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Abstract

In this article, we consider the problem of optimizing the connectivity of a

landscape under a budget constraint, by improving habitat areas and ecologi-

cal corridors between them. We model this problem as a discrete optimization

problem over graphs, in which vertices represent the habitat areas and arcs

represent the connections between them. We propose a new flow-based inte-

ger linear programming formulation that improves upon the existing models

for this problem. By following an approach similar to Catanzaro et al. [7] for

the robust shortest path problem, we design an improved preprocessing algo-

rithm that reduces the size of the graphs on which we compute generalized

flows. Computational experiments show the benefits of both contributions, by

enabling to solve instances of the problem larger than previous models. These

experiments also show that several versions of greedy algorithms perform rel-

atively well in practice, while returning arbitrarily bad solutions in the worst

case.

Keywords : Combinatorial optimization, environment and climate change,

landscape connectivity, network flow, shortest path, mixed integer linear program-

ming.

1 Introduction

Habitat loss is a major cause of the rapid decline of biodiversity [6]. Besides reducing

the available resources, it also increases the habitat fragmentation, i.e., the discon-

tinuities among small habitat areas (also called patches) [12]. While habitat loss

tends to reduce the size of populations of animals and plants, habitat fragmentation

hinders circulation of organisms around the landscapes, by decreasing the access to

resources and the gene flow among populations. The extent to which the landscape
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facilitates the movement of organisms between habitat patches, also called Land-

scape connectivity [26], then becomes of major importance for biodiversity and its

conservation. Accounting for landscape connectivity in restoration or conservation

plans thus appears as a key solution to maximize the return on investment of the

scarce financial support devoted to biodiversity conservation.

Graph theory proves useful to model habitat connectivity [27]. Specifically, a

landscape can be viewed as a directed graph in which vertices are the habitat patches

and each arc indicates a way for individuals to move from one patch to another

(see Figure 1). The weight of a vertex represents its quality – patch area is often

used as a surrogate for quality – and the weight of an arc measures the ease with

which an individual can make the corresponding travel. This quantity is often

approximated by a decreasing function of the distance between the patches [24].

Interestingly, this approach can be used for a variety of ecological systems, like

terrestrial (patches of forests in an agricultural area, networks of lakes or wetlands),

riverine (patches are segments of river than can be separated by human constructions

like dams that prevent fishes’ movement), or marine (patches can be reefs that are

connected by flows of larvae transported by currents). Based on this formalism,

ecologists proposed many connectivity indicators that aim to quantify the quality of

a landscape with respect to the connections between its habitat patches [14,16,24].

1.1 Indicators of landscape connectivity

From among the proposed indicators, the Probability of Connectivity (PC) [24] and

its derivative, the Equivalent Connected Area (ECA) [23], have received encouraging

empirical support [3,18,25]. Given a graph G = (V,A) with weights on edges (πa)a∈A

and on vertices (wv)v∈V , the ECA is defined as

ECA(G) =

√∑
s∈V

∑
t∈V

(wswtΠst)

where Πst is the probability of connection from patch s to patch t

Πst = max
P :st-path

∏
a∈P

πa .

A most reliable st-path is a st-path that maximizes Πst . The rationale underlying

the ECA can be summarized as follows. Let W denote the area of a rectangle

containing the landscape under study. Consider a stochastic process that consists in

choosing two points p and q uniformly at random in the rectangle. Let PC denote

the expected value of a random variable equal to 0 if either p or q does not belong

to a patch and Πst if p belongs to s and q belongs to t (recall that Πst = 1 if s = t).
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Let wu denote the area of the patch u . Since the probability that p belongs to u is

wu/W and the events p ∈ s and q ∈ t are independent, by linearity of expectation,

PC can be expressed as follows:

PC(G) =

∑
s,t∈V wswtΠst

W2
=

ECA(G)2

W2
.

(a) ecological landscape [21] (b) graph representation

Figure 1: Graph representation of an ecological landscape.

The ECA of a landscape is the area of a single patch whose PC value equal to

the PC value of the original landscape. If the area of the patches and the landscape

are normalized to make W equal to 1 then PC is the square of ECA. Thus, the

problem of optimizing PC is equivalent to the problem of optimizing ECA. The use

of ECA is sometimes preferred by researchers interested in landscape connectivity

because it directly refers to an area rather than to an expected value of a random

variable.

1.2 Optimizing ECA under a budget constraint

One key question for which landscape connectivity indicators have been used in the

last years is to identify which elements of the landscape (habitat patches, corri-

dors) should be preserved from destruction or restored in order to maintain a well-

connected network of habitat under a given budget constraint [2]. Answering this

question is equivalent to identifying the set of vertices or arcs that optimally main-

tains a good level of connectivity. Several mathematical programming models have

been introduced in the literature to help decision-makers protect biodiversity. For

a review of these models, we refer to the monography [5], the survey article [4] and

the references therein. Here, we consider the Budget-Constrained ECA Optimization

problem (BC-ECA-OPT) which is formally defined in Section 2. This problem takes
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as input a landscape with a set of possible improvements Φ. An arc improvement

consists in increasing the weight of an arc, i.e., the probability of connection between

the two patches joined by this arc. In Section 2.2, we consider a version with vertex

improvements. A vertex improvement consists in increasing the weight of a vertex,

i.e., the area/quality of the corresponding patch. Each improvement has a cost and

the problem BC-ECA-OPT is to find a combination of improvements that does not

exceed a given budget limit, so that the ECA of the resulting landscape is as large

as possible. Concrete instances of this problem are described in Section 5.1.

Interestingly, this problem addresses both restoration and conservation cases.

The restoration case starts from a currently degraded landscape and aims to restore

(e.g., improve quality of patch or facility to use a link, create a new patch) a set

of elements among the different feasible options. The conservation case starts with

a landscape in which we search for the elements to protect among those that will

be altered or destroyed if nothing is done. In the following, we refer to a feasible

solution of BC-ECA-OPT as a restoration/conservation plan, i.e., a subset of arcs

or vertices to be improved or preserved whose total cost does not exceed the budget

limit.

