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While the well-established GW approximation corresponds to a resummation of the direct ring diagrams and is particularly
well suited for weakly-correlated systems, the T -matrix approximation does sum ladder diagrams up to infinity and
is supposedly more appropriate in the presence of strong correlation. Here, we derive and implement, for the first
time, the static and dynamic Bethe-Salpeter equations when one considers T -matrix quasiparticle energies as well as a
T -matrix-based kernel. The performance of the static scheme and its perturbative dynamical correction are assessed by
computing the neutral excited states of molecular systems. Comparison with more conventional schemes as well as other
wave function methods are also reported.

I. INTRODUCTION

The GW approximation1 of many-body perturbation theory2

is becoming a method of choice to target charged excitations
(i.e., ionization potentials and electron affinities) in molecular
systems.3–7 These so-called quasiparticle energies can be ex-
perimentally measured from direct and inverse photoemission
spectroscopies. From a more theoretical point of view, GW
corresponds to an elegant resummation of all direct ring dia-
grams from the particle-hole (ph) channel which is particularly
justified in the high-density or weakly-correlated regime.8,9

Within the GW approximation, the self-energy — one of the
key quantities of Hedin’s equations1 — reads

ΣGW (1, 2) = iG(1, 2)W(1, 2) (1)

where G is the one-body Green’s function, W is the
dynamically-screened Coulomb potential, and, e.g., 1 ≡
(σ1, r1, t1) is a composite coordinate gathering spin, space,
and time variables.

Alternatives to GW do exist. For example, the T -matrix (or
Bethe-Goldstone) approximation, first introduced in nuclear
physics,10–14 then in condensed matter physics,15–23 and more
recently in quantum chemistry,24,25 sums to infinity the ladder
diagrams from the particle-particle (pp) channel and is justified
in the low-density or strongly-correlated regime.13–15,26 While
the two-point screened interaction W is the cornerstone of
GW, the T -matrix approximation relies on a more complex
(four-point) effective interaction — the so-called T matrix —
yielding the following self-energy:

ΣGT (1, 2) = i
∫

G(4, 3)T (1, 3; 2, 4)d3d4 (2)

The natural idea of combining the ph and pp channels is also
possible and has been explored, for example, in the Hub-
bard dimer within many-body perturbation theory (see Ref. 22
and references therein) and the uniform electron gas27 within
coupled-cluster theory.26

One of the key features of the T -matrix approximation is
its exactness up to the second order thanks to the inclusion
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of second-order exchange diagrams. This class of diagrams,
which are particularly important in few-electron molecular
systems28–31 and explain the improvement brought by the
second-order screened exchange (SOSEX) correction applied
to GW,32–34 are well known to be missing in the GW approx-
imation. Moreover, unlike W in the GW approximation, the
T -matrix approximation also contains spin-flip terms; the spin
structure of the T -matrix allows one to describe important
processes like the emission of spin waves in ferromagnetics.35

In this work, we focus on neutral excitations and we ex-
plore how the T -matrix approximation performs within the
Bethe-Salpeter equation (BSE) of many-body perturbation
theory.36–39

Let us consider closed-shell electronic systems consisting of
N electrons and K one-electron basis functions. The number of
singly-occupied and virtual (i.e., unoccupied) spinorbitals are
O = N and V = K −O, respectively. Let us denote as ψp(x) the
pth spinorbital and εp its one-electron energy. The composite
variable x = (σ, r) gathers spin (σ) and spatial (r) variables.
We assume real quantities throughout this manuscript, i, j,
k, and l are occupied orbitals, a, b, c, and d are unoccupied
orbitals, p, q, r, and s indicate arbitrary orbitals, m labels
single excitations, while n labels double electron attachments
or double electron detachments.

