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ABSTRACT

Recently, many orbital studies in barred galaxy potentials have revealed the existence of orbits
that are not trapped around x1-tree orbits, but could be potentially appropriate building blocks
for bars. These findings question the uniqueness of the x1 family as the standard paradigm
of orbital motion in galactic bars. The main goal of this paper is to investigate the role that
such orbits could play in shaping the morphology of bars. We trace the morphological patterns
appearing in the face-on and edge-on views of the non-periodic orbits presented in these
studies and we show that they are introduced in the system by second type (‘deuxieme genre’)
bifurcations of x1. For this purpose, we use a typical 3D Ferrers bar model and follow the radial
and vertical bifurcations of the x1 family considered as being mul-periodic, with mul = 2, 3,
5. The variation of the stability indices of x1 in the mul = 2, 3 cases gives us also the 4- and
6-periodic orbits, respectively. We tabulate these orbits including all information necessary
to assess their role as appropriate building blocks. We discuss their stability and their extent,
as well as their size and morphological evolution, as a function of energy. We conclude that
even the most important of the mul-periodic orbits presented in Tables 2—5 are less appropriate

building blocks for bars than the families of the x1-tree at the same energy.

Key words: Galaxies: bulges — Galaxies: kinematics and dynamics — Galaxies: structure.

1 INTRODUCTION

In general, studies of orbital structure have shown that the basic
building blocks of 2D bars are elliptical-like, elongated along the
bar, single-periodic orbits confined within the corotation resonance,
which are called x1 or B (Contopoulos & Papayannopoulos 1980;
Athanassoula et al. 1983; Contopoulos & Grosbgl 1989, etc.). Bars,
however, are not 2D objects. They have a considerable extent verti-
cally to the equatorial plane of the galaxy and a rather complex shape
(for a review see section 3.3 of Athanassoula 2016, and references
therein). Building blocks for such a 3D bar could be the families
of the xI-tree' (Patsis, Skokos & Athanassoula 2002b; Skokos,
Patsis & Athanassoula 2002a), with elliptical-like projections on
the equatorial plane. Many recent papers, however, discuss new
building blocks with quite different morphology. Typical examples
of such orbits can be found in Abbot et al. (2017, hereafter AVSD),
Chaves-Velasquez et al. (2017), Deibel, Valluri & Merritt (2011),
Gajda, Lokas & Athanassoula (2016, hereafter GLA), Katsanikas,
Patsis & Pinotsis (2011b, hereafter KPP), Machado & Manos
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IThe set of families belonging to the x1-tree, includes x1 and its simple-
periodic 3D bifurcations at the vertical n:1 resonances.

(2016), Patsis & Katsanikas (2014a,b, hereafter PKa and PKb,
respectively), Portail, Wegg & Gerhard (2015, hereafter PWG),
Valluri et al. (2016, hereafter VSAD), Wang, Athanassoula & Mao
(2016, hereafter WAM) and Wozniak & Michel-Dansac (2009,
hereafter WM-D). In some cases the face-on view of these orbits is
complicated, while their edge-on views are similar to the projections
of the frown-smiles orbits that are considered to build the peanut
(see e.g. Skokos et al. 2002a). The orbits depicted in the figures of
the above-mentioned studies are not periodic, but their approximate
morphology indicates that they are pretty near a periodic one, or
that they are to a large extent determined by the presence of a
radial or vertical resonance. The existence of these orbits raises
the question, of whether the paths followed by stars in galactic
bars are finally different from the generally accepted elliptical-like
orbits. Elliptical-like projections of periodic orbits on the equatorial
plane of barred galaxy models, with their major axes aligned with
the major axis of the bar, are secured by the presence of x1 and
its simple-periodic 3D bifurcations, i.e. by the orbits of the x1-
tree, at least away from the regions of radial n:1 resonances with
n > 2. Higher multiplicity periodic orbits have in general more
complicated shapes, but could, in principle, still offer an alternative,
more complicated, backbone of bars. In this paper, we address this
possibility in view of the new results found recently in the above-
cited papers.
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The periodic orbits (hereafter p.o.) found in 3D rotating bars
belong to families, which in principle exist in every 3D rotating
potential in autonomous Hamiltonian systems. Such systems can
be written, in Cartesian coordinates (x, y, z), in the form:

Lo, 2 2
H =5 (pi+p)+ i) + @, 3, 2) = 2(epy = ypo), (1)
where p., py, and p. are the canonically conjugate momenta and €2,
the angular velocity of the system (pattern speed). The numerical
value of the Hamiltonian, E;, is the Jacobi constant and we will
also refer to it throughout the paper as the ‘energy’. We want to
underline that it is not the presence of a specific barred component
that gives rise to these families. Examples of models without an
explicit bar component, where the same families appear can be
found in Patsis & Zachilas (1990), Patsis & Grosbgl (1996), Patsis
etal. (2002a), and Chaves-Velasquez et al. (2019). The morphology
of the p.o. is determined merely by the presence of the radial and
vertical resonances (Skokos et al. 2002a). These resonances exist in
any model of a rotating three-dimensional potential.

Periodic orbits determine the dynamics of a dynamical system,
since they determine the topology of the phase space. Around any
stable p.o. there are islands of stability, while the unstable p.o.
introduce chaotic motion. The multiplicity mul of a periodic orbit
plays a key role as it gives the number of intersections of the p.o.
with the surface of section in one direction (usually the upwards
intersections are considered). Consequently, a p.o. of multiplicity
mul, called a mul-periodic orbit, will have mul intersections with
the surface of section. We note that mul/ depends on the chosen
surface of section. A typical example is the two-dimensional (2D)
case of a x1 orbit with loops at its apocentres (see e.g. the orbit in
fig. 2e in Skokos et al. 2002a). Placing the bar major axis along
the y-axis, and considering the y = 0 surface as surface of section,
it is 1-periodic, while if we consider the surface of section x = 0,
it is 3-periodic. Hereafter, in our orbital studies we use y = 0 as
cross-section.

Among all p.o., the simple p.o. of multiplicity 1, or 1-periodic,
play a key role. If stable, they are found at the centres of large
stability islands in the surfaces of section. In potentials, which have
a sufficiently strong bar, these islands are surrounded by a system of
smaller islands forming what is often referred to as an archipelago.
We have chains of smaller islands in resonance zones around the
main island, in which stable—unstable pairs of p.o. alternate (see
e.g. Contopoulos 2004). These are p.o. of multiplicity mul with mul
> 1, frequently encountered in the literature in the terminology of
Poincaré, namely as type II (second type, ‘deuxieme genre’) orbits
(Poincaré 1899). An attempt to visualize the succession of invariant
tori and the chaotic filaments that connect the unstable p.o. in the
4D space of section of 3D Hamiltonian systems has been presented
in KPP.

Tracing the deuxieme genre orbits is not always an easy task,
especially if the dimension of the system is larger than two. The
standard tool frequently used for finding the families of periodic
orbits and their connection with other bifurcating families in 3D
Hamiltonian models is the ‘stability diagram’, which gives the linear
stability of the members of a family of p.o. as a parameter, e.g. E;
varies (Contopoulos & Magnenat 1985). For calculating the linear
stability of the periodic orbits in such systems, we proceeded as
Broucke (1969) and Hadjidemetriou (1975). Definitions and details
about the algorithm we followed can be found e.g. in Skokos et al.
(2002a). Here we briefly mention that the variation of the stability
with E; is described by the variation of two stability indices, b,
and b,, one of which refers to the stability of the orbits of a family
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subject to radial and the other to vertical perturbations. A p.o. is
stable (S) if both b; € (=2, 2), with i = 1, 2. If one of the two
stability indices is |b;| > 2, then the orbit is characterized as simple
unstable (U), while if both indices are |b;| > 2 it is double unstable
(DU). Finally if all four eigenvalues of the monodromy matrix are
complex numbers off the unit circle, the stability indices cannot be
defined and the p.o. is called complex unstable (A). In the case of
1-periodic orbits, whenever we have intersections or tangencies of
one of the b; stability curves with the b = —2 axis, new families
are bifurcated from the parent one, having the same multiplicity.
On the other hand, tangencies or intersections with the b = 2 axis
bring into the system new families with multiplicity double that of
the parent one (Contopoulos 1986).

In general, the critical value of a stability index at which a
bifurcating family of multiplicity mul is introduced in the system is
given by

b = —2cos (Zni> . )
mul

Thus, a family of p.o. of multiplicity mul = 1, reaching the b = -2
axis as E; varies, will bifurcate another family again with mul = 1,
while families with mul = 2 will appear, according to equation (2),
at intersections or tangencies of a stability curve with the b = 2 axis.
A stability diagram of a 1-periodic family gives us the information
about the E; value at which 1- and 2-periodic families will be
introduced in the system. However, for tracing further families with
mul = 3,4, 5, etc. in the same diagram, we have to plot, besides the
b = —2 and b = 2 axes, also the axes b = 1, 0, —0.618... and so
on, respectively (see appendix A in Skokos, Patsis & Athanassoula
2002b, for details).