1.3 Previous works

So far, ecologists mostly tackled this problem by ranking each conservation or

restoration option by its independent contribution to ECA, i.e., the amount by

which ECA varies if the option is selected alone. Such an approach overlooks the

cumulative effects of the decisions made like unnecessary redundancies or potential

synergistic effects, e.g., improving two consecutive corridors results in a greater in-

crease in ECA than the sum of the increases achieved by improving each corridor

independently. This could lead to solutions that are more expensive or less beneficial

to ECA than an optimal solution. Some studies tried to overcome this limitation by

considering tuples of options [17,20]. In [20], the authors showed that the brute force

approach rapidly becomes impractical for landscapes with more than 20 patches of

habitat. Few studies explored the search for an optimal solution but, in most cases,

the underlying graph was acyclic (river dendritic networks). For instance, a poly-

nomial time approximation scheme has been proposed in [28] when the underlying

graph is a tree. This article describes a dynamical programming algorithm with

rounding that computes, for any real ϵ > 0 , a (1− ϵ)-approximate solution in time

O(n8/ϵ) where n is the number of vertices of the tree. More recently, [29] introduced

a sampling method based on a mixed integer formulation. To our knowledge, this is

the only linear programming formulation of BC-ECA-OPT described in the litera-

ture. Solving optimally the problem with their mixed integer formulation does not

scale to landscapes with few hundreds of patches.
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Computing Πst for every pair of vertices s, t ∈ V is a necessary task to compute

the ECA(G) . If we consider the length function l defined by la = − log πa for a ∈ A

then the distance function d induced by l on G satisfies d(s, t) = − log(Πst) for

s, t ∈ V . Thus, our problem is closely related to solving the shortest path problem

on a graph with different length functions, namely one length function for each

restoration plan (or scenario). Mixed Integer Linear Programming (MILP) can be

used to solve such problems; however, the size of MILP formulations is often too large

to be handled directly by state-of-the-art MILP solvers. A preprocessing proposed

by Catanzaro et al. [7] can be applied to address this issue. It consists in identifying

a subset of arcs that can either be removed or contracted to reduce the size of

the graph considered. By using the Catanzaro et al. formalism [7], we call an arc

(u, v) t-strong if it belongs to a shortest path from u to t in every possible scenario.

Symmetrically, we call an arc (u, v) t-useless if there is no scenario such that (u, v)

is on a shortest path from u to t . Useless arcs were called 0-persistent in [7]. Since

we need to specify a target vertex t for which (u, v) is useless, we didn’t adopt the

same terminology. In [7], given an arc (u, v) and a vertex t , the authors give a

sufficient (but not necessary) condition for (u, v) to be t-strong and use it to design

an O(|A|+ |V | log |V |) time algorithm that decides, in most cases, whether (u, v) is

t-strong. The authors also proposed a O(|A| + |V | log |V |) time algorithm to test

whether a given arc (u, v) is t-useless. In Section 3, we show how the knowledge of

t-strong and t-useless arcs can be used to reduce the size of the MILP formulation

and to solve larger instances of BC-ECA-OPT.

1.4 Contribution

The contribution of this article is twofold. First, we propose a new MILP formulation

which is more compact than the one proposed in [29]. Then, we design a new

preprocessing algorithm that computes t-strong and t-useless arcs for all t ∈ V .

Our new MILP formulation is based on a generalized flow formulation (see for

instance [1]) instead of a standard network flow formulation. This change leads

to two improvements. Firstly, our formulation has a linear objective function in

contrast to the model proposed in [29] which is based on a piecewise constant ap-

proximation and additional binary variables to handle non-linearities. Secondly, the

new formulation aggregates into a single generalized flow the contribution to the

connectivity of several source/sink pairs having the same sink whereas the previous

model treated every pair separately. More precisely, our model uses O(|V ||A|) flow
variables with O(|V |2) constraints, and |Φ| integer variables, while the model pro-

posed in [29] is characterized by O(|V |2|A|) flow variables with O(|V |3) constraints,
and O(|Φ|+ |V |2) integer variables (recall that Φ is the set of improvable elements).

The other contribution of this article is a preprocessing step that speeds up the
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resolution of the problem by reducing the size of the directed graph on which a

generalized flow to a particular sink t has to be computed. Our algorithm improves

upon the one proposed by [7] in two ways. First, we replace the sufficient condition

defined in [7] by a necessary and sufficient condition. This allows us to compute the

entire set of t-strong arcs instead of a subset of them. Second, we also improve the

time complexity by a factor |V | as we only need to run our algorithm on each arc

instead of each pair of arc and vertex.

1.5 Organization of the article

Section 2 is devoted to the description of our mixed integer formulation of the

problem. In Section 3 we first design and analyze an O(|A| + |V | log |V |) time

algorithm that computes the set of all vertices t for which a given arc (u, v) is t-

strong or the set of all vertices t for which (u, v) is t-useless. Then, we explain why

the removal of t-useless arcs and the contraction of t-strong arcs does not modify the

objective function for any restoration/conservation plan. In Section 4, we describe

several greedy algorithms for BC-ECA-OPT and provide some instances where they

compute solutions that are far from optimal. Section 5 compares our optimization

approach to simple greedy algorithms in terms of running times and quality of the

solutions found on a set of experimental cases. These experiments show that the

preprocessing is very effective and that the greedy approach performs quite well on

these instances.

2 An improved MILP formulation for BC-ECA-OPT

2.1 Basic formulation

In this section, we provide a compact MILP formulation of the problem BC-ECA-

OPT that can be formally stated as follows:

Input: a graph G = (V,A) with weights on vertices (wv)v∈V and on arcs (πa)a∈A

such that 0 ≤ πa ≤ 1 for a ∈ A , a subset Φ ⊆ A of arcs with weights (π′
a)a∈Φ such

that πa < π′
a ≤ 1 for all a ∈ Φ and costs (ca)a∈Φ , and a budget B ∈ N .

Output: A subset S ⊆ Φ such that
∑

a∈S ca ≤ B maximizing ECA(G(S)) where

G(S) is the graph obtained from G by replacing πa by π′
a for all arc a ∈ S .

Our MILP formulation is presented in two steps. First, we decompose ECA(G) into∑
t∈V wtft where ft =

∑
s∈V ws · Πst and explain how ft can be expressed as the

optimal value of a linear programming formulation of a generalized flow problem.

Then, we use this result to provide a compact MILP formulation of BC-ECA-OPT.
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Recall that a generalized flow differs from a standard network flow by the fact

that each arc a has a multiplier πa such that the quantity of flow leaving arc a is equal

to the quantity of flow entering in a multiplied by πa (see [1] for an introduction to

network flows). The linear program (P) having ft as optimum value can be defined

as follows. Its parameters include the input of the problem BC-ECA-OPT. Namely,

the graph G = (V,A) that represents the landscape and the weights (wu)u∈V and

(πa)a∈A . The decision variables of (P) are flow variables (ϕa)a∈A that represent the

quantity of flow entering each arc a ∈ A and a variable z that represents the total

quantity of flow sent to t . The objective of (P) is to maximize the value of the

variable z . For each vertex u ∈ V , let δoutu be the set of arcs leaving u and δinu the

set of arcs entering u .

(P)



max z

s.t.
∑

a∈δoutu

ϕa −
∑

b∈δinu
πb · ϕb ≤ wu u ∈ V \ {t} (A1)∑

a∈δoutt

ϕa −
∑

b∈δint

πb · ϕb = wt − z (A2)

ϕa ≥ 0 a ∈ A (A3)

Constraints (A1) require that the total quantity of flow leaving u is at most wu

plus the total quantity of flow entering u , i.e., the quantity of flow available in vertex

u . Constraint (A2) requires that z is equal to the total quantity of flow entering t

plus wt minus the total quantity of flow leaving t . Finally, constraints (A3) state

that each arc carries a non-negative quantity of flow.

