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In addition to the supplementary information provided in the following sections, several 
videos have been added: 
 

- Video01.avi: series of 69 STEM images recorded every 3 minutes during an in-
situ calcination experiment of the Pd(O)@δ-Al2O3 system at 250°C under 2.2 
mbar of oxygen; both raw pre-alignment (left) and optimized affine alignment 
(right) are shown. 
 

- Video02.avi: series of 64 STEM images recorded every 3 minutes at room 
temperature (20°C) and under high vacuum (9 10-07 mbar) on Pd(O)@δ-Al2O3 
and commented in the SI-B section below. 
 

- Video03.avi: simulation of a dynamic sequence commented in the SI-D and E 
sections. The green annotations indicate fusion events respectively identified 
manually and automatically in the ground truth and U-Net + NP-Tracker cases 
respectively. 
 

-  Video04.avi: Quantitative measurements performed on all successive frames 
of the simulated sequence: Treacy-Rice plot of integrated NP STEM intensity 
ISTEM1/3 vs. NP diameter (in pixels) and NP size histograms. 
 

- Video05.avi: U-Net and NP-Tracker analysis of the Pd250 series; the raw pre-
aligned series is recalled (left). 

  

mailto:thierry.epicier@ircelyon.univ-lyon1.fr


SI-A. Image registration pipeline 
 

 
 

Figure SI-A1: Registration pipeline. The input image to be registered is the moving image. The 
transformation parameters are updated iteratively to improve similarity between the 
reference image and the transformed moving image. When we observe no more 
improvement of the similarity measure, the transformation T is said to be optimal and allows 
the transformation of the moving image to produce the registered image. Interpolations steps 
are not represented in this figure. 
 
  



SI-B. Experimental STEM sequence Pd20 (20°C, 9 10-7 mbar) 
 
The STEM series (see supplementary video Video02.avi) consists in 64 
micrographs acquired every 3 minutes during about one hour and prealigned 
classically by cross-correlation leading to the starting 'raw' state. 3 selected 
registration methods have then been applied translation, rigid, affine. Finally, 
the positions of all NPs in all frames were determined by application of the U-
Net detection procedure, and their trajectories were identified with NP-Tracker 
as described in the main text. From this analysis, the displacements [dx,dy} of all 
NPs in the last frame with respect to their initial positions in the first frame were 
plotted as shown in Figure SI-B1. For each diagram plotted in this figure, the 
barycentre of all NPs in the last frame is also plotted in the (x,y) space where the 
corresponding barycentre in the first frame is set at the origin. 
 

 
 

Figure SI-B1: Analysis of NPs positions with various registration methods for the 'Pd20' STEM 
series. a): 'Raw' pre-alignment by cross-correlation of the whole images. Color dots show the 
displacements {dx,dy} of all NPs in the last frame with respect to their initial position in the 
first frame. Note that their barycentre at the end of the sequence has drifted with respect to 
the origin; the grey circle includes all NP displacements. b-d): Similar plots for the translation, 
rigid and affine alignments respectively. In each of the 2 latter cases, the final NP positions are 
found very close to their initial ones with a barycentre very close to the origin.  



The improvement of the affine alignment after a rough cross-correlation is 
demonstrated by figure SI-B2. IT is clearly seen that in the absence of 
temperature and/or non-inert atmosphere, Pd NPs remain essentially immobile. 
 

 
 

Figure SI-B2: Display of NP positions and trajectories for the 'Pd20' STEM series. a-b): First 
‘Raw’ image of the series with markers identifying the NPs in b). c-d): Display of trajectories 
(blue segments, red markers refer to trajectories that have stopped in preceding frames) in 
the last frame for the 'Raw’ and ‘affine-aligned’ series respectively. Note that trajectory 
markers in d) are almost punctual. 

 

Finally, the statistical analysis of the NP population (i.e.: Treacy-Rice analysis – 
see Methods section for more comments – and size histograms) as reported in 
figure SI-B3 confirm this finding.  
 



  

Figure SI-B3: a-c): Treacy-Rice analysis respectively of the start state, final state after a ‘Raw’ 
alignment and final state after an affine alignment. d-f): Similar to a-c) for the size histograms. 
These data show very little changes from the start to the end of the sequence due in particular 
to the quasi-immobility of NPs. 