II. CHARGED EXCITATIONS

By definition, the one-body Green’s function is2

G(x1, x2;ω) =
∑

i

ψi(x1)ψi(x2)
ω − εi − iη

+
∑

a

ψa(x1)ψa(x2)
ω − εa + iη

(3)

where η is a positive infinitesimal, and its nature is completely
defined by the set of orbitals and corresponding energies that
are used to build it. For example, GHF(x1, x2;ω) is the Hartree-
Fock (HF) Green’s function built from the HF spinorbitals
ψHF

p (x) and energies εHF
p .

Contrary to the GW approximation which relies on the (two-
point) dynamically-screened Coulomb potential W computed
from a ph-random-phase approximation (ph-RPA) problem to
target charged excitations,1–6 here we consider the GT approx-
imation where one employs the (four-point) T matrix obtained
from solving the pp-RPA equations.
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The non-Hermitian pp-RPA problem reads40–50(
App-RPA Bpp-RPA

−(Bpp-RPA)ᵀ −Cpp-RPA

)
·

(
XN±2

n
YN±2

n

)
= ΩN±2

n

(
XN±2

n
YN±2

n

)
(4)

where the elements of the various matrices are defined as

App-RPA
ab,cd = δabδcd(εa + εb) + 〈ab||cd〉 (5a)

Bpp-RPA
ab,i j = 〈ab||i j〉 (5b)

Cpp-RPA
i j,kl = −δikδ jl(εi + ε j) + 〈i j||kl〉 (5c)

and

〈pq||rs〉 = 〈pq|rs〉 − 〈pq|sr〉 (6)

are two-electron integrals in the spinorbital basis, i.e.,

〈pq|rs〉 =

"
ψp(x1)ψq(x2)

1
|r1 − r2|

ψr(x1)ψs(x2)dx1dx2

(7)
The pp-RPA problem yields, in the absence of instabilities
(which should not appear in Coulombic systems with repulsive
interactions only43), V(V − 1)/2 positive eigenvalues ΩN+2

n
and O(O − 1)/2 negative eigenvalues ΩN−2

n , which correspond
respectively to double attachments and double detachments.
The pp-RPA correlation energy is given by42,43

Epp-RPA
c = +

∑
n

ΩN+2
n − Tr

(
App-RPA

)
= −

∑
n

ΩN−2
n − Tr

(
Cpp-RPA

) (8)

Considering the time structure of the T -matrix approxima-
tion as T (1, 3; 2, 4) = −δ(t1 − t3)δ(t2 − t4)T (x1, x2; x4, x3; t1 −
t2),2 the frequency-dependent T -matrix self-energy can be ob-
tained from the Fourier transform of Eq. (2) as

ΣGT (x1, x2;ω) = −i
∫

dx3dx4

∫
dω′

2π
G(x4, x3;ω′)

× T (x1, x3; x2, x4;ω + ω′) (9)

The correlation part of T matrix can be constructed from the
knowledge of the pp-RPA eigenvalues and eigenvectors. In the
spinorbital basis, it is defined as T c

pq,rs = Tpq,rs − 〈pq||rs〉 and
it has the following form49

T c
pq,rs(ω) =

∑
n

〈pq|χN+2
n 〉 〈rs|χN+2

n 〉

ω −ΩN+2
n + iη

−
∑

n

〈pq|χN−2
n 〉 〈rs|χN−2

n 〉

ω −ΩN−2
n − iη

(10)
with

〈pq|χN+2
n 〉 =

∑
c<d

〈pq||cd〉 XN+2
cd,n +

∑
k<l

〈pq||kl〉YN+2
kl,n (11a)

〈pq|χN−2
n 〉 =

∑
c<d

〈pq||cd〉 XN−2
cd,n +

∑
k<l

〈pq||kl〉 XN−2
kl,n (11b)

Combining Eqs. (3) and (10), the correlation part of the T -
matrix self-energy reads2,22,24,25

ΣGT
pq (ω) =

∑
in

〈pi|χN+2
n 〉 〈qi|χN+2

n 〉

ω + εi −ΩN+2
n + iη

+
∑
an

〈pa|χN−2
n 〉 〈qa|χN−2

n 〉

ω + εa −ΩN−2
n − iη

(12)

While the dynamical GW self-energy corresponds to the down-
folding of the 2h1p and 2p1h configurations on the 1h and 1p
configurations via their coupling with the 1h1p configurations,
respectively,51 Eq. (12) shows that, in the case of the T -matrix
approximation, the same 2h1p and 2p1h configurations are
downfolded on the 1p and 1h configurations via their coupling
with the 2h and 2p configurations, respectively.