Lemma 1. For a fixed vertex t ∈ V , any optimal solution of (P) is obtained by

sending, for every vertex s ∈ V − {t} , ws units of flow from s to t along a most

reliable st-path, i.e., an st-path P maximizing
∏

a∈P πa .

Proof. First notice that when ws units of flow are sent along an st-path P the

quantity of flow arriving at t is ws times the probability
∏

a∈P πa of path P . Let ϕ′

be an optimal solution of (P) that maximizes the quantity of flow routed along a path

which is not a most reliable path. Suppose, by contradiction, that ϕ′ sends ϵ > 0

units of flow along an st-path P ′ whose probability is smaller than the probability

of a most reliable st-path P . Let ϕ be the flow obtained from ϕ′ by decreasing the

flow sent on path P ′ by ϵ and increasing the flow sent on path P by ϵ . Since the

probability of P is larger than the probability of P ′ , ϕ sends more flow to t than

ϕ′ , leading to a contradiction with the choice of ϕ′ .

Corollary 1. The optimal value of (P) is ft =
∑

s∈V ws ·Πst .

Proof. Since the objective is to maximize z , no flow leaves t in any optimal solution
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of (P) , i.e.,
∑

a∈δoutt

ϕa = 0 . Constraint (A2) ensures that z is the quantity of flow

received by t plus wt . By Lemma 1, there exists an optimal solution ϕ such that

every vertex s distinct from t sends ws units of flow on a most reliable st-path.

Hence, for every vertex s distinct from t , the flow received by t from s is ws · Πst

and thus the value of z is
∑

s∈V ws ·Πst .

In the light of the above notations, definitions and results, we can now present

our MILP program for BC-ECA-OPT. Let G′ be the graph obtained from G by

adding, for each arc a = (u, v) ∈ Φ , another arc a′ = (u, v) of weight πa′ = π′
a . We

denote by Ψ the set of copies of arcs in Φ . In the following MILP program, the set of

arcs δoutu and δinu are defined with respect to G′ = (V,A′) where A′ = A∪Ψ . The arc

a′ is a copy of the arc a but with a weight π′
a larger than πa , i.e., an improved copy

of the arc a in the sense that the probability of successfully moving along the arc a′

is greater than that of the arc a . Our model ensures that this improved copy of arc

a can carry flow only if it is selected in the solution S of BC-ECA-OPT. Indeed, for

each arc a ∈ Φ , we introduce a binary decision variable xa which is equal to 1 if a is

selected in S and 0 otherwise. The BC-ECA-OPT linear programming formulation

includes one copy of (P) for each sink t ∈ V . Specifically, we introduce a decision

variable ft that represents the value of
∑

s∈V ws · Πst for each sink t ∈ V and a

flow variable ϕt
a that represents the quantity of flow going through arc a towards

t , for every sink t ∈ V and every arc a ∈ A′ . The objective of the linear program

BC-ECA-OPT is to maximize
∑
t∈V

wt · ft , i.e., to find a subset of arcs S ∈ Φ such

that the value of ECA(G(S)) is maximum.

BC-ECA-OPT



max
∑
t∈V

wt · ft

s.t.
∑

a∈δoutu

ϕt
a −

∑
b∈δinu

πb · ϕt
b ≤ wu t ∈ V , u ∈ V \ {t} (B1)∑

a∈δoutt

ϕt
a −

∑
b∈δint

πb · ϕt
b = wt − ft t ∈ V (B2)

ϕt
a′ ≤ xa ·Ma t ∈ V , a ∈ Φ (B3)∑

a∈Φ
ca · xa ≤ B (B4)

xa ∈ {0, 1} a ∈ Φ (B5)

ϕt
a ≥ 0 t ∈ V , a ∈ A′ (B6)

Constraints of (B1) and (B2) are simply constraints of (A1) and (A2) for every

sink t ∈ V . For each arc a ∈ Φ , the big-M constraints (B3) ensure that if a is not

selected in S , i.e., xa = 0 , then the flow on arc a′ is null. The constantMa is an upper

bound on the flow value on arc a . We could simply take Ma =
∑

u∈V wu for all a ∈ Φ

but more precise estimations are possible for a better linear programming relaxation
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and thus a faster resolution of the MILP program. Constraint (B4) ensures that the

total cost of the improvements is at most B . This MILP program has O(|V |(|A|+
|Φ|)) flow variables, |Φ| binary variables and O(|V |2 + |V ||Φ|) constraints.

2.2 Extension to patch improvements

Here, we explain how to extend our model to a version with patch improvements

where it is possible to increase the weight of a vertex u from wu to w+
u at cost

cu . To this end, we process all the occurrences of wu as follows. Let yu denote a

binary variable equal to 1 if the vertex u is improved and 0 otherwise. We add a

term cuyu in the budget constraint for every vertex u in the set W of vertices that

can be improved. When wu appears as an additive constant, we simply replace it

by wu + yu(w
+
u − wu) . Note that wu only appears as a coefficient in the objective

function in the form wuft . In this case, to avoid a quadratic term, we use the

classical McCormick linearization [13]. Specifically, we replace the product wuft by

wuf
t + (w+

u − wu)f
′
t where f ′

t is a new variable that is equal to ft if yu = 1 and 0

otherwise. To achieve this values of f ′
t , for all u ∈ V , we add the constraints f ′

t ≤ ft

and f ′
t ≤ yuM where M is larger than any values of ft . As it is a maximization

program and f ′
t appears with a positive coefficient in the objective function, the

first constraint guarantees that f ′
t = ft if yu = 1 in any optimal solution and the

second constraint guarantees that f ′
t = 0 if yu = 0 .

3 Preprocessing

The size of the mixed integer programming formulation of BC-ECA-OPT presented

in Section 2 grows quadratically with the size of the graph that represents the

landscape. In this section, we describe a preprocessing step that reduces the size

of this graph. To this end, we adopt the approach used by Catanzaro et al. [7]

for the Robust Shortest Path Problem. We introduce a notion of strongness of

an arc with respect to a target vertex t ∈ V . We call a solution x ∈ {0, 1}Φ of

BC-ECA-OPT a scenario and say that the distances are computed under scenario

x when the length of every a ∈ A is l−a if xa = 1 and la otherwise. We denote

by dx(s, t) the distance between s and t when the arc lengths are set according to

the scenario x . As explained in Section 1, recall that an arc (u, v) is t-strong if,

for every scenario x ∈ {0, 1}Φ , (u, v) belongs to a shortest path from u to t , i.e.,

dx(u, t) = dx(u, v)+dx(v, t) for every x ∈ {0, 1}Φ . An arc (u, v) is said to be t-useless

if, for every scenario x ∈ {0, 1}Φ , arc (u, v) does not belong to any shortest ut-path

when arc lengths are set according to the scenario x . Useless arcs were called 0-

persistent in [7] but here we need to specify the target t . We denote by S(t) the

set of arcs (u, v) such that (u, v) is t-strong and by W (t) the set of arcs (u, v) such
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that (u, v) is t-useless. In [7], given an arc (u, v) and a vertex t , the authors identify

a sufficient (but not necessary) condition for (u, v) ∈ S(t) and use it to design an

O(|A|+ |V | log |V |) time algorithm that can, in most cases, identify if (u, v) ∈ S(t) .