  



SI-C.  Energy model used in NP-Tracker 
 
Principle and notations 

At the end of the detection step, for each frame 𝑡𝑡 ∈ {1, . . . ,𝐹𝐹} (𝐹𝐹 is the number 
of frames), we have detected a set of candidate NPs. We denote 𝐷𝐷(𝑡𝑡) the 
number of detected candidates in frame 𝑡𝑡 and we denote 𝑔𝑔 the index of each 
detection. The (𝑋𝑋,𝑌𝑌) location of detection 𝑔𝑔 in frame 𝑡𝑡 is then denoted 𝐃𝐃𝑔𝑔𝑡𝑡 . 
The goal of the tracking is to determine the best set of trajectories according to 
the detections. Formally, if 𝑖𝑖 denotes the index of a solution trajectory, we have 
to determine the state vector 𝐗𝐗 which consists of the (𝑋𝑋,𝑌𝑌) coordinates of each 
NP along their solution trajectories. We suppose that a given trajectory 𝑖𝑖 exists 
only over the set of frames 𝑡𝑡 = 𝑠𝑠𝑖𝑖 , . . . , 𝑒𝑒𝑖𝑖, 𝑠𝑠𝑖𝑖 being the first frame where the 
corresponding NP exists and 𝑒𝑒𝑖𝑖 the last one. The general term of the state vector 
to determine is thus 𝐗𝐗𝑖𝑖𝑡𝑡 with 𝑖𝑖 = 1, . . . ,𝑁𝑁 and 𝑡𝑡 = 𝑠𝑠𝑖𝑖 , . . . , 𝑒𝑒𝑖𝑖. 

According to the method proposed by Milan et al. [1], the principle is (i) to define 
an energy function 𝐸𝐸(𝐗𝐗) giving how well the state vector fits the detections and 
fulfill the physical constraints and (ii) formulate the problem as the minimization 
of this energy function i.e. find the state 𝐗𝐗∗ which globally minimize the energy 
function: 

𝐗𝐗∗ = arg min
𝐗𝐗∈ℝ𝑑𝑑

𝐸𝐸(𝐗𝐗) 

 
Energy terms 

The energy function is a linear combination of five individual terms: 

𝐸𝐸 = 𝐸𝐸det + 𝛼𝛼𝐸𝐸int + 𝛽𝛽𝐸𝐸dyn + 𝛾𝛾𝐸𝐸exe + 𝛿𝛿𝐸𝐸reg 
 
Detection term 

The purpose of the detection term 𝐸𝐸det is to keep the trajectories 𝐗𝐗𝑖𝑖 close to the 
observations 𝐃𝐃𝑔𝑔𝑡𝑡 . It is defined as: 
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where: 

• 𝑠𝑠 is a constant referring to the diameter of the NPs, 
• 𝜆𝜆 is a constant, 
• 𝑝𝑝𝑔𝑔𝑡𝑡  is the U-Net prediction associated to the detection 𝐃𝐃𝑔𝑔𝑡𝑡 . 
 



 Intensity term 

The intensity term 𝐸𝐸int is to provide intensity (or mass) conservation along a 
trajectory. It is defined as the sum of the relative intensity differences along the 
trajectory: 

𝐸𝐸int(𝐗𝐗) = ���
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where 𝐼𝐼(𝐗𝐗𝑖𝑖𝑡𝑡) is the total intensity of the object located at 𝐗𝐗𝑖𝑖𝑡𝑡, this intensity being 
estimated after subtracting the local background around the object. 
  
Dynamic model term 

The dynamic model term 𝐸𝐸dyn tends to minimize the distance between successive 
detections in agreement with the Brownian motion model. It is defined as: 
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Mutual exclusion term 

The mutual exclusion term 𝐸𝐸exc is intended to apply a penalty to configurations 
in which two NPs come too close to each other. It is taken as: 

𝐸𝐸exc(𝐗𝐗) = ��
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Regularization term 

The role of the regularization term 𝐸𝐸reg is to penalize solutions with a too high 
number of NPs and solutions with short trajectories. It is defined as: 

𝐸𝐸reg(𝐗𝐗) = 𝑁𝑁 + �
1
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where 𝐹𝐹(𝑖𝑖) is the length of trajectory 𝑖𝑖 defined by 𝐹𝐹(𝑖𝑖) = 𝑒𝑒𝑖𝑖 − 𝑠𝑠𝑖𝑖 + 1. 
 
Parameter settings 

The value of the constants has been determined using the simulated sequences. 
In all experiments, they are set to the following values: 

• 𝛼𝛼 to 𝛿𝛿 are set to {1,0.02, .5,1} 
• 𝜆𝜆 = 0.125. 
• 𝑠𝑠 = 7 



SI-D. Construction and study of simulated dynamic sequences 

Table SI-T1 reports the input parameters of the simulated dynamic sequence 
illustrated in the main text and reported as the supplementary video 
Video03.avi. 
 