Within the (perturbative) one-shot GT scheme (labeled as
G0T0 in the following), the quasiparticle energies are obtained
via linearization of the quasiparticle equation,52–60 i.e.,

εG0T0
p = εHF

p + ZpΣGT
pp (εHF

p ) (13)

where we have assumed a HF starting point and

Zp =

1 − ∂ΣT
pp(ω)

∂ω

∣∣∣∣∣∣∣
ω=εHF

p


−1

(14)

is the renormalization factor or weight of the quasiparticle so-
lution. Other levels of (partial) self-consistency can be consid-
ered like the “eigenvalue” self-consistent GT (evGT )54,60–64

or the quasiparticle self-consistent GT (qsGT )65–69 schemes.

III. NEUTRAL EXCITATIONS

Like the one-body Green’s function is the pillar of the GW
and GT approximations, the two-body Green’s function G2 is
the central quantity of the BSE formalism of many-body per-
turbation theory36–39 via its link with the two-body correlation
function L which satisfies the following Dyson equation

L(1, 2; 1′, 2′) = L0(1, 2; 1′, 2′)

+

∫
L0(1, 4; 1′, 3)Ξ(3, 5; 4, 6)L(6, 2; 5, 2′)d3d4d5d6 (15)

where

iL0(1, 4; 1′, 3) = G(1, 3)G(4, 1′) (16a)
iL(1, 2; 1′, 2′) = −G2(1, 2; 1′, 2′) + G(1, 1′)G(2, 2′) (16b)

and

Ξ(3, 5; 4, 6) = i
δΣ(3, 4)
δG(6, 5)

(17)

is the so-called BSE kernel that takes into account the variation
of Σ with respect to the variation of G. By taking into account
the interaction of the excited electron and its hole left behind
(the infamous excitonic effect), the BSE is able to faithfully
model (neutral) optical excitations as measured by absorption
spectroscopy. The moderate cost of the BSE [which scales
as O(K4) in its standard implementation] and its all-round
accuracy are the main reasons behind its growing popularity in
the molecular electronic structure community.38,39,64,70–87

In order to target neutral (singly-)excited states, we first
consider the static version of the BSE employing the GT quasi-
particle energies [see Eq. (13)] as well as T -matrix kernel [i.e.,
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ΣGT in Eq. (17)]. In this case, the BSE@GT linear eigenvalue
problem simply reads(

ABSE BBSE

−BBSE −ABSE

)
·

(
XBSE

m
YBSE

m

)
= ΩBSE

m

(
XBSE

m
YBSE

m

)
(18)

with

ABSE
ia, jb = δi jδab(εGT

a − εGT
i ) + 〈ib||a j〉 + T c

ib,a j(ω = 0) (19a)

BBSE
ia, jb = 〈i j||ab〉 + T c

i j,ab(ω = 0) (19b)

The eigenvalues ΩBSE
m of Eq. (18) provide OV singlet (i.e.,

spin-conserved) and OV triplet (i.e., spin-flip) single excita-
tions. Note that the spin structure of the BSE@GT equations
is analogous to the BSE@GW version,88 and one can compute
separately singlet and triplet excitation energies. Neglecting the
coupling between excitations and deexcitations, i.e., BBSE = 0,
is known as the Tamm-Dancoff approximation (TDA).