The authors also propose an O(|A| + |V | log |V |) time algorithm to test whether

a given arc (u, v) belongs to W (s) or not. In Section 3.1, given an arc (u, v) of

G , we show how to adapt Dijkstra’s algorithm to compute in O(|A| + |V | log |V |)
time the set of all vertices t such that (u, v) ∈ S(t) or the set of all vertices t such

that (u, v) ∈ W (t) . This improves the results of [7] by providing a necessary and

sufficient condition for (u, v) to be t-strong, i.e., we compute the entire set S(t) while

the algorithm of [7] computes a subset of S(t) . It also reduces the time complexity

for computing S(t) and W (t) for all t by a factor |V | as we only need to run the

algorithms on each arc instead of each pair of arc and vertex. Then, we explain how

the knowledge of S(t) and W (t) for all t can be used to define a smaller equivalent

instance of the problem.

3.1 Computing S(t) for all t

Given a scenario x ∈ {0, 1}Φ , the fiber Fx(u, v) of arc (u, v) ∈ A is the set of vertices

t such that (u, v) belongs to a shortest path from u to t when arc lengths are set

according to x, i.e.,

Fx(u, v) = {t ∈ V : dx(u, t) = lx(u, v) + dx(v, t)} .

Let F (u, v) be the intersection of the fibers of (u, v) ∈ A over all possible scenarios

x ∈ {0, 1}Φ , i.e., F (u, v) :=
⋂

x Fx(u, v) . By definition, an arc (u, v) is t-strong if t

belongs to Fx(u, v) for every scenario x; i.e.,

S(t) = {(u, v) : t ∈ F (u, v)}

In order to compute every S(t) , we first compute F (u, v) for every arc (u, v) ∈ A

and then we transpose the representation to get S(t) for every vertex t ∈ V . Let

y ∈ {0, 1}Φ be the following scenario :

ywt =

{
0 w ∈ F (u, v) or (w, t) = (u, v)

1 w /∈ F (u, v)
(1)

Lemma 2. The intersection F (u, v) of the fibers of (u, v) ∈ A over all possible

scenarios is the fiber of (u, v) under the scenario y , i.e., F (u, v) = Fy(u, v) .

Proof. The inclusion F (u, v) ⊆ Fy(u, v) is trivial. Thus, it suffices to prove that

Fy(u, v) ⊆ Fx(u, v) for any scenario x ∈ {0, 1}Φ . By contradiction, suppose that x

is a scenario such that Fy(u, v) \ Fx(u, v) contains a vertex t at minimum distance
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from u in the scenario y . Let P denote a shortest ut-path containing (u, v) under the

scenario y . For every vertex w of P , dy(u,w) ≤ dy(u, t) and w ∈ Fy(u, v) . Hence,

by the choice of t , w belongs to Fx(u, v) for every scenario x . Therefore, w belongs

to F (u, v) and the length of every arc of P is set to its upper bound in the scenario

y , i.e., ly(P ) = l(P ) . Now, let Q be a shortest ut-path in the scenario x . If the

path Q contains a vertex z ∈ F (u, v) then dx(u, t) = dx(u, z) + dx(z, t) = lx(u, v) +

dx(v, z) + dx(z, t) = lx(u, v) + dx(v, t) , a contradiction with t /∈ Fx(u, v) . Therefore,

the vertices of Q do not belong to F (u, v) and thus their lengths are set to their lower

bound in y , i.e., l(Q) = l−(Q) . We deduce that lx(P ) ≤ ly(P ) ≤ ly(Q) ≤ lx(Q) ,

which contradicts t /∈ Fx(u, v) .

We propose an O(|A| + |V | log |V |) time algorithm that, given an arc (u, v) ,

computes simultaneously the scenario y defined by (1) and the fiber Fy(u, v) of arc

(u, v) with respect to this scenario. The algorithm is an adaptation of the Dijkstra’s

shortest path algorithm that assigns colors to vertices. We prove that it colors a

vertex w in blue if w belongs to Fy(u, v) and in red otherwise. At each step, we

consider a subset of vertices S ⊆ V whose colors have been already computed.

Before the first iteration, S = {u} and the length of every arc leaving u is set to its

lower bound except the length of (u, v) which is set to its upper bound according to

scenario y . At each step, since the color of every vertex of S is known, the length,

under scenario y , of every arc (w, t) with w ∈ S is also known. Therefore, it is

possible to find a vertex t ∈ V − S at minimum distance from u , under scenario

y , in the subgraph G[S ∪ {t}] induced by S ∪ {t} . Following Dijkstra’s algorithm

analysis, we know that the distance under scenario y from u to t in G[S ∪ {t}] is in
fact the distance between u and t in G . This allows us to determine the existence of

a shortest path from u to t in the scenario y passing via (u, v) and to color the vertex

t accordingly. We conclude the iteration with a new vertex t whose color is known

and that can be added to S before starting the next iteration. Since the algorithm

adds a new vertex to S at the end of each loop, it halts after |V | − 1 iterations.
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Algorithm 1: Computes the set S of vertices t such that (u, v) is t-strong

Input : G = (V,A, l, l−) , (u, v) ∈ A

Output: {t ∈ V : (u, v) is t-strong}
foreach (u,w) ∈ δoutu \ {(u, v)} do

d(w)← l−uw

γ(w)← red

d(v)← luv; γ(v)← blue

S ← {u}; γ(u)← red

while S ̸= V do
Pick t ∈ V − S with smallest d(t) breaking ties by choosing a vertex t

such that γ(t) = blue if it exists

if γ(t) is blue then

foreach (t, w) ∈ δoutt such that d(w) ≥ d(t) + ltw do
d(w)← d(t) + ltw

γ(w)← blue

else

foreach (t, w) ∈ δoutt such that d(w) > d(t) + l−tw do

d(w)← d(t) + l−tw
γ(w)← red

S ← S ∪ {t}
return {t ∈ V : γ(t) = blue}
For every vertex w ∈ V − S , the estimated distance d(w) is the length of a uw-

path under the scenario y in the subgraph G[S ∪{w}] . An arc a is blue if a = uv or

if its origin is blue, the other arcs are red, i.e., a is blue if ya = 0 and red if ya = 1 .