An alternative way for following mul-periodic bifurcations of an
1-periodic family is to consider it as being itself of multiplicity mul,
by repeating it mul times. Then, the stability curves will indicate
the birth energies of the bifurcating families of multiplicity mul at
their intersections, or tangencies, with the b = —2 axis, while new
families with multiplicity 2mul will be introduced in the system,
whenever b = 2. Hereafter, if not otherwise indicated, when we
refer to mul-periodic orbits, we mean that mul > 2.

The goal of this paper is to find the origin of the orbital
morphologies encountered in relevant recent papers on orbital
structure cited in the first part of this introduction. In this effort we
have to have in mind two things: First that the shape of an orbit is
influenced by the resonance in which it is introduced in the system,
but also by the energy along the characteristic? at which a particular
representative of a family is found. As an example one can observe
the morphological evolution of x1 along its characteristic in various
models, like fig. 11 in Contopoulos (1983), fig. 3 in Athanassoula
(1992), or fig. 2 in Skokos et al. (2002a). Secondly, that moving
along the characteristic of a 3D family, each projection of a p.o.
will follow its own morphological evolution. On top of this, the
face-on and edge-on projections of the (not necessarily periodic)
orbits may display the fingerprints of different radial and vertical
resonances in their morphologies, depending on the location of its
initial conditions in phase space. A certain face-on structure may be
combined with different edge-on ones and vice versa. Thus, when
we look for a specific face-on or edge-on morphology, essentially
we want to identify the energy at which this specific structure is
introduced in the system.

2The characteristic of a family of p.o. is a curve that gives one (or more)
initial condition of its members as a function of a parameter, usually Ej.
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In our study we consider also the possibility that chaotic orbits
may support the bar, or part of it. The role of chaotic orbits
in supporting a bar has been investigated in several studies of
2D and 3D models (see e.g. Athanassoula et al. 1983; Patsis,
Kalapotharakos & Grosbgl 2010; Manos & Athanassoula 2011;
Machado & Manos 2016; WAM). Note that PKa found that chaotic
orbits close to the transition points from stability to complex
instability (Contopoulos & Magnenat 1985) may contribute in the
reinforcement of features like the X’s in edge-on views of the bars.
In addition sticky chaotic orbits (Contopoulos & Harsoula 2008, see
also fig. 8 and corresponding text in Athanassoula et al. 1983) at the
vertical 2:1 resonance (VILR) region (PKa; PKb), as well as sticky
orbits in the outer regions of specific 3D bars (Chaves-Velasquez
et al. 2017) seems to favour the appearance of boxy features in
the inner and outer regions of the bars, respectively. Sticky chaotic
orbits have been also found to shape the bars in studies of 2D models
(Patsis, Athanassoula & Quillen 1997; Athanassoula et al. 2010).

The question that we try to answer in this paper is whether or
not there are families of periodic orbits (other than the x1-tree set
of families) that are associated with the reinforcement of the bar
and, in particular, of the morphological features we observe in their
central parts (i.e. peanuts and X features embedded in them). For
this purpose we study the ‘deuxieme genre’ periodic orbits in Ferrers
bars® and we compare their morphologies to those appearing in the
papers mentioned at the beginning of the introduction. We do not
intend to present in detail the orbital properties of the families.
We rather want to point to their origins and discuss whether they
could in principle be part of the skeletons of the bars. In order to
trace the E; at which a mul-periodic family is ‘born’, we follow
the evolution of the stability indices of x1, as we did in previous
works (Skokos et al. 2002a; PKa; PKb, etc.). For the purposes of this
paper, however, we follow the rules described earlier, and consider
x1 each time as mul-periodic. We list all the families we found in
this way in tables, and we note that their vast majority is presented
for the first time. The few cases that correspond to families of
p-o. known from earlier works, are accordingly indicated in these
tables.

This is the first in a series of papers about the orbital content
of galactic bars, in which our main goal is to point out the
origin of the various patterns and locate the energies at which
they are introduced relatively to the main radial and vertical n:1
resonances and especially relatively to the vILR. In Section 2,
we describe the model, the particular set of parameters we have
chosen, and the nomenclature we use for the orbits. In Section 3,
we present the main 2- and 4-periodic orbits, in Section 4, the
main 3- and 6-periodic ones, while in Section 5, we investigate the
role of mul-periodic orbits with large energies in determining the
structure of the bar. Finally in Section 6, we present and discuss our
conclusions.

In Appendix A, we present morphologies appearing in quasi- and
non-periodic orbits and we discuss extensively their similarity with
orbits recently found in many models in the relevant literature. These
models are either analytic, or have been obtained from snapshots of
N-body simulations. In the Appendix, we do not present any further
new family of periodic orbits, but we compare orbital patterns and
suggest connections between the shapes of published non-periodic
orbits and the mul-periodic orbits we present in the tables in the

3These ellipsoids have been already presented in the 19th century by Ferrers
(1877) and have been used extensively in Galactic Dynamics, first introduced
by Athanassoula et al. (1983).
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main body of the paper. However, readers who just want to read the
bottom line of our work should concentrate on Sections 3, 4, 5, and
6, or even go directly to Section 6.

2 INTRODUCING THE MODELS AND THE
ORBITS

2.1 Models

For the sake of continuity with our previous studies on the subject,
we use again in this paper the popular triaxial Ferrers bar model,
which is described in detail in Skokos et al. (2002a) and Patsis &
Katsanikas (2014a), with parameters close to those in the pioneer
paper by Pfenniger (1984). The formulae for the axisymmetric part
of the potential, as well as the bar model can be found in these
references.

The Ferrers bar is inhomogeneous with index 2. He have taken
as its major axis our y-axis and axial ratios a:b:c = 6:1.5:0.6 (a, b,
c are the semi-axes witha > b > ¢).

The axisymmetric background consists of a Miyamoto disc
(Miyamoto & Nagai 1975) with fixed horizontal and vertical scale
lengths A = 3 and B = 1 respectively and a Plummer sphere
(Plummer 1911) for the bulge with scale length €.

The length unit is taken as 1 kpc, the time unit as 1 Myr and
the mass unit as 2 x 10'' M. The masses of the three components
satisfy G(Mp + Ms + Mg) = 1, where M), is the total mass of the
disc, M the mass of the bulge (spheroid), My is the mass of the bar
component, and G the gravitational constant.

In all papers mentioned in the beginning of this section, one can
find detailed descriptions of the components of the models and their
properties, so we skip this information here.

2.2 Radial and vertical perturbations and the choice of
convenient parameters

In this paper we use two specific models, both following the
description in the previous subsection, but with different values for
the parameters. The first one, used only briefly in this subsection,
is the fiducial model of Skokos et al. (2002a), i.e. has GMp = 0.82,
GMgs = 0.08, GMy = 0.1, €, = 0.4. The frame of reference rotates
with the bar pattern speed €2, = 0.054, which places corotation at a
radius R, = 6.13 from the centre.

By searching for the morphologies of the orbits in the papers
mentioned in the introduction, we realized that an orbit frequently
encountered in the fiducial and in many other Ferrers bar models
we have investigated (see e.g. Patsis & Katsanikas 2014a) was the
planar orbit depicted in Fig. 1(a). In this and in all subsequent plots
with orbits the numbers in the axes refer to kpc. In the plots of orbits,
usually in the upper left corner, we indicate the depicted projection.
The orbit in Fig. 1(a) belongs to a known family of p.o. that is
introduced in the system at the first tangency of the radial stability
index of the simple-periodic x1 family with the b = 2 axis and thus
it is 2-periodic. This family has been discussed in PKb (fig. 2 in
that paper) and has two branches named rm21 and rm22, because it
comes in pairs symmetric with respect to the major axis of the bar.
On the (x, p,) Poincaré surfaces of sections one can always observe
two sets of stability islands belonging to these orbits. For example
Fig. 1(b) depicts the surface of section of the fiducial model for E; =
—0.348, i.e. an energy right after the bifurcation of rm21 and rm22
from x1. The x1 p.o. is located in the middle of the central stability
island, at (x, p,) =~ (0.138, 0), while the two sets of islands in its
immediate neighbourhood belong to rm21 (left and right of x1) and
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Figure 1. (a) A portrait of an rm22 orbit in the fiducial model of Skokos
et al. (2002a). (b) The (x, py) Poincaré surface of section close to x1 at
E; = —0.348 in the same model. (c) The stability curves of x1 (black
lines) and rm21 and rm22 (green lines). We observe that for E; = —0.348
the rm21/rm22 families, sharing the same stability curves, are vertically
unstable but radially stable. Thus in (b) they are found in the middle of
stability islands coming in pairs, above and below (red) and left and right
(black) of the central island that belongs to x1.

rm22 (above and below x1, plotted in red). If we plot together both
members of this family in the same figure, we observe a rather boxy
shape (see fig. 2 in Patsis & Katsanikas 2014b, and also Section 3
below).

The families rm21 and rm?22 are important and play a major role
in explaining boxiness in the central region of the bar (Patsis &
Katsanikas 2014b; Chaves-Velasquez et al. 2017). Similar mor-
phologies are also encountered in the face-on views of the orbits in
fig. 7 (third and fourth row) in GLA, in fig. 2 in KPP, in fig. 4 (first
row) in VSAD and in fig. 5 (third column) in WAM. We come up
against this morphology almost in all studies about orbits in rotating
galactic bars.