Due to the frequency-independent nature of the static BSE,
it is well known that one cannot access double (and higher)
excitations.88–93 In order to go beyond the static approximation,
it is possible to consider, within the dynamical TDA (dTDA)
that neglects the frequency dependence of the coupling block
B, the dynamical version of the BSE (dBSE).37,90,92 In this
case, one must solve the (non-linear) dynamical eigenvalue
problem(

AdBSE(ΩS ) BBSE

−BBSE −AdBSE(−ΩS )

)
·

(
XdBSE

S
YdBSE

S

)
= ΩS

(
XdBSE

S
YdBSE

S

)
(20)

with

AdBSE
ia, jb (ω) = δi jδab(εGT

a − εGT
i ) + 〈ib||a j〉 + T̃ c

ib,a j(ω) (21)

where, following Strinati’s seminal work,37 one can derive
the following expression for the elements of the dynamical T
matrix

T̃ c
ib,a j(ω) =

∑
n

〈ib|χN+2
n 〉 〈a j|χN+2

n 〉

ω −ΩN+2
n + (εGT

i + εGT
j ) + iη

+
∑

n

〈ib|χN−2
n 〉 〈a j|χN−2

n 〉

ω + ΩN−2
n − (εGT

a + εGT
b ) + iη

(22)

from which, one can check that we recover the static expression
(10) in the limit ΩN±2

n → ∞. Equation (22) highlights the in-
teresting dynamical structure of the T matrix, where, similarly
to the dBSE@GW scheme,37,90,92 the 2h2p configurations are
downfolded on the 1h1p configurations.94 Additional details
about the derivation of Eq. (22) are reported in Appendix A.

Because solving a non-linear eigenvalue problem is com-
putationally challenging, here we rely on the perturbative
scheme developed in Ref. 92 in order to access dynamically-
corrected single excitations for which additional relax-
ation effects coming from higher excitations are taken into
account.88,90,92,93,95–100 Below, we quickly recap this dynami-
cal perturbative scheme.

Based on Rayleigh-Schrödinger perturbation theory, the non-
linear eigenproblem (20) can be split as a zeroth-order static

reference and a first-order dynamic perturbation, such that(
AdBSE(ΩS ) BBSE(ΩS )
−BBSE(−ΩS ) −ABSE(−ΩS )

)
=

(
ABSE BBSE

−BBSE −ABSE

)
+

(
A(1)(ΩS ) 0

0 −A(1)(−ΩS )

)
(23)

with

A(1)
ia, jb(ω) = T̃ c

ib,a j(ω) − T c
ib,a j(ω = 0) (24)

As usual, one can naturally expand the S th BSE excitation
energy and its corresponding eigenvector as

ΩS = ΩBSE
S + Ω

(1)
S + . . . , (25a)(

XS
YS

)
=

(
XBSE

S
YBSE

S

)
+

(
X(1)

S
Y(1)

S

)
+ . . . (25b)

Solving the static BSE [see Eq. (18)] yields the (zeroth-order)
static ΩBSE

S excitation energies and their corresponding eigen-
vectors XBSE

S and YBSE
S . The first-order correction to the S th

excitation energy is, within the dTDA,

Ω
(1)
S = (XBSE

S )ᵀ · A(1)(ΩBSE
S ) · XBSE

S (26)

This correction can be renormalized by computing, at no extra
cost, the renormalization factor which reads

ζS =

1 − (XBSE
S )ᵀ ·

∂A(1)(ΩS )
∂ΩS

∣∣∣∣∣∣
ΩS =ΩBSE

S

· XBSE
S

−1

(27)

This yields our final expression for the dynamically-corrected
BSE excitation energies:

Ω
dyn
S = Ωstat

S + ∆Ω
dyn
S = ΩBSE

S + ζS Ω
(1)
S (28)

Note again that the present perturbative scheme does not al-
low to access double excitations as only excitations calculated
within the static approach can be dynamically corrected.