The estimated color γ(w) of w is blue if there exists a blue uw-path of length d(w)

in G[S ∪ {w}] and red otherwise. The correctness of Algorithm 1 follows from the

following lemma.

Lemma 3. For every vertex t ∈ S, γ(t) is blue if and only if t ∈ Fy(u, v) .

Proof. We proceed by induction on the number of vertices of S . When S = {u} , the
property is verified. Now, suppose the property holds before the insertion in S of

the vertex t such that d(t) is minimum. By the induction hypothesis, the lengths of

arcs having their source in S are set according to y . Therefore, following Dijkstra’s

algorithm analysis, we deduce that d(t) is the length of the shortest path from u to

t in the graph G under scenario y . If t has been colored in blue then there exists

a blue vertex w ∈ S such that d(t) = d(w) + lwt . By the induction hypothesis

w ∈ Fy(u, v) and there exists a shortest ut-path under scenario y containing (u, v) ,

i.e., t ∈ Fy(u, v) . Now, suppose that t has been colored in red. By contradiction,

assume there exists a shortest ut-path under scenario y that contains (u, v) . This

12



path cannot contain a vertex outside S except t because otherwise, since arc lengths

are non-negative, its length according to y would be greater than d(t) by the choice

of t . Therefore, the predecessor w of t in this path belongs to S . Since w belongs

to a shortest ut-path passing via (u, v) , by induction, it was colored in blue. But

in this case, there exists a blue vertex w such that d(w) + l(w, t) = d(t) , and t was

colored in blue as well, leading to a contradiction.

We are now ready to state the main result of this section.

Proposition 1. Given a graph G = (V,A) , two arc-length functions l− and l such

that 0 ≤ l−a ≤ la for every arc a ∈ A , and an arc (u, v) , Algorithm 1 computes in

O(|A|+ |V | log |V |) time the set of vertices t such that (u, v) is t-strong.

Proof. Lemma 2 shows that given an arc (u, v) the set of vertices S such that t ∈ S

if and only if (u, v) is t-strong is a fiber for a specific scenario. Lemma 3 shows that

the algorithm computes this fiber. Therefore, the Algorithm 1 is correct. As for

Dijkstra’s algorithm, the computational complexity of Algorithm 1 can be reduced

to O(|A|+ |V | log |V |) by using a Fibonacci heap as priority queue.

3.2 Computing W (t) for all t

Given an arc (u, v) , it is possible to modify Algorithm 1 so that it computes the set

of vertices W such that t ∈ W if and only if (u, v) is t-useless. Before describing

this modification, we explain how the two problems are related. For that, we first

introduce a variant of the notion of strongness. We will say that an arc (u, v) is

strictly t-strong if it belongs to all shortest ut-paths for every scenario x ∈ {0, 1}Φ .

Recall that t-strongness requires only the existence of a shortest ut-path passing via

(u, v) for every scenario x ∈ {0, 1}Φ . Algorithm 1 can be easily adapted to compute

for every arc (u, v) the set of vertices t such that (u, v) is strictly t-strong. It suffices

to change the way the algorithms break ties between a red and a blue path and the

choice of t in case of tie. Namely, in the first internal loop, the condition for coloring

w in blue becomes d(w) > d(t) + ltw while the condition for coloring w in red in the

second internal loop becomes d(w) ≥ d(t) + l−tw . Moreover, when we choose t such

that d(t) is minimal, we break ties by choosing a red vertex if it exists. Clearly, these

small changes exclude the existence of a red path of length d(w) between u and a blue

vertex w . Therefore, (u, v) belongs to every path of length d(w) and (u, v) is strictly

w-strong whenever w is blue. We call the resulting algorithm the strict version of

Algorithm 1. The next step is to extend the notion of strict strongness to a subset

of arcs having the same source. For any vertex u ∈ V , a subset Γ ⊆ δoutu of arcs

is strictly t-strong if, for every scenario x ∈ {0, 1}Φ , all shortest ut-paths intersect

13



Algorithm 2: Computes the set of vertex t such that (u, v) is t-useless

Input : G = (V,A, l, l−) , (u, v) ∈ A
Output: {t ∈ V : (u, v) is t-useless}
d(v)← l−uv; γ(v)← red
foreach (u,w) ∈ δoutu \ {(u, v)} do

d(w)← luw
γ(w)← blue

S ← {u}; γ(u)← blue
while S ̸= V do

Pick t ∈ V − S with smallest d(t) breaking ties by choosing a vertex t
such that γ(t) = red if it exists

if γ(t) is blue then
foreach (t, w) ∈ δoutt such that d(w) > d(t) + ltw do

d(w)← d(t) + ltw
γ(w)← blue

else
foreach (t, w) ∈ δoutt such that d(w) ≥ d(t) + l−tw do

d(w)← d(t) + l−tw
γ(w)← red

S ← S ∪ {t}
return {t ∈ V : γ(t) = blue}

Γ . By definition, an arc (u, v) is t-useless if and only if δoutu \ {(u, v)} is strictly t-

strong. Indeed, every ut-path avoiding (u, v) intersects δoutu \{(u, v)} and, conversely,
(u, v) belongs to every ut-path avoiding δoutu \ {(u, v)} . Hence, computing the set

of vertices t such that (u, v) is t-useless amounts to computing the set of vertices t

such that δoutu \ {(u, v)} is strictly t-strong. An algorithm that computes this set of

vertices can be obtained from the strict version of Algorithm 1 by modifying only

the initialization step: arc (u, v) is colored in red and its length is set to l−uv while

arcs of δoutu \ {(u, v)} are colored in blue and their lengths are set to their upper

bound. A correctness proof very similar to the one of Algorithm 1 (and that we

will not repeat) shows that a vertex is colored blue by Algorithm 2 if and only if

(u, v) is t-useless. Since the two algorithms have clearly the same time complexity,

we conclude this section with the following result:

Proposition 2. Given a graph G = (V,A) , two arc-length functions l− and l such

that 0 ≤ l−a ≤ la for every arc a ∈ A , and an arc (u, v) , Algorithm 2 computes in

O(|A|+ |V | log |V |) time the set of vertices t such that (u, v) is t-useless.
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3.3 Reducing the size of the graph

Removal of an arc from W (t) . Consider an arc (u, v) ∈ W (t) . Since (u, v)

does not belong to any shortest path from u to t for all scenarios x ∈ {0, 1}Φ , its

removal does not affect the distance from any vertex to t . From the definition of

ECA, the removal of (u, v) clearly does not affect the contribution of t to ECA. Let

fx
t (G) :=

∑
s∈V wswtΠ

x
st be the contribution to ECA of all the pairs having sink t

in the graph G when the probabilities of connection Πx
st, s ∈ V, are computed under

the scenario x . The following result holds:

Lemma 4. Let (u, v) ∈ W (t) and let G′ be a graph obtained from G by removing

arc (u, v) . Then, for all scenario x ∈ {0, 1}Φ , it holds that fx
t (G) = fx

t (G
′) .