General 
parameters 

Exponent α of the 'STEM-ADF' power-law 1.8 
calibration nm/pixel   0.3906 
Simulated field of view (nm²) 100x100 

  Atomic density (number of atoms/nm3) 0.03 
  Atomic number Z   13 

Supporting  Mean thickness (nm)   16 
media Maximal rugosity (nm)   2.5 

 Average pore size (nm)   11 
  Number of pores   54 
  Mode of distribution of NPs on the support surfaces one side 
  Average targeted NP radius (nm) 3.20 
  Size dispersion (nm)   0.36 

Nanoparticle Resulting NP size (nm)   3.08 
population Atomic number Z   22 

  Atomic density (number of atoms/nm3) 0.04 
  Initial number of NPs   55 
  Mean displacement (nm) from one frame to another 0.4 
  Maximal random speed variation (%) 40 
  Speed reduction for NPs close to pores (%) 75 
  Orientation of starting trajectories random 
  Forward diffusion: typical maximal deviation angle   

Trajectories (in °) with respect to the current motion 30 
  Distance under which NPs may coalesce (nm) 0.4 

  Probability of coalescence under previous distance 0.35 
  Dissolution of smallest NPs no 
  Accounting for Ostwald ripening  no 
  Probability of nucleation of new NPs 0 
  Total number of simulated frames 50 

 

Table SI-T1: Main input parameters of the code simulating the sequence illustrated in the main 
text. Atomic numbers and densities are adequately chosen for reproducing a similar range of 
background and NP intensities as compared to experimental STEM images. The ’rugosity’ 
parameter is the amplitude of wavy and more or less random thickness variations. Pores are 
generated with a rough truncated cuboid shape. The speed reduction for NPs close to pores 
intends to mimick an anchorage effect. The forward diffusion angle refers to the maximal 
angular deviation of a trajectory with respect to its current direction. 

 
Figures SI-D1 and SI-D2 are further qualitative and quantitative illustrations of 
its analysis, again completed by the supplementary video Video04.avi. 

   



 
 

Figure SI-D1: Illustration of a typical simulated sequence of 50 images reported as the video 
Video03.avi. a): Selection of a few frames showing the general evolution of the NP population 
(every 10 frames shown). b): Enlarged detail from white frame in a) showing a coalescence 
event as they can occur with a controlled probability. NP 24 absorbs NP 2; note the slight 
radius and intensity increase (trajectories in progress are shown in blue, the ended trajectory 
of NP 2 is shown in red). In this sequence, all NPs are lying on the same surface of the 
substrate.   
 
Figure SI-D3 illustrates the identification of fusion events with the help of a 
simulated dynamic sequence of 50 frames summarized in Fig. b-c). In a), a 
moving NP (labeled 2) approaches another NP (1, almost immobile within a pore 
of the support). The coalescence has a parameterized probability to occur if the 
particles become closer to a certain critical distance dC. 
The post mortem analysis identifies such an event through the application of 3 
criteria: 
(i) A NP must disappear. This implies the detection of frame number fdis 

where a nanoparticle NPdis has vanished according to the brutal ending of 
an identified trajectory 



(ii) There must be an ‘eating’ NP. In the frame before that of disappearance, 
we then have to search for a candidate NPeating closer to NPdis than a 
parameterized distance dC 

(iii) The fusion must be consistent in terms of conservation of matter: in 
principle both the volume and the STEM integrated intensity of the 
resulting NPeating in frame fdis must be the sums of the respective volumes 
V(NP, f) and intensities ISTEM(NP, f) of both NP in the previous frame fdis-1: 
 

            V (NPeating, fdis) = V(NPeating, fdis-1) + V(NPdis, fdis-1)                           /1/ 
             

ISTEM(NPeating, fdis) = ISTEM(NPeating, fdis-1) + ISTEM(NPdis, fdis-1)                  /2/ 
 

 

 
 
Figure SI-D2: Examples of output from the simulated sequence shown in Fig. SI-D1 (ground 
truth data). a): Motion of a given NP (#24) through the successive frames; note that its 
displacements are shorter for darker areas of the support, a correlation introduced on 
purpose to mimick anchorage of NPs near or within pores. b): Plot of NP (dx,dy) displacements 
at each frame of the sequence relatively to their initial position in the first frame (small dots; 
larger dots are for the last frame). The blue cross shows their barycenter at the end of the 
sequence, very close to the initial barycentre (dark cross at the origin) as expected for a 
Brownian motion. The grey circle indicates the maximal final displacement.  