IV. COMPUTATIONAL DETAILS

The present formalism has been implemented in the elec-
tronic structure package QuAcK101 which is freely available at
https://github.com/pfloos/QuAcK. We consider here only sys-
tems with closed-shell singlet ground states. Thus, the GW and
GT calculations are performed by considering a (restricted) HF
starting point and standard gaussian basis sets (defined with
cartesian functions) are employed. Note that all quasiparticle
energies which are obtained via Eq. (13) are corrected in the
same way. Finally, the infinitesimal η is set to zero for all
calculations. The evGT and qsGT schemes have been also
implemented but are not considered here. Although the dy-
namical correction is computed in the dTDA throughout, the
zeroth-order excitonic Hamiltonian [see Eq. (18)] is always
the “full” BSE static Hamiltonian, i.e., without TDA. Refer-
ence full configuration interaction (FCI) calculations have been
performed with quantum package.102

https://github.com/pfloos/QuAcK
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In terms of computational cost, the overall scaling of
BSE@GT is equivalent to BSE@GW as they both corre-
spond to seeking the lowest eigenvalues of a matrix of size
(2OV × 2OV). Searching iteratively for the lowest eigenstates
can be routinely performed via Davidson’s algorithm with a
O(K4) computational cost.103 The cost of the dynamical cor-
rection, which is thoroughly discussed in Ref. 92, is more
expensive but is again equivalent in both formalisms. The
computational cost associated with the computation of the
T -matrix and the screening W both scale as O(K6) in their
standard implementation as one must obtain all the eigenval-
ues and eigenvectors of the pp-RPA and ph-RPA problems,
respectively.104 However, the prefactor of the pp-RPA calcula-
tion is significantly larger than its ph-RPA counterpart due to
the larger size of the pp-RPA matrices and its non-Hermitian
nature.42–45,47–49 Moreover, within the T -matrix formalism, one
must compute both the singlet and triplet contributions of the
T -matrix, while for singlet states, only the singlet part of W is
required. Although similar approaches remain to be developed
for the T -matrix formalism, contour deformation and density
fitting techniques can be efficiently implemented in the case of
GW to reduce the scaling to O(K3).105–107

V. RESULTS AND DISCUSSION

A. Excited states of the hydrogen molecule

As a first didactical example, we consider the lowest singlet
and triplet excited states of the hydrogen molecule H2 and the
variation of their respective vertical transition energies upon
dissociation. The excitation energies associated with these low-
lying excited states are represented in Fig. 1 as a function of
the internuclear distance RH−H at the FCI (black), BSE@G0W0
(blue), and BSE@G0T0 (red) levels with the cc-pVTZ basis.
The variation of the HOMO and LUMO quasiparticle energies
as well as HOMO-LUMO gap computed at the G0W0 and
G0T0 levels is depicted in Fig. 2. This shows that, as already
observed in the Hubbard dimer22 and in molecular systems,24

the G0W0 and G0T0 quasiparticle energies are similar near the
Fermi level.

Overall, as evidenced by Fig. 1, the performances of
BSE@G0W0 and BSE@G0T0 are analogous for this system.
For the lowest singlet excited state of B 1Σ+

u symmetry, the T -
matrix-based formalism is slightly better when RH−H increases
but fails ultimately to reproduce the FCI results. For the E 1Σ+

g
state, BSE@G0T0 is more accurate than BSE@G0W0 for small
bond length and the scenario is reversed after the avoided cross-
ing with the doubly-excited state of F 1Σ+

g symmetry. Of course,
both formalisms cannot “see” the F 1Σ+

g states as the static BSE
formalism is blind to double excitations. Therefore, it can-
not model properly the avoided crossing between E 1Σ+

g and
F 1Σ+

g states. For the B’ 1Σ+
u and C 1Πu states, BSE@G0W0 and

BSE@G0T0 reproduces fairly well the FCI potential energy
curves with a modest preference for the latter.

Similar observations can be made for the triplet states, the
GW- and GT -based formalisms yielding very similar excitation
energies, except for the c 3Πu state for which BSE@G0W0 has

clearly the edge. Moreover, triplet instabilities seems to affect
BSE@G0T0 slightly earlier than BSE@G0W0.