Proof. For every scenario x ∈ {0, 1}Φ , (u, v) does not belong to any shortest path

from u to t . Therefore, the removal of (u, v) cannot affect the probability of connec-

tion Πut for any vertex t , Thus fx
t (G) = fx

t (G
′) .

Contraction of an arc in S(t) . Consider an arc (u, v) /∈ Φ such that (u, v) ∈ S(t) .

The contraction of (u, v) consists in replacing every arc (w, u) ∈ δinu by an arc (w, v)

of length l′wv = lwu + luv and by removing the vertex u and all its outgoing arcs.

The weight of u in G is moved to the weight of v in G′ . Namely, the weight of v

in the new graph is w′
v = wv + wue

−luv . Let G′ be the graph obtained from G by

contracting (u, v) . The next lemma establishes that the contribution of t to ECA in

G is equal to its contribution in G′ .

w

u v t
...

lwu
luv

wu wv

Γ−
u

(a)

w

v t
...

lwu + luv

w′v

Γ−u

(b)

Figure 2: (a) A graph G before contraction of an arc (u, v) . (b) A graph G′ obtained
from G by contracting arc (u, v) . The weight w′

v of v in G′ is equal to wv+wue
−luv .

Lemma 5. Let (u, v) ∈ S(t) and let G′ be the graph obtained from G by con-

tracting arc (u, v) and modifying accordingly the weight of wv . For every scenario

x ∈ {0, 1}Φ , fx
t (G) = fx

t (G
′) .

Proof. Let s denote a vertex of G , x a scenario in {0, 1}Φ and fx
st(G) the contribution

to ECA of the pair st with scenario x ∈ {0, 1}Φ in G . If s /∈ {u, v} , it is easy to

check that, for any x ∈ {0, 1}Φ the length of the shortest path from s to t in G is

equal to the length of the shortest path from s to t in G′ . Moreover, the weight of s
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is the same in G and in G′ . Therefore, by the definition of ECA, fx
st(G) = fx

st(G
′) ,

for any x ∈ {0, 1}Φ . On the other hand, the contributions of the pairs ut and vt in

G sum to the contribution of v in G′ . Indeed,

fx
ut(G) + fx

vt(G) = wue
−dx(u,t) + wve

−dx(v,t)

= wue
−(luv+dx(v,t)) + wve

−dx(v,t)

= (wv + wue
−luv)e−dx(v,t)

= w′(v)e−dx(v,t)

= fx
vt(G

′).

We conclude that, for any x ∈ {0, 1}Φ ,

fx
t (G) =

∑
s∈V

fx
st(G)

= fx
ut(G) + fx

vt(G) +
∑

s∈V−{u,v}

fx
st(G)

= fx
vt(G

′) +
∑

s∈V−{u,v}

fx
st(G

′)

= fx
t (G

′).

Graph reduction. Let Gt denote the graph obtained from G by deleting every

arc of W (t) and contracting every arc of S(t). The preprocessing step consists in

computing the graph Gt for every vertex t . For that, we compute F (u, v) for every

arc (u, v) in O(|A| ·(|A|+ |V | log |V |)) time. Then we transpose the representation to

obtain S(t) for each vertex t . Similarly, we computeW (t) for each vertex t within the

same time complexity. The experiments of Section 5 show that, when the number of

arcs that can be protected is much smaller than the total number of arcs, replacing

G by Gt in the construction of the mixed integer program reduces significantly the

size of the MILP formulation and the running times.

4 Greedy algorithms and their limits

In view of the lack of an efficient method to compute an optimal solution of BC-

ECA-OPT, ecologists often use greedy algorithms to compute sub-optimal solutions

[11]. In this section, we present four commonly used greedy algorithms and highlight

their pathological cases. In Section 5.3, we compare the quality of the solutions

obtained with these greedy algorithms with the optimal solution on four case studies.

The Incremental Greedy (IG) algorithm starts from the graph with no improved
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element. At each step i , the algorithm selects the element e with the greatest ratio

δie/ce until no more element fits in the budget. Here, δie denotes the difference

between the value of ECA with and without the improvement of the element e at

the step i . As usual, ce is the cost of improving the element e . The element e can

be either an arc or a vertex.

The Decremental Greedy (DG) algorithm, similar to the Zonation Algorithm [15],

starts from the graph with all improvements performed and iteratively removes

the improvement of the element e with the smallest ratio δie/ce . DG finishes with

incremental steps to ensure there is no free budget left. These algorithms perform

at most |Φ| steps and at each step i need to compute δie for each element e . It is

easy to implement IG in O(|V |3 + |Φ|2 · |V |2) time by using an all pairs shortest

path algorithm to compute in O(|V |3) time the initial distance matrix and then

by performing |Φ| steps in which the computation of δie for each arc e ∈ Φ takes

O(|V |2) time. Indeed, when we decrease the length of an edge we can update the

distance matrix in O(|V |2) time. For the implementation of DG, when we increase

the length of an edge we cannot update the distance matrix as easily as for IG.

We can recompute in |V |3 time the whole distance matrix for computing each δie

and the algorithm runs in O(|Φ|2 · |V |3) time. Dynamically updating shortest path

lengths would improve the computational complexity [8]. These complexities are

already too large for the practical instances handled by ecologists which can have

few thousands of patches. Most of the studies using the PC or ECA indicators use

simpler algorithms that we call Static Increasing (SI) and Static Decreasing (SD).

These algorithms are variants of the greedy algorithms which do not recompute the

ratio δe/ce of each element e at each step and thus are faster but do not account for

cumulative effects nor redundancies.

Below, we provide instances on which IG and DG perform poorly compared to an

optimal solution. On these instances, it is easy to check that the solutions returned

by SI and SD are not better than the solutions returned by IG and DG. In the

following instances, all arcs have a probability 1 if improved and 0 otherwise and

have unitary costs. Recall that a spider is a tree consisting of several paths glued

together on a central vertex (Figure 3a, 4a and 5a).

Bad case for IG: The graph is a spider with 2k branches: k long branches with

two edges, an intermediate vertex of weight 0 and a leaf vertex of weight 1 , and k

short branches consisting of a single edge with a leaf of very small weight ϵ > 0; see

Figure 3a. All branches are connected to a central vertex of weight 1 . IG performs

poorly on this instance. Indeed, IG is tricked into selecting short branches with

very small ECA improvement because selecting an edge of a long branch alone does

not increase ECA at all. An optimal solution results in a larger value of ECA by
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(a) (b)

Figure 3: An instance on which Incremental Greedy (IG) fails. (a) the graph of the
IG bad case with k = 4 , (b) ratio of the increase in ECA between the solutions
returned by IG and DG and an optimal solution for several budgets.

improving pairs of arcs of long branches; see Figure 3b. For this instance, IG does

not perform well while DG finds an optimal solution computed by the MILP solver

except when the budget is 1 . In this case, the reverse occurs: DG performs badly

while IG is optimal. Indeed, DG realizes that the budget is not sufficient to improve

two arcs of a long branch only after removing the improvements of all short branches.