 
Relations /1/ and /2/ are most likely rarely exactly verified according to practical 
reasons. On the one hand, the volume cannot be properly measured from a 
single 2D image and is only deduced from the estimated Ferret radius of the 
projections of NPs assuming a purely spherical shape. On the other hand, the 
evaluation of NP intensities is subjected to errors due to the determination of 
the local background around each NP and possible intrinsic variations with time 
in addition to possible variations due to noise changes. Therefore, these 
relations are replaced by a check that the final measured volume and intensity 
of the ‘eating’ NP are sufficiently close to their respective expected values 
(calculation of the relative error which must be smaller than a parameterized 
bound). 



 
Figures b-c) show the final 50th frame of the simulated sequence. Fig. b) is the 
ground truth. All fusion events have properly been identified by our method on 
the basis of trajectories determined by the NP-Tracker routine (minor 
differences in the orientation in the green segments are due to a possible delay 
in detecting the fusion in comparison with the ground truth plots). 
 

 
 

Figure SI-D3: description of the analysis of fusion events. a): enlarged detail of an area of the 
simulated sequence shown in Figure SI-D1 and reported in b) (dotted rectangle) and c), and 
followed over a few frames. b-c): Ground truth respectively at frame 30 as enlarged in a) and 
at the end of the sequence (50th frame). Ongoing trajectories are shown in blue whereas 
ended ones are displayed in red; green segments indicate the last inter-frames motion of 
‘eaten’ NPs due to fusion events; NP 35 in b) is shown in green just before its absorption by 
NP 9.  
 
  



SI-E. Evaluation of simulated dynamic sequences 
 
Table 1 in the main text related to evaluation metrics of the tracking procedure 
[2] contains the following elements: 

- FP (False Positive) and FN (False Negative) respectively represent the 
number of additional detections (a particle is detected by the algorithm 
but no particle is present at its location in the Ground Truth) and the 
number of missed detections (no particle is detected by the algorithm 
whereas one is present in the Ground Truth). 

- IdSwitches (Identity Switches) represent the number of switches in 
trajectory identifiers i.e. when the identity of two particles are switched 
between two close trajectories. 

- MOTA (Multi-Object Tracking Accuracy) and MOTP (MOT Precision): 
These values vary between 0 and 100 (the higher the better). MOTA 
corresponds to the normalized sum of the values of the three previous 
factors quantifying the relevance of the tracking:  FP, FN and IdSwitches 
(for these 3 parameters, the lower value the better).  
MOTP accounts for the spatiotemporal overlap between the Ground Truth 
and identified tracks over all frames and particles of the series, based on 
the Mapped Overlap Ratio (see [2]). 

 
 
 
  



SI-F. NP detection efficiency: U-Net vs. local thresholding 
 
We have compared our U-Net based detection to a standard image processing 
approach. Considering the low contrast and the strong variations in the 
background, a simple threshold-based method could not work. We thus used a 
correlation-based approach. The principle is to build a template image 
composed of a positive disk of radius r surrounded by a negative ring of 
maximum radius 3r⁄2 such as the sum of the values inside the disk is exactly the 
opposite of the sum of the values inside the ring (see figure SI-F1). The 
correlation of the input image with this template is equivalent to evaluate the 
local contrast between the mean gray level of the disk and the mean gray level 
of the background around this disk. It will then produce local maxima at the 
location of the particles of radius r. The result can be binarized by a simple 
thresholding to a given contrast c. This operation is iterated for a given range of 
radius to detect all the particles. The final segmentation is obtained as the union 
of all binary images. Figure SI-F2 illustrates the three steps: correlation, 
binarization, union of all the binary images obtained for different radius. 
 

 
Figure SI-F1: Template composed of a positive disk surrounded by a negative ring. 
 

 
Figure SI-F2: Illustration of the correlation-based segmentation: a) original image; b): typical 
correlation image; c): binarization of the correlation image; d): union of all binary images. 



This routine named ‘STRATUS’ was programed in MATLAB (R2020b, Mathworks). 
It was applied to the whole simulated series illustrated in Fig. 6 of the main text, 
to the first frame of the experimental Pd250 series (for which the Ground Truth 
was established manually), see figure Si-F3, and to another micrograph taken on 
a similar catalytic system, i.e.  Pt@γ-Al2O3 [3], see figure SI-F4. The quantitative 
comparison between U-Net and the ‘STRATUS’ code is summarized in Table SI-
T2. Note that in the case of the Pd250 series (Fig. SI-F3e) the parametrization of 
the correlation-based approach was very delicate (the optimal results were 
expected to exhibit similar but smallest numbers of FN and FP events). 
 