In Fig. 3, we show the energy shift provided by the dy-
namical correction for the lowest singlet and lowest triplet
excited states of H2 as a function of RH−H. These dynamically-
corrected schemes are labeled dBSE@G0W0 and dBSE@G0T0.
For the singlet state of B 1Σ+

u symmetry, the dynamical correc-
tion improves slightly the excitation energies at small internu-
clear distances for both schemes, while, for larger bond lengths,
an improvement is only visible at the T -matrix level. Note that,
for this system with few electrons, the dynamical corrections
are quite small in magnitude. In the case of the triplet state of
b 3Σ+

u symmetry, the dynamical correction worsens the results
compared to FCI, especially in the case of BSE@G0W0.

B. Excited states of beryllium hydride

As a second example, we consider the symmetric dissocia-
tion of the linear molecule beryllium hydride (BeH2), a system
for which one can assume that the screening plays a more im-
portant role than in the previous example. The variation of the
lowest singlet and triplet excitation energies as a function of
the distance RBe−H is shown in Fig. 4, while the quasiparticle
energies of the frontier orbitals and the associated (fundamen-
tal) gap computed at the G0W0 and G0T0 levels is depicted in
Fig. 5. All calculations are performed with the cc-pVDZ basis.
Again, one notes that the G0W0 and G0T0 quasiparticle ener-
gies are very similar near the Fermi level. Therefore, one can
safely assume that any significant variation of the excitation
energies computed within the GW- and GT -based formalisms
originates mainly from their distinct kernel. The excitation
energies computed with the dynamical schemes, dBSE@G0W0
and dBSE@G0T0, are reported as thin solid lines. Here, one
can show that dynamical corrections improves in most cases
the agreement between BSE and FCI.

For the four lowest singlet excited states (left panel of Fig. 4),
dBSE@G0T0 is clearly better than dBSE@G0W0, while the
opposite trend is observed for the four lowest triplet states
(right panel of Fig. 4). Note that, for large RBe−H, the two
BSE-based schemes provide only a qualitative description of
the excited states with errors of several eV. Nonetheless, the
overall ordering of the excited states are globally respected.

C. Excited states of water

As a third and final example, we compute the excitation
energies associated with the two lowest singlet and two lowest
triplet excited states of water at equilibrium geometry (see
Fig. 6). Note that all these excited states are of Rydberg na-
ture and correspond to n → 3s and n → 3p transitions for
the B1 and A2 states, respectively.109 In addition to the BSE-
based models studied in the present manuscript, we have se-
lected well-known wave function methods,110–113 namely CIS,
CIS(D), TDHF, and FCI (taken as reference) and computed
the excitation energies of these transitions. It is worth men-
tioning here that the TDHF (or RPAx) equations within the
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FIG. 1. Singlet (left) and triplet (right) excitation energies (in eV) of H2 as a function of the internuclear distance RH−H (in Å) computed at the
FCI (black), BSE@G0W0 (blue), and BSE@G0T0 (red) levels with the cc-pVTZ basis. Raw data are reported in supplementary material.
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-20
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FIG. 2. HOMO and LUMO quasiparticle energies as well as HOMO-
LUMO gap (in eV) of H2 as a function of the internuclear distance
RH−H (in Å) computed at the G0W0 (blue) and G0T0 (red) levels with
the cc-pVTZ basis. Raw data are reported in supplementary material.

TDA are strictly equivalent to the CIS equation,113 and that
CIS(D) is a simple perturbative doubles correction to CIS, and
can be considered as an excited-state analog of second-order
Møller-Plesset perturbation theory.111,112

Two key observations can be made: i) BSE@G0W0 is by far
the best performer with a slight overestimation of the order of
0.1 eV (as compared to FCI); ii) BSE@G0T0 systematically
underestimates the excitation energies [similarly to CIS(D)]
and outperforms CIS, CIS(D) and TDHF for the singlet states
only. These general trends are also observed for other sys-
tems and they nicely evidence the crucial role of the screening
in GW, hinting that a screened version of the T -matrix for-
malism as proposed in Ref. 22 might be a promising way for
improvement.