In Fig. 1(c) we give the stability diagram of the x1 family
described twice, i.e. when we consider it as being 2-periodic. The
stability indices of x1 are plotted with black lines. Arrows indicate
which curve corresponds to the radial and which one to the vertical
index. Bifurcations of equal multiplicity will occur at tangencies

Non-xI-tree orbits 2743

Table 1. The parameters of the main model. G is the
gravitational constant, Mp, Mg, Ms are the masses of the
disc, the bar and the bulge respectively, €5 is the scale
length of the bulge, 2}, is the pattern speed of the bar.

GMp GMy GMs €5 Q2

0.878 0.1 0.022 0.4 0.054

or intersections of the stability curves with the b = —2 axis and
will be 2-periodic in this case. We observe that rm21 and rm22 are
bifurcated at E; ~ —0.353 (green stability curves) at the tangency
of the x1 radial stability curve with the b = —2 axis. Both share the
same stability curves, thus both are bifurcated as simple unstable
and then they have a U — S — U — DU transition, in which the
stable part AE; ~ 0.012. The fact that the pair of rm21 and rm22 is
simple unstable does not contradict the presence of invariant curves
around it in Fig. 1(b). Its radial index is —2 < b < 2 indeed, while
the vertical one is b < —2, starting from the corresponding index
of x1. The E; at which rm21, rm22 are bifurcated is in the VILR
region, where we have for x1 the S — U — S transition, roughly
for energies —0.36 and —0.342, at which first the x1v1 and then the
x1v2 families are introduced in the system (Skokos et al. 2002a).
This means that vertical perturbations of rm1,2 will correspond
mainly to orbits belonging to a chaotic sea, so it would be difficult
to compare the side-on morphologies with those presented in the
relevant literature. Such issues can be raised in several models and
that led us to seek a Ferrers bar model in which the basic families
under discussion existed and were introduced as stable. Thus, we
performed a preliminary investigation of the energies at which the
main 2-, 3- and 4-periodic families are introduced. We have chosen
to present the basic mul-periodic families encountered in rotating
3D bars in a model close to the fiducial one, which however has
GMs = 0.022 instead of GMs = 0.08. Thus, as both the mass of
the bar and the total mass of the system remain constant, the disc
mass increases. The parameters of the main model of this paper are
summarized in Table 1. In models with bars heavier than that of
the fiducial (see fig. 3 in Patsis & Katsanikas 2014b), as well as
in models with heavier classical bulges, the rm21, rm22 families
start existing between the bifurcating points of x1v1 and x1v2, as
vertically unstable.

Useful quantities for assessing the role of the orbits we discuss
in the following sections are the (E,,y) = (—0.197, 6.2) coordinates
on the characteristic diagram of the unstable Lagrangian point L,
for x = 0 and the (E;,x) = (—0.193, 5.9) coordinates of the stable
Lagrangian point L4 for y = 0. We also note that the longest x1 orbit
reaches y = 4.1 kpc along the major axis of the bar.

2.3 Orbital nomenclature

Families commonly used in previous studies — such as x1, x1vl,
etc. — already have a name so we keep it also in the present study. In
the tables in which we classify the p.o. (Sections 3 and 4) we give,
for reasons of continuity and clarity, in parenthesis also the name
that these families would have if we followed the rules we describe
below. In the text, however, we give only the standard name, for
brevity.

For the remaining families, we introduce the following nomencla-
ture: The first character indicates whether the family is introduced in
aradial (r) or a vertical (v) bifurcation of the x1. This is followed by
two characters indicating its multiplicity, e.g. m2 or m3, and a third
character which is a number giving the order in which this family is

MNRAS 490, 2740-2759 (2019)
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introduced in the system. For the unstable counterparts of the stable
mul-periodic families that are bifurcated at the same energy, we add
a ‘u’ at the end of the name, retaining the rest of it identical. So e.g.
the name rm21 indicates that this is the first radial bifurcation of x1
of multiplicity 2. This family is bifurcated together with the rm22
family, with which it shares the same stability curves and the orbits
of which are symmetric of the rm21 orbits with respect to the y-axis.
At the same energy we also have the bifurcation introducing the pair
of rm21u and rm22u families, which are the unstable counterparts
of rm21, rm22. Since we need a name mainly to associate it with a
certain morphology, the clarification is finally done in our Tables,
where names and morphologies are presented side-by-side.

Note that a family of multiplicity mul will appear also as 2mul,
3mul, etc. Thus, we keep for the latter the name of the lowest
multiplicity with which the family is encountered in the stability
diagrams, in order to avoid multiple names for the same family.

Finally, we note that we found only very few important vertical
or radial bifurcations from the x1-tree families. So there was no
need to extend the nomenclature rules to include such orbits. In the
few cases we mention in the sections below we used names that
clearly show their origin from the parent family. As an example the
family r_tv1l indicates that it is the first vertical bifurcation in the
set of radial 3:1 bifurcating from x1 families, for which we used in
previous papers names starting with ‘t” (Skokos et al. 2002a).

In many studies a family is named by the ratio of its frequencies,
either in Cartesian or cylindrical coordinates. Although this is
often quite adequate for many dynamical studies, it is definitely
inadequate for orbital structure work, as several families with quite
different properties (such as energy ranges, stability, extents and
shapes) have the same frequency ratios. Even naming the orbital
families just by the name of the resonance at which they appear, as
is usually done for rotating discs, might lead to ambiguities. A good
example is that of the x1 and x2 families, both of which would, by
the above definition, be named 2:1. We have thus refrained from
using names based on frequencies and/or resonances here.

3 2-PERIODIC ORBITS

Having chosen a convenient model — i.e. a model in which the
rm21/rm22 families exist, are bifurcated as stable and span a
sufficient extent — we proceed with finding the families of periodic
orbits. In our study we restrict ourselves to the bifurcations of x1
and we do not include bifurcations of the z-axis family (Heisler,
Merritt & Schwarzschild 1982), as these are not relevant to our
study. In order to present the orbits in an illustrative way, we consider
the family x1 as 2-periodic and we obtain the stability diagram
given in Fig. 2, which shows the origins of all families we discuss
in Section 3. We avoid giving the evolution of the stability indices of
all these families in Fig. 2 or in separate figures, because we focus
mainly in the succession in which these families are introduced in
the system. The extent of the families and their possible interesting
bifurcations are discussed whenever they play a role. Moreover we
restrict ourselves to a large extent in presenting the families, whose
size and shape could make them potential contributors to the bar.
The main 2-periodic families that could play a role in building
side-on peanut structures are summarized in Table 2. In our presen-
tation, we give only one representative of each family. However,
given the four-fold symmetry of our adopted potential, there exist
also symmetric orbits, like e.g. the ‘frown’ and ‘smile’ orbits of
the x1v1 and x1v1" pair, which are symmetric with respect to the
equatorial plane. The role of symmetric orbits in building observed
structures will be discussed in Section 6. Whenever we give initial
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conditions we give the (x, z, p,, p;) array, since we use the y = 0
surface of section. Numbers in initial conditions are given in the
text at least with a three decimal digits accuracy, so that the orbit
can be easily recovered with an iterative scheme. In the present
study, the p.o. are considered to be found when the initial and final
coordinates coincide with an accuracy of at least 107!, using a
fourth-order Runge—Kutta method. The relative error in the energy
is always less than 10713,

Table 2 includes all data we need in order to assess the role of each
family in a compact manner. In the first column we mention the name
with which we refer to the family in our analysis, while in the second
column the main information given is the energy E,*, at which the
family is born (cf. with Fig. 2). We also add some description about
the evolution of the stability of the family. The most important
columns are the three that follow, where one can directly associate
successively the face-on, end-on, and side-on projections of the
orbits with the name given in the first column. Stable orbits are
plotted in black, while unstable ones in blue. Finally in the last
column, we give information about the specific representative of
the family depicted in the third, fourth, and fifth columns. We give
its energy and approximate initial conditions. We always chose a
representative of the family that is characteristic over a large AE;
interval. For example if a family supports a specific face-on profile
for a large energy interval, we will present it at an energy within this
interval, away from the bifurcating point, where it will be x1-like
anyway. Also in the last column we give reference to other works,
where similar morphological patterns appear. For the main papers
we compare our study with, we use the abbreviations defined in the
introduction. Indicating that a p.o. orbit in Table 2 is ‘similar’ to an
orbit found in the literature, we mean that itself, or a quasi-periodic
orbit in the immediate neighbourhood within its stability island, or
a chaotic orbit sticky to it (Contopoulos & Harsoula 2008), can be
considered as morphologically similar to the orbit in the cited paper.
We included only examples where we have conspicuous similarities.
However, there are more cases that could be included if we take into
account changes that appear as we move along the characteristic of
a family (cf. for example the orbit rm21u with the face-on view of
the orbit in fig. 11 in Deibel et al. 2011).

