major 

limitations of deep learning approaches. Indeed, the main challenge of applying deep learning to 

medical image analysis is data scarcity and this study is no exception. In face of the relative lack of 

available data for learning, the models were trained with 2D slices which multiplied by 40 the 

number of samples available for learning. The control group available for our experiments 

contained only 56 MRI volumes, with gender and age imbalance and thus not faithfully 

representing the variability of healthy brains in the population. Although we were able to 
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discriminate between healthy controls and individuals affected by PD with good performances, we 

cannot rule out that other possible causes of variability in brain properties, such as age and gender, 

and other hidden parameters, might have influenced our classification results. To palliate the 

adverse effects of relative data scarcity, it could be interesting to include data augmentation 

(Shorten and Khoshgoftaar (2019); Zhang et al. (2017)) or appropriate feature extraction to our 

pre-processing pipeline (Zhang et al. (2021)). 

Another inherent difficulty in neural networks implementation is the numerous tuning 

choices that can be made. While architecture-wise, reasonable settings seem to have emerged, it 

would worth investigating more sophisticated loss functions, e.g. with added adversarial 

components. More specific to anomaly detection, different anomaly scores could also be tested 

and a classifier could be trained to take into account the raw output of auto-encoders, as seen in the 

work of Zhang and colleagues for the detection of cerebral microbleeds (Zhang et al. (2017)). 

At last, we cannot exclude limitations coming from imaging issues, such as the poor 

resolution of diffusion images. The atlas-based segmentation of anatomical regions may have 

consequently suffered from partial volume effect. This was probably negligible for large structures 

but might have a significant impact on the results in small structures such as the SN, STN and RN. 

Overall, more experiments, including a larger set of patients and controls and additional 

MR modalities, are required to confirm these preliminary and very encouraging results. 

 

7. Conclusion 

We developed an auto-encoder-based technique to detect subtle abnormalities in MRI 

brain scans of de novo and untreated patients with Parkinson’s disease. Based on FA and MD 

measures, we found the presence of diffuse structural anomalies, mainly located in white matter, 
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especially in patients with cognitive disturbances. We may expect that the integration of additional 

quantitative MRI measures, such as perfusion, iron content and tissue relaxation times, would 

improve abnormalities detection in the brain of PD patients. Moreover, the approach could also be 

of interest for studying other neurological disorders when diffuse lesions are suspected (such as 

mild traumatic brain injury) and difficult to localize for a human observer. Moreover, the spatial 

localization of subtle alterations in MR imaging modalities, sensitive to different physiological 

parameters, could bring new knowledge about the physio-pathology of the underlying disease. 

Because they are sensitive to noise, corruption and over-fitting, the main difficulty for 

disseminating deep learning methods in the medical domain is the requirement of a large amount 

of data. Our results offer compelling evidence that the deep anomaly detection technique 

employing auto-encoders could be used as a blueprint to detect subtle anomalies for medical 

purposes, even when trained with a moderate number of images. 
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Graphical abstract 

 

Highlights 

-Auto-encoders can detect anomalies in the MR brain scans of Parkinsonian patients (PD). 

- PD anomalies were mainly detected in white matter, temporal lobes and globus pallidus 

internus. 

- Anomalies in white matter were found in PD with cognitive impairment. 

- An original evaluation method is proposed in absence of gold standard. 
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