VI. CONCLUSION

We have derived and implemented, for the first time, the
static and dynamic Bethe-Salpeter equations when one consid-
ers T -matrix quasiparticle energies as well as a T -matrix-based
kernel. The performance of the static scheme and its perturba-
tive dynamical correction have been assessed by computing the
neutral excited states of several molecular systems. Our results
suggest that, in the context of the computation of molecular
excitation energies, the BSE@GT formalism performs best in
few-electron systems where the electron density remains low.
For larger systems where the screening is more important, it
seems to be, overall, less accurate than BSE@GW. However,
it still outperforms conventional methods such CIS and TDHF
for singlet states.

It would be interesting to investigate its performance
for the computation of ground-state correlation energies
within the adiabatic connection fluctuation dissipation for-
malism where BSE@GW has been shown to be particularly
outstanding.85,86,114 The combination of GT and GW via the
range separation of the Coulomb operator to avoid double
counting of the low-order diagrams is also a promising av-
enue. Work along these lines are currently under progress.
Finally, the unrestricted and spin-flip extensions of the present
formalism are currently being developed.
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Appendix A: BSE with a dynamical T -matrix kernel

In order to derive the dynamical kernel T̃ c
ib,a j given in Eq. (22), we follow Ref. 52 (see also Ref. 86) and start from the equation

for the BSE amplitude

χS (1, 1′) =

∫
d3d4d5d6L0(1, 4, 1′, 3)Ξ(3, 5, 4, 6)χS (6, 5) (A1)

where L0 is given by Eq. (16a) and the T -matrix kernel is

Ξ(3, 5, 4, 6) = i
δΣ(3, 4)
δG(6, 5)

≈ −T (3, 5, 4, 6) (A2)

Equation (A1) is derived by assuming that i) the (resonant) pole ωS = ES − E0 > 0 of L is isolated from the other poles (which is
usually the case for neutral excitations in finite systems), and ii) the poles of L0 are different from ωS (which is also generally the
case). The so-called T -matrix self-energy Σ is given by Eq. (2) with2,22

T (3, 8, 4, 7) = −v(3, 8)δ(3, 4)δ(7, 8) + v(3, 8)δ(4, 8)δ(3, 7) + i
∫

d1′d2′v(3, 8)G(3, 1′)G(8, 2′)T (1′, 2′, 4, 7) (A3)

where v is the bare Coulomb operator and we neglect the functional derivative δT/δG in the kernel Ξ. The first two terms in the
right-hand side of Eq. (A3) are the Hartree and exchange contributions to the T -matrix, whereas the last term is the correlation
contribution. Making the time dependence of Eq. (A1) explicit and defining T (3, 5, 4, 6) = −δ(τ+

35)δ(τ+
64)T (x3, x5, x4, x6; τ34), one

gets

χS (x1, x1′ , τ11′ )e−iωS (t1+t1′ )/2 = −i
∫

dx3dx4dx5dx6

∫
dt3dt4G(x1, x3; τ13)G(x4, x1′ ; τ11′ )T (x3, x5, x4, x6; τ34)χS (x6, x5;−τ34)e−iωS τ34/2

(A4)
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(red) levels with the cc-pVDZ basis. Raw data are reported in supple-
mentary material.