The orbits are presented in order of increasing E,* from the top
to the bottom of the tables (cf. with Fig. 2). The bifurcations of
the bifurcating families do not play in general a major role. In the
tables we include only those that we find that could be important
for supporting the 3D bar structure. In such a case they are given
below the parent family separated by a dashed line (see the case of
family rm21_vm4 in Table 2).

Special mention has to be given to the group of 3:1 orbits that
one can start tracing at the S— U transition of x1 at E;* &~ —0.295
(indicated with ‘r3:1° in Fig. 2). It includes families with stable and
unstable parts and face-on morphologies similar to the p.o. tl, t2,
and ol in Skokos et al. (2002a). The tree of 2D and 3D families
starts with a radial inverse bifurcation (Contopoulos & Magnenat
1985) and extends towards larger as well as towards smaller energies
than its E;*, with branches joining again the x1 as well as the x4
characteristics. The interconnections of all their stability curves are
complicated and a detailed description is beyond the scope of this
paper. We restrict ourselves to the presentation of a representative
of a 3D family with stable parts, which is given in Table 2 with the
name r_tv1, mainly because of its side-on profile. This profile could
be possibly used for building boxy or X-shaped side-on projections.

In Table 2 we have also included the simple periodic (of mul-
tiplicity 1) x1v1 and x1v2 families, as essentially the contribution
of all the remaining families is discussed in comparison with the
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-0.36 -0.34 -0l32
rm21_ vm4
x1mul2 x1lvl | rm21 x1mul2-2

x1mul2u <1v2 x I mul2u—2u

x1v3 —x1v4,

3 ‘ -0.28 . -0.26 -0.24

Ej

r3:1 families

Figure 2. The stability diagram of the x1 family considered as 2-periodic. The index b1 refers to radial, while b2 to vertical perturbations. Red arrows point
to the energies at which 2D families are introduced in the system, while black to the corresponding energies for 3D families. Note that the families indicated
at the tangencies of the stability curves with the b = 2 axis, are introduced as 4-periodic. The names of the families in blue indicate that they are introduced as

unstable.

edge-on profiles that can be built by mechanisms using these two
families as building blocks. It has to be added that in the particular
model we use for the presentation of the orbits, the x1v1 family
does not have complex unstable parts, as in all other known cases
up to now, thus its role for building an X-feature can in principle be
based solely on quasi-periodic orbits trapped around stable p.o. This
fact upgrades the role of x1v1 and x1v2 families as peanut building
blocks and deserves further investigation, since the parameter that
differentiates the specific model we use for the presentation of orbits
here with respect to other Ferrers bar models is the increase of the
disc mass at the expense of the bulge’s mass.

The easiness with which a pattern is encountered in different
models is reflected in the number of works in which it is found and
mentioned in the last column of Table 2. This can be used as a rule of
thumb for the importance of each morphological pattern. The large
frequency with which the pairs of rm21/rm22 and rm21u/rm22u are
encountered in the studies is a result of the phase space structure of
the x1 stability islands in the inner parts of any rotating bar model.
The (x, p,) Poincaré surface of section given in Fig. 1(b) is typical
of the situation. The islands of the multiplicity 2 orbits surround
invariant curves around x1, they occupy a considerable area of the
large x1 stability island and they are located in a zone with orbits that
have relatively small deviations from the initial conditions of the
x1 p.o. Furthermore, their shape is indicative of the morphology of
the quasi-periodic orbits one can find on the neighbouring invariant
curves (see also Appendix A). The rm21/rm22 pair offers also a
characteristic image of the skeleton of the orbits that shape inner
boxiness in models of bars. The pattern resulting when both rm21
and rm22 are considered in our model is given in Fig. 3 (cf with fig. 2
in PKb). We have however, to bear in mind that these orbits cannot be
used for shaping the overall structure of the bar. Bifurcated from x1,
they start increasing their projections on the minor and decreasing
their projections on the major axis of the bar. As the energy, and
thus their perimeter, increases, they develop loops that extend to
the sides of the main ellipse. Namely, with increasing energy we
have an evolution in the direction from the rm21 orbit depicted in

Table 2 to the (x, y) projection of rm21_vm4 given just below it
in the same table. Its stable part along its characteristic, together
with that of its bifurcating families, extends up to E; ~ —0.312.
At this energy the rm21 and rm22 orbits are already much rounder
than the orbits in Fig. 3. Their maxima along the x- and y-axes
evolve from (Xpmax, Ymax) = (0.18, 0.72), to (0.47, 075), to (0.68,
0.79) to (0.78, 0.78) for E; = —0.331, —0.324, —0.316, and
—0.312, respectively. This morphological evolution, combined with
the fact that these orbits are generated at the ILR region, relates
them directly with the effect of inner boxiness observed in many
barred galaxies (Athanassoula & Beaton 2006; Erwin & Debattista
2013), in agreement with results of previous studies (PKb; Chaves-
Velasquez et al. 2017).

Finally, the 4-periodic orbits are summarized, in the same way as
the 2-periodic ones, in Table 3. We observe that the projections of
all mul-periodic orbits have a morphology that can be described as
a Lissajous figure, which becomes more complicated as the energy,
at which a family is bifurcated increases. This is more evident in
the side-on projections of the 3D orbits.

4 3-PERIODIC ORBITS

We followed the same approach for tabulating also the 3- and 6-
periodic x1 bifurcations. The corresponding stability diagram is
given in Fig. 4. Arrows point again to the origin of the families,
which are included in Tables 4 and 5.

The 3-periodic families also offer some patterns that are fre-
quently encountered in orbital analyses of barred galaxies models.
Among them we find, in a relatively large range of AE; values,
the face-on view of the vm35 family and the similar, planar,
family rm33. This latter family, together with the 2-periodic rm21
one, appears typically on the (x, p,) Poincaré surfaces of section
at energies close to the vILR region (e.g. fig. 1 in PKb). The
morphological evolution of vm35 gives a nice example of how
the evolution of a projection of a family changes shapes along its
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Table 2. The main periodic orbits bifurcated from the x1 family considered as being 2-periodic (Fig. 2). The successive columns give the name of the family,
following the rules described in Section 2.1 (1), the energy at which it is introduced in the system (E;*) and information about its stability (2), the face-on,
end-on, and side-on views (3-5), while in the last column (6), labelled ‘comments’, we give the E; value of the specific orbit plotted, its approximate (x, z,
Px» D7) initial conditions and we mention figures in papers in which similar morphologies are presented. From top to bottom, the families are given in order of
increasing energy at which they are introduced in the system. Bifurcations of the families, if given, are separated from the parent family with a dashed line.
Orbits drawn with black (blue) lines are stable (unstable).

family name E;* face-on end-on side-on comments
0.5 0.5 0.5
(_1(;35tzlm ency of ol oz 025 E; =-0.333
xlmul2 st tangency . . . (0.107,0.305, 0,0)
b2 with the b = . .
(vm21) . Figure 16 top in
-2 axis). S for E; -0.25 0.25 -0.25
PKb.
<-0.283. %5 0 0.5 08 0 0.5 %5 0 0.5
—-0.351
05 05 05 E;=-0.34
(st mgeney ol os os 0.115,0.167,
xImul2u of bz with the 0.008, ~0.109)
b = -2 axis). U 0 0 0 . .
(vm21u) ! Side-on view
always. Radially 025 025 025 o
similar to figure
Stab(l)ezngor Ey %5 0 05 0% 0 05 %5 0 o5 2, top,in PWG.
< —0.292.
1 1 1
-0.334 & @ v
Ist VILR (frown- 08 08 08 1 E;=-03
x1vl . .
smile) family. S 0 0 0 (0.2240.483.0.0)
(vml11)
always (no A part 05 05 0.5 1
in this model). 4 4 4
- 05 0 05 1 - 05 0 05 1 - 05 0 05 1
1 1 1
—-0.332 @ @
A2 Ind VILR. (co- 0.5 0.5 ) 0.5 E;=-03
type) family. U 0 0 i 0 (0.193,0,0,0.275)
(vm11u) .
always, being 05 05 05
radially stable. 4 4 4
- 05 0 05 1 - 05 0 05 1 - 05 0 05 1
E; =-0.324
(0.475,0,0,0)
Figure 2 in PKb;
, similar to face-on
-0.331 Xy views of orbits
(Ist tangency of o8 in figure 7 (3rd
rm21 bl with the b = 0 and 4th rows)
—2 axis). S for E; 05 in GLA, figure
< -0.316. 4 4 (Ist row) in
- 05 0 05 1
VSAD, figure 5
(third column) in
WAM.
-0.315
4-periodic, 3D
bifurcation of
rm21 at an in- ! - ! - ! v
tersection of b2 05 05 05 E; =-0.311
rm21_vmd index of x1 with 0 o S of et | (0.781,0,0,0.048)
the b = -2 axis. 05 05 05 Face-on view as
S: By < —0.311. ) ) ) for rm21.
Found as U, DU - 05 0 05 1 - 05 0 05 1 - 05 0 05 1
also at smaller
E; (regression of
characteristic).
—-0.331 E; =-0.323
(1st tangency . (0.381,0,0.102,0)
of bl with the Similar to face-
b = =2 axis). 08 on views of orbits
rm2lu Initially U for E; 0 in figure 7 in
< —0.316. Then 0.5 GLA, figure 4 in
S towards smaller VSAD and figure

E;.