 

 
Figure SI-F3: Illustration of the NP detection efficiency for the U-Net and correlation-based 
approaches. 
a-b): Treatment of the first frame of the simulated series shown in Fig. 6 of the main text: a) 
U-Net results strictly corresponding to the Ground Truth; b): correlation-based results; FN and 
FP events are marked with red vertical and white horizontal arrows. Results for the whole 
sequence are given in Table SI-T2. 
c-e): Treatment of the first frame of the experimental Pd250 series shown in Fig. 8 of the main 
text. c): Manual Ground Truth; d): U-Net results; e): correlation-based results. In d) and e) FN 
and FP events are marked with red vertical or inclined and white horizontal arrows 
respectively).   



 
Figure SI-F4: same as fig. SI-F3 for the Pt@g-Al2O3 system. 

a): Raw STEM image showing metallic clusters in a Pt@g-Al2O3 system observed at 50°C under 
5 mbar of hydrogen (adapted from [3]). b): Manual Ground Truth; c): U-Net results; d): 
correlation-based results. In c) and d) FN and FP events are marked with red vertical inclined 
and white horizontal arrows respectively).    

 
Table SI-T2: Quantitative comparison of the U-Net approach and correlation-based MATLAB 
code for the detection of particles in the examples shown in Figure SI-F3. 

 

 
 

  

Ground Truth                U-Net STRATUS code

2222

162

48

Pd250, 
frame 1

FP 1 40
FN 20 7

Errors % 

30.2%

143 195
14.7% 24.1%

63.3%Errors % 

simulated 
sequence 

(50 images)

FP 0 74
FN 9 29

Pt@
γ-Al2O3

FP 4 16
FN 9

0.4% 4.5%
Total number of NPs

Total number of NPs

Total number of NPs
15

43 49

2213 2267
Errors % 



SI-G. Estimation of the SNR for particle detection 
The detection of a given NP of index k depends on the ratio between the intrinsic intensity of 
this particle and the standard deviation 𝜎𝜎𝑘𝑘  of the noise of the background taken locally around 
this particle. To give a global value of the signal-to-noise ratio (SNR) over a whole image, we 
will use a constant value 𝜎𝜎 averaged over all 𝜎𝜎𝑘𝑘 values and thus consider that the noise is 
stationary. The corresponding signal to noise ratio (SNR) SNR𝑘𝑘 is then defined as: 

SNR𝑘𝑘 = 20log10(𝐴𝐴𝑘𝑘/𝜎𝜎) 

Figure SI-G1 illustrates the analysis. The average intensity Ak of each particle is calculated by 
dividing the integrated intensity 𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑘𝑘 by the projected NP surface, all values being 
determined during the U-Net / Np-Tracker treatment of the experimental Pd250 series (see 
the ‘Treacy-Rice’ plot in figure 8 in the main text). It can be rendered visually: Fig. SI-G1 b) is 
an impainted vision of the initial micrograph in a) where each pixel inside a NP detected by 
the treatment is replaced by the local mean background measured around it. Then, Fig. c) is 
the difference a)-b). Note that small NPs, which appear with a reasonably good visibility in a), 
have indeed a low intensity hardly visible on a null background. Figure SI-G1 e) shows that 
most of the particles have a relatively high SNR (the median is 8.1 dB), but a significant number 
of particles have a very low SNR (the first decile is at 0.6 dB which is a low value) making them 
hardly detectable by any local threshold-based image processing.  
 

 
Figure SI-G1: Analysis of the SNR of the detected NP in the Pd250 series. 

a-c): illustration of the treatment for the first frame of the series. a): raw STEM micrograph. 
b): Impainted particle-free image. Given the segmentation mask of each particle (output of U-
Net detection step) in the original image, the intensity of pixels in each NP 
𝐼𝐼𝑘𝑘(i,j) s replaced by the mean gray level in the background surrounding the mask and denoted 
𝐵𝐵𝑘𝑘. c): Intensities of the NPs on a null background; the pixel intensities are taken as the 
difference 𝐼𝐼𝑘𝑘(i,j)-𝐵𝐵𝑘𝑘. 

d): Distribution of averaged intensities 𝐴𝐴𝑘𝑘 of all detected NPs over the 69 frames of the Pd250 
sequence (𝐴𝐴𝑘𝑘 is the average of 𝐼𝐼𝑘𝑘(i,j)-𝐵𝐵𝑘𝑘 over all pixels of NP k). 

e): Distribution of particle SNR over all NPs of the Pd250 image sequence.    
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