Bad case for DG: The graph is obtained from a star with k + 1 branches by

replacing one branch by a path of length k; see Figure 4a. The central vertex and

all leaves except the leaf of the path have weight 1 . The leaf of the path has weight

1 + ϵ . The internal vertices of the path have weight 0 . DG performs poorly on this

instance because it removes one by one the branches of the star for which δe/ce = 1

before removing an edge of the path for which δe/ce = 1 + ϵ . When the budget is

at least 2 , an optimal solution removes all the edges of the path before removing an

edge of another branch; see Figure 4b.

Bad case for IG and DG: The graph is a spider with k+1 branches. All branches

except one are paths of length 2 with an internal vertex of weight 0 and a leaf of

weight 1 . The last branch is a path of length 2k with internal vertices of weight

ϵ > 0 and a leaf of weight 1 + ϵ . All branches intersect in a central vertex of weight

1; see Figure 5a. In this case, both IG and DG fail. On the one hand, IG selects

the edges of the path of length 2k one by one and does not realize that by taking

two edges of a short branch it could improve ECA much more. On the other hand,

DG removes first the edges of the short branch because the weight of leaf of a long

branch is 1 + ϵ while the weight of the leaf of a short branch is 1 . Hence, DG and

IG return the same low quality solution.

The case of Figure 5 illustrates the fact that IG and DG do not provide any
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(a)

(b)

Figure 4: An instance on which Decremental Greedy (DG) fails. (a) the graph of
the DG bad case with k = 5 , (b) ratio of the increase in ECA between the solutions
returned by IG and DG and an optimal solution for several budgets.

(a)

(b)

Figure 5: An instance on which both Incremental and Decremental Greedy algo-
rithms fail. (a) the graph of the IG and DG bad case with k = 5 , (b) ratio of
the increase in ECA between the solutions returned by IG and DG and an optimal
solution for several budgets.

19



constant approximation guarantee (even for trees), i.e., for any constant 0 < α < 1

there exists an instance of BC-ECA-OPT such that ALG < αOPT where ALG is

the value of ECA for the best solution among those returned by IG and DG and

OPT is the value of ECA for an optimal solution.

5 Numerical experiments

In this section, we report on our computational experiments in order to highlight

the combined benefit of our MILP formulation and preprocessing step. We per-

formed the numerical experiments on a desktop computer equipped with an Intel(R)

Core(TM) i7-8700k 4.8 gigahertz and 32 gigabytes of memory and running Manjaro

Linux release 21.2.4 with GCC version 10.2 and the libstdc++ that comes with it.

We implemented our model as well as the preprocessing and greedy algorithms in

C++17 using Gurobi Optimizer [10] version 9.1.1 with default settings for solving

MILP formulations, the graph library LEMON [9] version 1.3.1 for managing graph

algorithms, and the library TBB [19] version 2020.3 for multithreading the prepro-

cessing and greedy algorithms. Code and data are available at https://gitlab.

lis-lab.fr/francois.hamonic/landscape_opt_networks_submission.

5.1 Instances

Below, we briefly describe the case studies on which we conduct experiments.

Case study 1 consists of identifying among a set of 15 dams present on the

Aude river (France) those that need to be equipped with fish passes in order to

restore the river connectivity for trouts [22]. The graph is a tree of 45 vertices with

88 arcs of which 30 represent dams and can be improved by increasing their weight

from 0 to 0.8 .

Case study 2 consists of identifying the remnant forest patches that need to be

preserved from deforestation in the Montreal neighborhood (Canada) to guarantee

habitat connectivity for the wood frog [2]. The graph is a planar graph of 598 vertices

and 989 arcs in which 260 vertices can be improved by increasing their quality and

80 arcs can be improved by increasing their weight from 0 to 1 .

Case study 3 consists of identifying street sections in which planting trees can

improve the connectivity of the urban canopy for the European red squirrel in the

city of Aix-en-Provence. The graph is a triangular grid of 6186 vertices and 27818

arcs where 47 street sections, each with an average of 90 arcs, can be improved by

increasing the weight of each arc a from πa to π
1/6
a .

Case study 4 consists of identifying wastelands that need to be preserved from

soil artificialization to maintain connectivity among urban parks and the surrounding

natural massifs in the city of Marseille for songbirds (e.g., Eurasian blackcap). The

graph is a near complete graph of 297 vertices and 25024 arcs, of which 100 represent
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wastelands and can be improved by increasing their weight from 0 to 1 .

5.2 Scalability and benefits of the preprocessing

In this section we address the scalability of our approach and the added benefits

of our preprocessing step. For this purpose we execute our method on about one

hundred instances obtained from the four case studies by varying the budget between

0 (meaning no option is selected) and 100% (meaning all the options are selected).

More precisely, our goal is to understand how the computing times and the size of the

MILP model vary with respect to (i) the budget available, (ii) the number of binary

decision variables, (iii) the presence of the preprocessing, (iv) and the percentage of

improvable arcs compared to the total number of arcs in the graph.
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Figure 6: Execution times on the four case studies as a function of the budget
(missing points correspond to instances that do not finish within 10 hours)

For the Aude and Montreal cases, the preprocessing reduces the resolution time

by about a factor of 10 (Figure 6). Without preprocessing, the Aix and Marseille

instances are not solved by the optimizer within 10 hours, whereas with prepro-

cessing they become solvable in about half an hour and half a minute respectively.

In most unfinished instances, the optimizer reaches the optimal solution but is not

able to complete the exploration of the search space in the allotted time. Some

instances of the Montreal case cannot be solved without preprocessing. The average

computation times shown in Table 2 do not take these instances into account.

The preprocessing represents a small portion of the total computation time for
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case
MILP Preprocessed MILP

#var #const time #var #const p. time time

Aude 4061 2551 120 ms 1069 1055 3 ms 20 ms
Montreal 830530 262445 4 mins 318848 167153 0.26 s 17.26 s

Aix 1748708 624841 – 555124 295010 3 s 1600 s
Marseille 4949825 78410 – 41676 22465 0.9 s 7 s

Table 1: Comparison of the MILP and the preprocessed MILP according to the
number of variables (#var), the number of constraints (#const), the preprocessing
time (p. time) and the average computation time of the MILP resolution (time).