5in WAM.
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family name E;* face-on end-on side-on comments
1.5 1.5 1.5
-0.320
(2nd tangency of orsf 7 ozt orsf E; =-0.316
x1mul2-2 b2 with the b = o o o o] gz (0.196,0.135,0,0).
(vn23) . Boxy side-on
—2 axis). -0.75 -0.75 -0.75 A
. B view.
S:Ey<-0.236 1507 6 075 s 1507 6 075 s 15075 6 075 s
-0.3 15 . . 15 15
(2nd tangency 1} xy 1} xz 1l yz
<Imul2-2u (b)f_ b22 Wl.th Ith.e o.z o.g w o.g OO( E, = 0316
(vm23u) aly Ua’“ss)‘pa‘;‘; o8 o5 o5 (0.196,0.135,0,0).
N -1 -1 -1
for Ej > —0.235. 1507 0 07 15 1507 0 07 15 1507 0 07 15
x1v3 and x1v4 as 2-periodic (see figures 9 and 10 respectively in Skokos et al. 2002a)
—0.295 (starting
point - inverse
bifurcation)
(Ist intersection
of bl with the 5 5 5
b = -2 axis). Xy ‘ @ v
A group of S '8 '8 '8
s E; = -0.2299
rtvl U families with 0 ot N/ o NN (0.190.-0.635.0.0)
triangular face on 15 15 15 oo
views and their 3 _ 3 -3

radial and verti-
cal bifurcations
extending also to

lower E; .
1
Xy
0.5} B
0+ 4
0.5+ B
R . . .
-1 -0.5 0 0.5 1

Figure 3. The representatives of the families rm21 and rm22 at E; =—0.324
plotted together. They can obviously be the backbone for boxy features in
the regions they exist.

characteristic, influenced by the resonances it encounters. At the
bifurcating point, its face-on view is by default x1-like. However, at
larger energies it develops a face-on morphology similar to rm33,
in the same way as the x1 orbits on the equatorial plane change their
morphology along their characteristic by developing locally three
apocentres at the 3:1 resonance region, four at the 4:1 resonance,
etc. We can say that the shape of the orbits along a characteristic of
a family ‘feels’ the resonance it passes by at the corresponding AE,
regions. Thus, the rm33 face-on pattern becomes more important
for the overall dynamics of the system, as it can be also encountered

at larger energies on the characteristic of one more, 3D now, family.
The 3D vm35 family in turn bifurcates at £; = —0.3087 a 6-periodic
3D family that has edge-on projections with their own morphology
and co-exists with the parent family.

In Table 5, where we present 6-periodic orbits, we meet again
families that we have already presented as 2-periodic, at tangencies
of the 3-periodic x1 stability curves with the b = 2 axis. Thus, the
first to appear in the table is the known x1mul2 family, while at a
larger energy in the stability diagram of Fig. 4, we meet again rm21
and rm22.

For the 3- and 6-periodic orbits, we observe again that the larger
the energy, the more complicated, more ‘dense’, Lissajous figures
we have in their edge-on profiles. In most cases of the 3D families
in Tables 4 and 5 we have more distinguishable shapes in the
side-on profiles of the unstable periodic orbits and on the end-on
of the stable ones (a kind of exception seems to be the vm37—
vm37u pair). This means that it is easier for the side-on profiles
based on 3- and 6-periodic stable orbits to obtain a compact, boxy,
character.

As multiplicity and energies increase, we find profiles of p.o. that
resemble more those of 3D quasi-periodic orbits trapped around
x1. Characteristic examples are the side-on projections of the two
6-periodic orbits we present in Table 5, as well as the one of
the p.o. vim43 (Table 3). The local minimum of the z extent at
y = 0 in the side-on views of vm65 and vm43 is reminiscent
of the corresponding minimum of the x1 quasi-periodic orbits on
invariant tori approaching the x1v2 initial conditions (see fig. 15 in
PKa), while the side-on view of vm63, having a local very shallow
maximum at (0, 0), points to side-on profiles of 3D quasi-periodic
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Table 3. The same as Table 2, now for p.o. of multiplicity 4.

family name E;* face-on end-on side-on comments
05 E; =-0.345
—-0.348 025 (0.035,0,-0.137,0).
rmdl (Ist tangency of o Similar with face-
bl with the b = 2 oss on view of orbit
axis) | in figure 6, 2nd
%5025 0 0% 05 row in GLA.
1 1 1 E;=-03
-0.341 osl Y osl % 05 (0.128,0.565,0,0).
vmdl (1st Fangency of o o o F;?ce—on similar
b2 with the b = 2 os o5 o5 with figure 10,
axis) ’ : bottom row,  in
o5 6 05 o5 6 05 o5 6 05 WM-D.
06 06 06
-0.341 sl M os] * osf ¥*
E; =-0.337
(1Ist tangency of @ ngg
vm4lu . _ 0 0 0 (0.129,0.129,
b2 with the b = 2 23 03 03 ~0.0009,0.038).
axis)
%503 0 03 06 %503 0 03 06 %503 0 03 06
1 1 1
_0326 0.5 b 0.5 @ 0.5 vz
(2nd tangency of o o o E;=-0.32
vmas b2withtheb=2 s Wi s (0.2080.158.0.0).
axis) : : :
105 0 o5 105 6 o5 105 6 o5
15 E; =-0.315
-0.317 orsl ¥ (0.064,0,0,0).
rmd3 (2nd 'tangency of R Similar . with
bl with the b =2 o face-on view of
axis) ) orbit in figure 6,
18507 0 075 15 last row, in GLA.
x1mul2 vm63 oy vm65
T T
\
2
b1 X\ /3
1t /
b -5
ol /

. \/

1 Al i1 &
M 1t
-3 |

|
-0.36 -0.34 ‘ ‘ -0.

32

1
-0.3

x1vl x1v2 m33
rm31 rm33u 37
vm33 vm35 vm
vl vm33u vm35u vm37u

-0.I28 E_]

-0.26

Figure 4. Stability diagram for x1 considered as 3-periodic. Arrows and colours as in Fig. 2.

orbits of x1 approaching the energy at which x1vl is bifurcated
(fig. 2 in PKa). Such orbits have to be counted among those that
reinforce peanut-shaped morphologies.

For the sake of completeness we have calculated the families of
S-periodic orbits as well. We do not present them here separately,
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since their edge-on morphologies can be simply described as ‘boxy’,
complicated Lissajous figures. They are found combined with any
kind of face-on morphologies presented in the tables, from x1
ellipses to rather ‘filled’ shapes (cf. for example the face-on views

of vm41u or vm43 with rm43 in Table 3).

-0.24
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Table 4. The same as Table 2, now for p.o. of multiplicity 3.

Non-xI-tree orbits

2749

family name E;” face-on end-on side-on comments
0.1 0.1 0.1
-0.363 0.05 xy/\‘ oos) % 0.05 E; = -0.362
vm31 (1st tangency of o } o o (0.046,0.049,
b2 with the b = osl / . . ~0.0007, -0.003).
-2 axis) \j ) ’
00T 505 0 005 0.1 00T 505 0 005 0.1 00T 505 0 005 0.1
0.5 T 0.5 T 0.5 T
-0.344 oas| oas| ¢ oas| 2 _
(2nd tangency of o o o E;=-0.341
vm33 b2 with the b = (0.124,-0.038,
-2 axis) 0.25 0.25 0.25 —0.001, -0.073).
%5 0% 0 025 05 %5 0% 0 025 05 %5 0% 0 025 05
E; = -0.330
(0.130, —0.229,
0.006, -0.091).
side-on view
0s similar with
_0.344 N figure §, last
(2nd tangency of row in AVSD,
vm33u b2 with the b = 0 figure 2, 3rd row
-2 axis) 0.25 and figure 5 down
%5055 H 0.25 05 %5055 0 025 05 %5055 0 025 05 IP PWG,
figure 4 last row
in VSAD, fig-
ure 21 2nd and
3rd columns in
WAM.
-0.341 o
(1st tangency of o E;=-0.333
rm31 bl withtheb=2 . (=0.091,0,0,0).
axis) 05
-06 -03 0 03 06
x1v1 and x1v2 as 3-periodic
E; = -0.305
1 . . — T (0.358,-0.187
-0.324 ’ >
(rd tangency of os| ¥ os| 0s o 01050143
) N ANY Face-on  similar
2 h th = 0 0 o ¥ X
vm35 liz ::its) the b . s M s )\ with figure 4 in
: ' ' ' PKb and with
S: By < -0.304. 105 o0 o5 1 105 0 o5 1 105 0 o5 1 figure 7, last row,
in GLA.
-0.324
(Grd ta,ngency 15 . . 15 15 .
of b2 with the Xy z vz
b = —2 axis) 075 075 075 E; =-0.307
. (0.127,-0.239,
Initiall d 0 0 0
vm35u nitially (an m m 0.087. ~0.096).
mostly) U, Small 0.75 0.75 0.75
S] and tA pags 1507 0 07 15 1507 0 07 15 1507 0 07 15
close ] J
< —0.28
s E; = -0.318
-0.322 sl W (-0.0257,0,0,0).
(2nd tangen " ’ Same with orbit
rm33 angeney © 0 in figure 4 in
bl with the b = 2
axis) 075 PKb, similar with
orbit in figure 7,