[where τi j = ti − t j and τ+
i j = t+i − t j with t+i = ti + η (η→ 0+)] and

T (x3, x5, x4, x6; τ34) = v(x3, x5)δ(τ34)δ(x3, x4)δ(x6, x5) − v(x3, x5)δ(τ34)δ(x3, x6)δ(x4, x5)

+ i
∫

dx7dx8

∫
dt7v(x3, x5)G(x3, x7; τ37)G(x5, x8; τ+

37)T (x7, x8, x4, x6; τ74) (A5)
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Using the Fourier transform G(τ) =
∫

dω
2πG(ω)e−iωτ, changing variable from t3 to τ34 and taking the limit t1′ = t+1 , we have

χS (x1, x1′ , 0−) = −i
∫

dx3dx4dx5dx6

∫
dτ34

∫
dω′

2π
G(x1, x3;ω′ + ωS )G(x4, x1′ ;ω′)eiω′τ34

× T (x3, x5, x4, x6; τ34)χS (x6, x5;−τ34)e−iωS τ34/2 (A6)

Using the Lehman representation of the one-body Green’s function in the quasiparticle approximation given by Eq. (3), and
multiply the left- and right-hand sides by (εa − εi − ωS )

∫
dx1dx′1ψa(x1)ψi(x′1), we obtain

(
εa − εi − ωS

) ∫
dx1dx′1ψa(x1)ψi(x′1)χS (x1, x1′ , 0−) = −

∫
dx3dx4dx5dx6

∫
dτ34ψa(x3)ψi(x4)

×
[
Θ(τ34)eiεiτ34 + Θ(−τ34)ei(εa−ωS )τ34

]
T (x3, x5, x4, x6; τ34)χS (x6, x5;−τ34)eiωS τ34/2 (A7)

(where Θ is the Heaviside step function) using the fact that

Θ(±τ)e−iατ = ∓
1

2πi
lim
η→0+

∫
dω

1
ω − α ± iη

e−iωτ (A8)

For the resonant case, i.e., ωS > 0, we have

χS (x1, x1′ , τ1) = −eiωS |τ1 |/2
∑

jb

ψb(x1)ψ j(x1′ ) 〈N |ĉ
†

j ĉb|N, S 〉
[
Θ(τ1)e−iεbτ1 + Θ(−τ1)e−iε jτ1

]
(A9)

where ĉ†p and ĉp are the usual creation and annihilation operators, respectively, and |N〉 and |N, S 〉 are the ground state and the S th
excited state, respectively, of the N-electron system. After some algebraic steps, one gets

−
(
εa − εi − ωS

)
〈N |ĉ†i ĉa|N, S 〉

=
∑

jb

〈N |ĉ†j ĉb|N, S 〉

 i
2π

∫
dω lim

η→0+
Tib,a j(ω)e−iωη

 1
ωS − ω + ε j + εi + iη

+
1

ωS + ω − εb − εa + iη


 (A10)

where we have defined

Tib,a j(τ34) =

∫
dx3dx4dx5dx6ψa(x3)ψi(x4)T (x3, x5, x4, x6; τ34)ψb(x6)ψ j(x5). (A11)

Using the definition Xia,S = 〈N |ĉ†i ĉa|N, S 〉, we arrive at

(
εa − εi − ωS

)
Xia,S +

∑
jb

X jb,S 〈ib||a j〉 +
∑

jb

X jb,S T̃
c
ib,a j(ωS ) = 0 (A12)
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where the spectral representation of the dynamical T -matrix is

T̃ c
ib,a j(ωS ) =

i
2π

∫
dω lim

η→0+
T c

ib,a j(ω)e−iωη

 1
ωS − ω + ε j + εi + iη

+
1

ωS + ω − εb − εa + iη

 (A13)

with T c
ib,a j = Tib,a j − 〈ib||a j〉 the correlation part of T . Equation (A12) represents a non-linear eigenvalue equation to calculate

the positive excitation energies of a system, which can be rewritten as∑
jb

Aia, jb(ωS )X jb,S = ωS Xia,S (A14)

with

Aia, jb(ωS ) = (εa − εi)δi jδab + 〈ib||a j〉 + T̃ c
ib,a j(ωS ). (A15)

If one drops the dynamical part T̃ c, one ends up with the usual time-dependent Hartree-Fock (TDHF) equations.113 To calculate
the correlation contribution, one can employ Eq. (10) in Eq. (A13), and, after integration over the frequency, one gets Eq. (22).
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