#Wasteland
MILP Preprocessed MILP DG

#var #const time #var #const time time

20 345775 18410 12 s 10716 7197 < 1 s < 1 s

50 717901 36410 2 mins 34613 21485 2 s 7 s

80 1306597 59810 32 mins 76281 42039 13 s 30 s

110 - 132225 66759 1 min 1 min 30 s

140 - 207999 96600 3 mins 3 mins

170 - 308355 132701 28 mins 7 mins

Table 2: Comparison of the MILP, the preprocessed MILP and DG according to the
number of variables (#var), the number of constraints (#const) and the time (on
average with 20 different budget values) it takes to solve the Marseille instance with
different numbers of wastelands

all case studies (Table 1). The number of variables of the model is reduced by about

75% in the Aude case, 60% in the Montreal case, 70% in the Aix case and 99%

in the Marseille case. This last number is explained by the fact that the Marseille

graph is near complete and a large proportion of its arcs are t-useless for some vertex

t . Regarding the constraints, the reduction is 60% for the Aude case, 33% for the

Montreal one, 53% for the Aix case and about 70% for the Marseille case.

For the case of Marseille, the one with the largest number of variables, we also

explored how the number of potential options influences the number of constraints

and the computation time. We see in Table 2 that the computation time of the

MILP without preprocessing increases very quickly. It takes more than 30 minutes

on average for instances with 80+ wastelands whereas the preprocessed ones can

be solved in less than 30 minutes with up to 170 wastelands. This is due to the

preprocessing step that significantly reduces the time required to solve the linear

relaxation by reducing the number of variables, constraints and non-zero entries

of the mixed integer program. The preprocessed MILP is faster than the greedy

algorithm for instances with at most 140 wastelands (the preprocessing step was not

used for greedy algorithms).
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Figure 7: Box plots showing the percentage of constraints, variables and non-zero
entries removed by the preprocessing as a function of the percentage of improvable
arcs. The red line is the median, the dashed green line is the mean, the box represents
the values between the 25th and 75th percentiles and the whiskers the min and max
values.

To show the efficiency of the preprocessing on the number of constraints in the

problems (which is related to computation time), we run our preprocessing on 400

randomly generated instances from a model of the landscape around Montreal for

hares of 8733 vertices and 18422 arcs [2] and study the impact of the preprocessing

on the MILP formulation size. For building these instances, we take 20 connected

subgraphs of 500 vertices and for each graph we create 20 instances by randomly

picking a percentage of arcs whose probability could be increased from π to
√
π .

Sampling in the very large graph representing the Montreal region gives rise to

different types of instances in terms of shapes, arc density, etc. This is why we

decided to use the Montreal case for these experiments.

Figure 7 shows a box plot of the size reduction of the MILP formulation in terms

of constraints, variables and non-zero entries with respect to the percentage of arcs

that could be improved compared to the total number of arcs in the graph. The

preprocessing removes almost all the elements of the MILP formulation when the
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number of improvable arcs arrives close to zero. This reduction decreases with the

number of arcs that can be improved. When 20% of the arcs can be improved, the

preprocessing removes on average 80% and at least 70% of the model’s variables,

on average 60% and at least 45% of the model’s constraints, and on average 75%

and at least 65% of the model’s non-zero entries. Even when 100% of the arcs can

be improved, the preprocessing reduces on average by 35% the model’s size. Since

the gap between the 25th and 75th percentiles does not exceed 17% , the reduction

seems to be robust. These results appear to be consistent with those of Table 1.

Indeed, in the case of Aix, in which about 15% of the arcs can be improved, our

preprocessing reduces the number of variables by 70% and the number of constraints

by 65% .

5.3 Quality of the solutions

In this subsection, our goal is to compare the quality of solutions returned by the

algorithms described in Section 4 to optimal solutions returned by the MILP solver.
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Figure 8: Percentage gain in ECA achieved by the solutions of the different algo-
rithms compared to the optimal solution for different budget values.

For each case study and each of the four algorithms, there is at least one budget

value for which the quality of the solution is significantly lower than the quality of

the optimal solution, the greatest departures being observed at lower budget values

(Figure 8, Table 3). Greedy versions of incremental and decremental algorithms
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IL DL IG DG

min. avg. min. avg. min. avg. min. avg.

Aude 80.3 % 94 % 14.7 % 83.9 % 82.8 % 94 % 88.1 % 97.2 %

Montreal 92 % 99.2 % 97.7 % 99.6 % 98.4 % 99.8 % 98.4 % 99.8 %

Aix 81.6 % 96.2 % 65.2 % 95.6 % 81.6 % 98.7 % 54.1 % 97.4 %

Marseille 97.8 % 99.5 % 95 % 99.3 % 97.8 % 99.6 % 97.8 % 99.6 %

Table 3: Minimum and average optimilaty ratio for each algorithm and case study.

perform on average better than their static counterpart (Table 3). The minimum

and average optimality ratio in the Aude and Aix cases is lower than in the other

cases, for all algorithms (Table 3). This can be explained by the fact that the

improvements seem to have a stronger impact on the distances between patches in

the case of Aude and Aix. Static and greedy algorithms are generally quite close

to the optimal solution (5% lower on average). However, all algorithms, whether

static or greedy, incremental or decremental, provide poor quality solutions for some

budget values (Table 3).

6 Conclusion

This article introduces a new MILP formulation for BC-ECA-OPT and shows that

this formulation allows us to optimally solve instances having up to 150 habitat

patches while previous formulations, such as those described in [29] are limited to

30 patches. The preprocessing step reduces significantly the size of the graphs on

which a generalized flow has to be computed, thus enabling us to scale up to even

larger instances. We showed that this preprocessing step allows us to greatly reduce

the MILP formulation size and that its benefits increase when the proportion of arcs

whose lengths can change is decreased. This allows us to tackle instances up to 300

habitat patches.

The optimum solutions obtained experimentally are compared to the ones re-

turned by several greedy algorithms. Interestingly, we found that greedy algorithms

work well in practice despite the arbitrarily bad cases we identified. Therefore,

greedy algorithms remain a reasonable choice when the size of the instances is too

large to be solved optimally by a MILP solver. Our next objectives will be to exper-

iment with our approach on other practical instances of the problem arising from

different ecological contexts.

On the theoretical side, we will investigate the problem from the point of view of

an approximation algorithm, by addressing, e.g., the question of whether it is pos-

sible to find reasonable assumptions under which greedy algorithms are guaranteed

to return a solution whose ECA value is at least a constant fraction of the optimal
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ECA. If these assumptions are fulfilled by the real instances that we considered,

this would explain our experimental observations. Moreover, since a polynomial

time approximation scheme has been given in the case of trees [28], it might also

be interesting to know for which larger classes of graphs there are constant factor

approximation algorithms. Another interesting question is to determine whether

good solutions could be obtained by geographically decomposing the problem, inde-

pendently solving a subproblem for each region and then reassembling the solutions.

In this case, a notion of fairness could help to allocate the budget among the re-

gions so that each region can enhance its own internal connectivity keeping a part

of the budget to enhance the connectivity between regions. Since the ECA is based

on equivalence between a landscape and a patch, such a multilevel optimization

approach looks promising.
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