1507 0 07 15

last row, in GLA.
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Table 4 — continued

-0.322 ol
(2nd tangency of R E; =-0.317
M3 ith the b = 2 o (0.0916,0.0,0).
axis) '
1'§1.5 075 0 075 15
15 : - 15 15 T T T
-0.315
(4th tangency of orsf ors| ™ ors| V2 E; = -0.304
vm37 b2 with the b = 0 of M ol RS (0.262,0.112,
-2 axis) -0.75 075} 075 -0.012,-0.127).
Sin general' 1557 0 o075 15 155975 0 o075 15 15597 0 o075 15
15 : - 15 15 T T T
-0.315
(4th tangency of orsi ors| ors| V2 E; = -0.298
i 0.278,-0.258
37u b2 with the b = 0 of o.m ( , ,
. -2 :)I(lis) ‘ -0.75 075} m 075 —0.157,-0.096).
Uin general' 15557 0 075 15 15507 0 075 15 15507 0 075 15
Table 5. The same as Table 2, now for p.o. of multiplicity 6.
family name E;* face-on end-on side-on comments
x1mul2 as 6-periodic
07 07 o7 E; =-0.333
0.131,0.140,
-0.338 ( , ,
(ond tangency of ° 0% —0.0035,0.061).
vme3 b2 with the b = 2 ° Similar to  x1
axis) 035 035 035 quasi-periodic
07035 0 035 07 0lh7 035 6 035 07 07035 0 035 07 (};Ii?lts, figure 6 in
a.
rm21/rm22 as 6-periodic
¥ 4 ; E; =-0.24
0.173,0.105
-0.328 w = v ( , ,
(3rd tangency of ” ° o P 0.001,0.066).
vm6S b2 with the b = 2 ’ ° orE iy Similar to x1
axis) A 05 05 quasi-periodic
1 1 -1 orbits, figure 15
1 05 0 05 1 1 0.5 05 1 -1 05 0 05 1 .
in PKa.

5 MULTIPERIODIC, QUASI-, AND
NON-PERIODIC ORBITS AT HIGH ENERGIES

Bifurcations introduce complexity in a dynamical system. In our
rotating bar model, the families bifurcated from the x1 family have
more complicated morphologies than those of the x1 p.o., because
they develop asymmetries or loops. This results generally to shapes
that are less elongated than those of the x1 ellipses at the same
energy (e.g. the 3:1-type bifurcations). This is particularly the case
for the shapes of the mul-periodic orbits, whose outline become
evidently ‘rounder’ than the x1 already at energies close to the one
at which they have been bifurcated. The effect is more conspicuous
in the projections of the 3D bifurcations of x1 on the equatorial
plane.

In the particular Ferrers bar model we use in this work, the x1
characteristic and stability curves do not have a smooth evolution
at high energies. They are characterized by foldings and ‘bows’,
respectively (Skokos et al. 2002a). At any rate, the longest x1 p.o.
reaches a y &~ 4.1 value, which can be considered as an estimation
of the maximum radius of the bar we can build with the orbital
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content of this model. At high energies, the ‘round’ shapes of the x1
bifurcations, and especially those of the mul-periodic ones, spread
out beyond the extent of the x1 in the direction of the bar minor axis.
Thus they cannot be part of the bar. Since they are not elongated
along the major axis of the bar, the only way to contribute to its
density would be to build substructures within the bar. We give in
Fig. 5 typical p.o. that dominate the outer parts of the model and are
suitable for describing the situation we refer to. The black ellipse is
the x1 p.o. for E; = —0.22, close to the longest x1 in the system,
while the other three plotted are for £; = —(0.2. The rectangular-like
x1 p.o. is the x1 representative at this energy (plotted with red). It is
stable and already considerably square, so it does not help the bar to
extend to larger distances from the centre. In other models, chaotic
orbits, sticky to rectangular-like periodic ones, could support an
outer boxiness of the bar (Patsis et al. 1997). In this model such orbits
exist in a small AE; interval. In any case, this refers essentially to
the shape of the outermost x1 p.o. and not to the presence of another
orbit, let alone of a mul-periodic bifurcation. The rhomboidal, green
p-o., typical at the 4:1 resonance of rotating galactic models, could
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Figure 5. Typical periodic orbits at the outer parts of the model. In black
we give one of the longest x1 p.o. at E; = —0.22, while the three others (red,
blue, and green) are at E; = —0.2. The blue, 3-periodic orbits is typical of
the shape of mul-periodic orbits we encounter at high energies. Only the x1
p.o. can be considered as bar-supporting.

be associated only with inner rings or perhaps lenses. The blue,
3-periodic orbit at the same energy, could only contribute to the
enhancement of a disc surrounding the bar. Evidently, such orbits
could not be used as a basis for supporting thick bar structures
either. For this reason we do not proceed to a detailed presentation
of orbits that are obtained when the radial bifurcations of x1 at high
E; are vertically perturbed.

As regards the 3D families of the x1-tree, which support the
bar, they provide building blocks that stay closer and closer to the
equatorial plane as energy increases (Patsis et al. 2002b). They are
organized in blocks belonging to stable x1vn families that reach a
maximum radius, Ry.x, on the equatorial plane, beyond which only
the height of their individual orbits increases. This maximum radius
can be considered as a maximum distance within which these orbits
can support the bar. In this way the edge-on view forms a profile
with the outline of a staircase (we refer to it as a ‘stair-type’ profile)
and in which the larger the n of the parent x1vn family, the more
vertically thin, within Ry, the building block will be (cf figs 11-19
in Patsis et al. 2002b). The shapes of their radial bifurcated orbits
become ‘rounder’ as E; increases, as already noted for the orbits
radially bifurcated from x1. However, apart from the round shapes
that render them as non-bar supporting, the radial bifurcations of
the x1vn families in the model have parts of their characteristic that
extend towards the centre of the system, bringing members of these
families to the central regions. However, none of the encountered
morphologies had the dimensions to characterize a face-on or edge-
on profile.

As the energy increases, the structure of the phase space of a
rotating 3D bar becomes increasingly complex, since the number of
existing families of p.o. increases and their stability varies. Chaos
increases not only because the volume of the chaotic seas becomes
larger, but also because small deviations from the initial conditions
of an orbit may bring it on different zones of influence of the
numerous p.o. existing at the same energy. In other words the
shape of a structure that will be possibly supported is sensitive
to the perturbation that we apply. This dependence is clearly non-
monotonic. It is technically not easily workable to isolate these
zones of influence around the p.o. in the 4D space of section of a
3D system. While we have a fair understanding of the contribution
of the 3D families of the x1 tree to the backbone of 3D bars (Patsis
et al. 2002b) and knowledge of the contribution of quasi- and
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non-periodic orbits at the ILR regions of the models (Katsanikas,
Patsis & Contopoulos 2013; PKa; PKb), less work has been done
in assessing the role of 3D quasi- and non-periodic orbits around
the planar x1 orbits (Chaves-Velasquez et al. 2017). Here we give
in Fig. 6 an example that delineates how a vertically perturbed x1
orbit close to the end of the bar could contribute to the edge-on
profile of our model. We consider the x1 orbit at E; = —0.22,
which we see in Fig. 5 and we start increasing p,. The face-on
view of the orbit when perturbed by p, = 0.1 fills a thick ring
(Fig. 6a), similar to quasi-periodic orbits obtained when the orbit is
perturbed radially. The orbit is on a torus, i.e. viewed edge-on, it has
effectively rectangular-like edge-on projections that can be vaguely
described as complicated Lissajous figures reaching a height about
0.4 above the equatorial plane. Similar edge-on profiles are obtained
for smaller perturbations as well, however the height they reach is
much smaller. In Fig. 6(b) we give the face-on projection of the
x1 orbit perturbed by p, = 0.05, which is almost identical to the
planar x1 orbit. However, its side-on view given in Fig. 6(c) is
again rectangular like. The orbits have been integrated for seven x1
periods. We did not find at large energies any simple mul-periodic
edge-on morphology like those encountered in the central parts of
the model and described in the tables.

