The Community Code Verification Exercise for Simulating Sequences of Earthquakes and Aseismic Slip (SEAS) - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Seismological Research Letters Année : 2020

The Community Code Verification Exercise for Simulating Sequences of Earthquakes and Aseismic Slip (SEAS)

Brittany Erickson
  • Fonction : Auteur
Junle Jiang
  • Fonction : Auteur
Michael Barall
  • Fonction : Auteur
Nadia Lapusta
  • Fonction : Auteur
Eric Dunham
  • Fonction : Auteur
Ruth Harris
  • Fonction : Auteur
Lauren Abrahams
  • Fonction : Auteur
Kali Allison
  • Fonction : Auteur
Jean Paul Ampuero
Sylvain Barbot
  • Fonction : Auteur
Camilla Cattania
  • Fonction : Auteur
Ahmed Elbanna
Yuri Fialko
  • Fonction : Auteur
Benjamin Idini
  • Fonction : Auteur
Jeremy Kozdon
  • Fonction : Auteur
Valère Lambert
  • Fonction : Auteur
Yajing Liu
  • Fonction : Auteur
Yingdi Luo
  • Fonction : Auteur
Xiao Ma
Maricela Best Mckay
  • Fonction : Auteur
Paul Segall
  • Fonction : Auteur
Pengcheng Shi
  • Fonction : Auteur
Martijn P.A. van den Ende
Meng Wei
  • Fonction : Auteur

Résumé

Abstract Numerical simulations of sequences of earthquakes and aseismic slip (SEAS) have made great progress over past decades to address important questions in earthquake physics. However, significant challenges in SEAS modeling remain in resolving multiscale interactions between earthquake nucleation, dynamic rupture, and aseismic slip, and understanding physical factors controlling observables such as seismicity and ground deformation. The increasing complexity of SEAS modeling calls for extensive efforts to verify codes and advance these simulations with rigor, reproducibility, and broadened impact. In 2018, we initiated a community code-verification exercise for SEAS simulations, supported by the Southern California Earthquake Center. Here, we report the findings from our first two benchmark problems (BP1 and BP2), designed to verify different computational methods in solving a mathematically well-defined, basic faulting problem. We consider a 2D antiplane problem, with a 1D planar vertical strike-slip fault obeying rate-and-state friction, embedded in a 2D homogeneous, linear elastic half-space. Sequences of quasi-dynamic earthquakes with periodic occurrences (BP1) or bimodal sizes (BP2) and their interactions with aseismic slip are simulated. The comparison of results from 11 groups using different numerical methods show excellent agreements in long-term and coseismic fault behavior. In BP1, we found that truncated domain boundaries influence interseismic stressing, earthquake recurrence, and coseismic rupture, and that model agreement is only achieved with sufficiently large domain sizes. In BP2, we found that complexity of fault behavior depends on how well physical length scales related to spontaneous nucleation and rupture propagation are resolved. Poor numerical resolution can result in artificial complexity, impacting simulation results that are of potential interest for characterizing seismic hazard such as earthquake size distributions, moment release, and recurrence times. These results inform the development of more advanced SEAS models, contributing to our further understanding of earthquake system dynamics.

Dates et versions

hal-03578332 , version 1 (17-02-2022)

Identifiants

Citer

Brittany Erickson, Junle Jiang, Michael Barall, Nadia Lapusta, Eric Dunham, et al.. The Community Code Verification Exercise for Simulating Sequences of Earthquakes and Aseismic Slip (SEAS). Seismological Research Letters, 2020, 91 (2A), pp.874-890. ⟨10.1785/0220190248⟩. ⟨hal-03578332⟩
15 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More