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Results

Statement of the Problem Methods

Nowadays, electricity 1s distributed
via the Smart Grid (SG). The SG
(Figure 1) 1s an electricity network
enabling a two-way flow of
clectricity and data with digital
communications technology (Figure
2). However, not all generated
electricity in the SG 1s brought to
end-consumers as 17% of 1t 1s lost
in transmission lines, and 50% 1s
lost 1n distribution lines. These
losses are categorized as Technical Data Communication Flow
losses (TL) or Nontechnical losses
(NTL). TL are losses caused by
action internal to the power system,
whereas NTL are losses caused by
action external to the power system.
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Fig. 1. An Illlustration of a Smart Grid
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Fig.4. System s mixed methods of implementation at conceptual, logical, and physical levels :

Output

Procedures:

1. System modeling (logical implementation):
- Mathematical modeling
- Data modeling "
2. Machine Learning trials (physical implementation) : . e
- Data collection: from papers and online datasets.
- Data preparation: done by visualization, dimensionality o loud
reduction, balance, separation, pre-process (normalization,

duplicates elimination, error correction). o
Model training and evaluating: done by PYthOIl Sklearn. Flg 5. Design OfMachine Learning model trials Flg 6. IanfS and Outputs OfMaChine Learning ‘ O n c1u SlO n

Purpose Of the Study Model within the System . . .
This research attempts to detect, classify, and quantify power losses
D at a, Gr aphs’ and An alySiS located in transmission and distribution lines inside the Smart Grid

via a multi-layered and multi-dimensional Machine Learning-based
system model. The system 1s expected to productively detect,
classify, and quantify losses. Ultimately, ensuring energy efficiency
and management. Contributing to environmental conservation and
economic stability.
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Fig.2. Data Communication Flow
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This research aims to devise an industry-wide and a cohesive
solution to the problem of technical and nontechnical loss in the
Smart Grid by providing utilities with a system to better
understand their grids' technicalities and observe when loss 1s
happening on their networks. Ensuring efficient use of energy.
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In [2-3], software-based solutions (figure 3) for detecting

technical and nontechnical losses had two limitations:

e They are unable of cohesively detecting technical and
nontechnical losses 1n the Smart Grid. They either detected

nontechnical loss or technical losses but not both.
They are wunable of

utterly sustaining the M\—ﬁ

Substation

complexity and number roerren s
of stakeholders involved ‘
in computation. -y
Fair to say, the industry 1s
not equipped with an [ & €8 o S
applicable  solution to

overcome technical and Fig.3. Software-based solutions for detecting
nontechnical losses. power losses in the Smart Grid

Area of loss Area of detection (modeling of consumption)
Delivered = Generated - ( 17% Transmission loss + %50 Distrbution loss)

Fig.7. Layer one: observation of power losses Fig.8. Layer one: a closer look at location of losses

Layer one, triggering of event: Physical implementation
Conditional mathematical modeling (1if x =>0 , where x 1s sent kWh

Transmission Lines Distrbution Lines

' i technical loss detecti
from the plants and 0 is calculated to be consumed via the smart meter). Technical loss detection Nontechnical loss detection

When x < 0 (gate: are there losses or not?). TABLE 1. Case Study of Distribution Network and
Investigated Features for Technical Loss Detection
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If yes, the event 1s triggered. If not, stay in the loop.
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Future work

Short-term future work:

Since this system has been implemented in the conceptual and
logical levels. It i1s anticipated to implement this system in the
physical level through carrying out trials on the Machine Learning
models within the system by the end of February.

Long-term future work:

To model a system more specifically fit to industry application; a
derivative model that 1s more comprehensive for industry zones
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System model will cohesively detect and quantify technical Nl
and nontechnical losses in the Smart via the utilization of

Model-based Systems Engineering methodologies, Machine
Learning algorithms, and Smart Meter data.
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Layer two, multi-dimensionality and classification:

Once the output (end of loop) of layer one is received, another loop is triggered Figure. 10. Yearly Consumption of Four Residential Consumers on
One Distribution Network. Data Was Collected from 2013 to 2014.
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