By increasing the vertical perturbations even more, we do
not necessarily enter a chaotic sea. Moving along a direction in
phase space we may reach tori of another family. By reaching a
perturbation p, = 0.2 of the x1 orbit of Fig. 5, i.e. by applying a
larger vertical perturbation than in the case of the orbits of Fig. 6, we

MNRAS 490, 2740-2759 (2019)

€20z Ae gz uo Jesn O1SI - SUND Ad 0650255/0722/2/067/2101E/SEIUW/ WO dNO"0ILBPEDE//:SARY WO papeojumoq



2752 P A. Patsis and E. Athanassoula

Figure 7. The side-on projection of a x1 orbit at E; = —0.22, perturbed by
p- = 0.2 that reaches a x1v4 torus. The black horizontal line, indicates the
length of x1 at the same energy.

reach a quasi-periodic orbit around x1v4, which for E; = —0.22 is
stable in our model. Such orbits, if populated, will support a peanut
shaped thick bar in which the thick part is almost the bar itself and
not part of it as we can observe in Fig. 7 (see also fig. 1c in Patsis
etal. 2002b). In principle, in our model we can find edge-on profiles
that are determined by simple periodic orbits of the x1 tree at high
energies. However, mul-periodic, vertical, 3D bifurcations of the
x1vn families with n > 3, are rather insignificant. In most cases
they exist only in narrow AE; intervals and their characteristics
fall again on the characteristic of the parent family. Thus, at high
energies the profiles that dominate are mainly those of complicated
Lissajous figures or one of the known shapes of the simple-periodic
orbits of the x1-tree.

We conclude that the role of mul-periodic orbits is reduced as
energy increases. Practically, the shapes of the most important mul-
periodic orbits can play a role only in the thick part of the bar, which
in the case we study here, as in most cases of barred galaxy models,
ends between 0.3 and 0.7 times the length of the bar (e.g. fig. 11 in
Athanassoula et al. 2015).

The reader interested in the comparison of the orbital shapes
published in the papers mentioned in the very beginning of the
introduction with the morphology of the periodic orbits presented
in the tables may proceed at this point to Appendix A. In the next
section, we discuss the main results of our study.

6 DISCUSSION AND CONCLUSIONS

We studied here the origin of morphologies appearing in the
projections of orbits of multiplicity higher than one and which are
not trapped in the immediate neighbourhood of the x1 family or of
the families of the x1 tree. We investigated the possibility of having
bars built with orbits that deviate considerably from elliptical-like
morphologies. Our study was motivated by the existence of such
orbits, mentioned lately in a number of papers about the orbital
content of 3D galactic bars.

This work is mainly comparative and aims to the understanding of
the origin of such orbits and of their shapes, a study sorely missing
from all papers presenting and discussing their morphologies. The
vast majority of the orbits found in published papers are quasi-
or non-periodic. Thus, they can be either trapped on invariant tori
around a stable periodic orbit, or they will be diffusing in a chaotic
sea. A kind of intermediate situation are the sticky chaotic orbits
(see e.g. Contopoulos & Harsoula 2008), in which an ultimately
chaotic orbit behaves for arelatively long time as regular, supporting
a particular structure. Below, we summarize the basic subjects
discussed through our paper and the corresponding main results
we reached in each case.

MNRAS 490, 2740-2759 (2019)

6.1 3D Quasi- and non-periodic orbits may combine in their
three projections morphologies from projections of different
families of p.o.

The morphology of a 3D orbit exhibits in its three projections in
general patterns that have been introduced in radial or vertical
resonances, at lower energies than the energy of the orbit. This
can happen in two ways. First, when a 3D family is bifurcated
from a parent one as Ej increases, it may retain either the edge-
on or the face-on morphology of the parent family, depending on
whether the radial or the vertical stability index reaches a b =
+2 axis, respectively. A new family will have in its projections a
combination of old and new features. Secondly, at a certain Ej, if
we start perturbing the initial conditions of a periodic orbit in phase
space we will approach those of another p.o. family. By doing so, we
observe a smooth, gradual transition from a certain morphology of a
quasi- or non-periodic orbit to another morphology. The navigation
in the 4D space of section of an autonomous Hamiltonian system
has several practical complications. Nevertheless, an example of
the smooth variation of the morphology of the orbits as we depart
from the initial conditions of a periodic one has been given in
PKa. Moving along the p, direction from x1 towards x1v2, the
3D quasi-periodic orbits of the stable x1 orbit start resembling in
their side-on profiles the unstable x1v2 orbit. When we cross the
last invariant torus around x1 and we enter the 4D chaotic sea, the
unstable manifold of the x1v2 leads us around the x1v1 tori and
then the side-on projections of the orbits exhibit hybrid x1v1-x1v2
morphologies (see fig. 12 in Katsanikas et al. 2013, and fig. 13 in
PKa). Such morphological transformations are typical as one moves
in the phase space, although we have not yet established rules to
predict them. For the needs of this paper, we keep in mind that
the individual morphological patterns presented in the columns of
Tables 2—5 can be encountered also combined in the projections of
quasi- and non-periodic orbits in several models.

6.2 About the information included in the tables with the
mul-periodic orbits

Since the detailed discussion of all families bifurcating from the
x1-tree and of their evolution would be impractical, we presented
the main orbital patterns summarized in tables. In these tables, we
refer to the origin of the various morphological patterns published
in several papers. A secure conclusion is that they have their origin
in the second type bifurcations of x1. The best way of presenting
how they are linked to x1 is to find the tangencies (or intersections)
of the stability curves of x1 with the » = 2 and b = —2 axes when
it is considered mul-periodic. Since x1 is almost everywhere stable,
at the tangencies, there are always bifurcated pairs of one initially
stable and one initially unstable family. Because of the symmetries
in our model, these orbits have also symmetric counterparts with
respect to axes of the system. These ‘twin’ orbits share the same
stability curves. In practice, the p.o. presented in the tables of this
paper, together with the orbits of the x1-tree in Patsis et al. (2002b),
can be considered as the basis for most orbital patterns expected to
exist in many standard 3D N-body barred galaxy models.

6.3 Where do we find each orbital morphology on the spaces
of section?

By comparing the shapes of the orbits in our tables with the
structures of the published orbits in the models, it is obvious that not
all orbital patterns are encountered with the same frequency. This
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may be due to the fact that the second type bifurcations we study,
occupy parts of the stability islands centred on the x1 p.o., as we
can realize in the 2D case of orbits on the equatorial plane (see e.g.
Fig. 1b). Suchislands have always central parts with invariant curves
belonging to quasi-periodic orbits morphologically influenced by
the shape of the central p.o. In the case of x1, they are elliptical-
like. Then, at larger distances from the centre of the island, we have,
as expected, a ring of smaller islands surrounding the central part.
In the case described in Fig. 1(b) the region of this ring is under the
rm21/rm22 and rm21u/rm22u morphological influence. The area of
phase space where the initial conditions of a quasi- or non-periodic
orbit with a given morphology will be located is determined by the
degree of perturbation of the p.o.

In 3D cases it is more difficult to isolate the areas of morpholog-
ical influence. It is characteristic that in all cited studies the frown-
smiles and ‘oo’-like profiles are included [in AVSD fig. 6, third row;
Chaves-Velasquez et al. (2017) fig. 9, b4, fig. 10, b2 and b3; GLA
all orbits in fig. 7; PKa especially figs 11 and 15; PWG fig. 2, panels
E and F; VSAD fig. 4, 4th and 5th rows; WAM fig. 5). Both x1v1
and x1v2 side-on profiles are the smoking gun of the existence of
the vILR in the system, being introduced together at this resonance.
Recently, Patsis & Harsoula (2018) have shown that it is the presence
of the VILR that offers building blocks for the peanuts and as such
can serve either regular or sticky chaotic orbits. Thus, the presence
of the resonance is more important than the stability of the orbits.
In PKa and in Patsis & Harsoula (2018), it is shown that the shapes
of several 3D quasi-periodic orbits around x1 have a morphology
similar to that of the unstable one of the x1v1, x1v2 pair. Thus, in
general, in the presence of a VILR resonance in a system, in order to
find initial conditions of orbits that do not follow frown-smiles-like,
or oo-like trajectories in their side-on projections (at least during
an important time interval), we have to avoid considering initial
conditions in the regions of phase space, which are influenced by
these three families. For this purpose, and as indicated by the figures
in Katsanikas et al. (2013), PKa, and Patsis & Harsoula (2018),
we have to stay away from large volumes of phase-space around
the main families of periodic orbits encountered beyond the vILR
energy (in models that experience this resonance).

6.4 Limits in the AE; influence of a family, imposed by the
evolution of its characteristic curve

An ultimate limit of the extent of a family is put by its maximum
E; value beyond which the family does not exist. In such cases
the characteristic of the family reaches a maximum E; and then
turns towards smaller E; values. The most straightforward example
one can bring is the x1 family itself in the case of type II gaps
at the radial 4:1 resonance (Contopoulos 1988). In such a case,
following the characteristic curve, we find that, as E; increases,
the x value first increases to reach a maximum x, value and then
decreases until amaximum £ value. At this point it turns backwards
towards smaller E; values and towards the centre of the system
(see e.g. fig. 1 in Skokos et al. 2002a). Such regressions of the
characteristic are especially important for the dynamics of slowly
rotating bars (Skokos et al. 2002b; Tsigaridi & Patsis 2015). They
are typical in the evolution of the families we presented in the tables.
As an example we present in Fig. 8 the evolution of the stability
indices of the vm33u family (red curves), after bifurcating from
x1 considered 3-periodic (black curves). The morphology of this
family is encountered in works by AVSD, PWG, VSAD, and WAM.
In this case E,, ~ —0.265. This evolution of the characteristic
is common among the mul-periodic orbits we found. One could
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Figure 8. The evolution of the stability indices of the vm33u family (red
curves), bifurcating from those of x1 at E; ~ —0.344. After reaching a
maximum Ejthe vm33u family continues towards smaller energies.
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Figure 9. Seven vm33u periodic orbits at energies —0.34 < E; < —0.28. In
(a) we consider orbits belonging to one branch of the family, while in (b) we
consider orbits from both branches symmetric with respect to the equatorial
plane. In (b) we observe the appearance of two X features simultaneously.

conclude that the backward evolving branch of the characteristic
will bring more representatives of the family in the phase space at
lower energies and thus its role in influencing larger areas of the
phase space would be more important.

6.5 Different families of p.o. offer different sizes of peanut
building blocks

In the case of the peanut structure, apart from the evolution of the
characteristic of a family, there is also another property that has to
be taken into account when its orbits are used as a building block
for it. It is the length along the bar’s major axis within which this
family can support the peanut and in general the size of the peanut
it could support.

As we have seen in Patsis et al. (2002b), the morphological
evolution of the orbits of the family reaches a yy.x distance, beyond
which the orbits grow practically only in the z direction. For building
side-on profiles by using the orbits of the x1-tree in 3D Ferrers bars
this is an advantage, since it restricts the extent of the peanut to a
fraction of the bar length of the order of half the distance to the
end of the x1 bar, which is a desired property. For our model this
does not hold in the case of the mul-periodic orbits that can be used
as alternative solutions for the orbital content of the peanuts. We
use again the orbits of the vm33u family to show this. In Fig. 9
we plot together the side-on projections of seven periodic orbits of
the vm33u family at energies £, = —0.34 to —0.28, all of which
are simple (vertical) unstable. In (a) we use orbits of one branch of
the family, while in (b) we consider both its branches, symmetric
to the equatorial plane. Ignoring the fact that these periodic orbits
in our model are unstable, so that only sticky-chaotic orbits could
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Figure 10. Structures that are formed in side-on projections, when we
consider pairs of orbits, symmetric with respect to the equatorial plane. (a)
The profile formed by the r_tvl family (Table 2). (b) A profile formed
by a pair of symmetric, quasi-periodic orbits trapped around a stable
representative of vm35u (Table 4).

possibly be used to populate a peanut structure, we observe that
already at E; = —0.28, the orbits contribute in growing a profile
faster in the z- than in the y -direction. By including more orbits
at larger energies, or orbits from the branch of the characteristic
that goes backwards, towards the centre3 of the system, we make
the Zmax/Ymax ratio even larger as the projection of the orbits on the
y-axis shrinks. We remind that the longest x1, bar supporting orbit
reaches a 4.1 kpc distance along the major axis, and that the (E},y)
coordinates of the L; Lagrangian point are (—0.197, 6.2). Thus,
these orbits can support only features embedded in a boxy bulge
in the central parts of the model. At any rate, the profile of the
overlapping p.o. in (b) supports an overall boxy morphology, which
harbours simultaneously two kinds of X-features; one with branches
passing through the centre of the system (‘CX’ in the terminology
of Bureau et al. 2006) and another one with wings extending in a
direction vertical to the y-axis (characterized as ‘OX’ by Bureau
et al. 2006). In galaxies, there are not known cases in which the two
types of X coexist. Also the almost vertical orientation of the wings
of the X is rather atypical. However, the stability and the extent of
the vm33u family in our model does not allow us to investigate the
dynamical mechanisms under which the appearance of just one of
the X’s could prevail in profiles built by this family.

6.6 The importance of combining symmetric branches of
orbits and groups of orbits in a family for modelling
morphological features

At a given energy, as we move from the centre of the main island
of a simple-periodic orbit to its borders, we find in the surfaces of
section groups of smaller and smaller islands. Since our model is
3D, these groups of islands are invariant tori belonging to the mul-
periodic orbits described in our tables (see figs 14—17 in Katsanikas
et al. 2011b). The existence of the mul-periodic orbits creates in
phase space a zone of morphological influence, because these p.o.
co-exist together with their symmetric, ‘twin’, orbits, and their
unstable counterparts. Symmetry, often helps in building orbital
structures. Both ‘frowns’ and ‘smiles’ are needed to build the peanut
by means of x1v1 and x1v1" orbits. The plethora of orbits one can
find in rotating triaxial systems offers a lot of examples of such
pairs. In Fig. 10 we give two of them. In (a) we plot the side-on
view of the r_tv1 p.o. (see Table 2) together with its z —symmetric
one, while in (b) we give a quasi-periodic orbit, together with its
symmetric with respect to the equatorial plane, trapped around a
stable representative of the vm35u family (Table 4) at E,=—0.279,
which has initial conditions (—0.0229, —0.4088, 0.2086, 0.0865).
The patterns formed in these profiles are promising for supporting
an X feature. Nevertheless, in order to decide about the effectiveness
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of a family in building a structure, one needs to consider successive
representatives of it and see if the feature to be modelled appears
in such composite profiles. The most common example associated
with the boxy bulges that describes the effect is the way the frown-
smile simple-periodic x1v1 orbits support the X structure in them.
It is not the wings of the frown-smile x1v1 orbits that support it,
but the fact that their apocentres are aligned along rays, which are
eventually the branches of the X (see fig. 19a in Patsis et al. 2002b,
and especially fig. 11 in PKa). The rays are a structure that appears
in the composite profiles and not a morphological feature of the
individual periodic orbits. Effects appearing in the orbital profiles
after combining orbits from symmetric branches of a family, or after
combining successive members of a family in an energy range, i.e.
building composite profiles as in Patsis et al. (2002b), should be
used as a criterion for qualifying or excluding this family from
being considered as a building block for a specific morphological
feature.

6.7 Side-on and face-on boxiness

None of the individual face-on orbital patterns of the mul-periodic
orbits is observed in real galaxies or in density maps of N-body
simulations snapshots. For example, despite the fact that the rm21
orbits are found in all models in the orbital studies we cite, their
morphology does not appear in any galactic bar. However, when
both y-symmetric orbits are taken into account a box is formed
(Fig. 3). This is in agreement with the findings in PKb for the
orbits in the VILR region that are responsible for the inner boxiness
and with the conclusions of Chaves-Velasquez et al. (2017) for
orbits encountered at all E; along their characteristics. Boxiness in
general is associated with quasi-periodic and sticky chaotic orbits
close to the borders of the x1 stability islands. This is exactly the
region where we find mul-periodic orbits. We have to note that
the possibility of the appearance of a morphological feature when
sticky-chaotic orbits are integrated for long time cannot be a priori
excluded. In PKb, in Tsigaridi & Patsis (2015) and in Chaves-
Velasquez et al. (2017) such orbits are proposed for explaining the
face-on X features that appears in some galactic bars. In this paper
this happens e.g. with the orbits in Figs A1(b) and (c) (considering
also their y-symmetric counterparts) if integrated for long enough.
However, since we did not find another similar case, based on
families with n > 2, in order to decide about the generality of
this dynamical mechanism, a model-dependent systematic study is
needed.

For the edge-on profiles, We observe that the larger the multi-
plicity, the more boxy the side-on view of the family is. The same
holds for the E; at which a family is introduced in the system for
all families of a certain multiplicity. The larger the E, at which
it is bifurcated from x1 the mul-periodic family, the more boxy
is its side-on view. This is the reason why we stopped giving the
profiles of more orbits bifurcated from x1, as the stability curves
of this family vary (Figs 2 and 4). In general, for p.o. of high
multiplicity, and for those bifurcated at large E;, morphologies can
be simply characterized as complicated Lissajous patterns and an
overall boxiness is the only feature of their morphology.

6.8 The complexity of the structure of phase space increases as
we approach corotation

The morphology of an orbit at a given energy depends on the
families of resonant periodic orbits that exist at that energy, on
their stability that will determine the phase space structure at their
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neighbourhood (see Katsanikas & Patsis 2011; Katsanikas, Patsis &
Contopoulos 2011a; Katsanikas et al. 2013), as well as on the
location of the initial conditions of the orbit in phase space. With
increasing energy, i.e. moving from the centre towards corotation,
we reach progressively more radial and vertical resonances, so new
families are introduced in the system and thus the structure of phase
space becomes more complex. Orbits with initial conditions that are
close to each other will probably follow totally different trajectories.
This is an expression of the presence of chaos close to corotation,
as in 2D systems (Contopoulos 1981). This hinders the growing of
structures like bars at this region.

6.9 The mul-periodic orbits are more important at the central
parts of the bars

The mul-periodic orbits we consider as building blocks of the orbital
patterns encountered in the papers we cite, are bifurcated at low
energies. Thus they are important for the inner morphology of
the bars, at distances from the centre up to half the length of the
semimajor axis. Most orbits given in our Tables have sizes that in
our model would contribute only in the central parts of the bars. For
example, orbits with simple shapes like those of the vm31 family,*
if populated, would be found, in most models, embedded in the
central parts of the galaxies, not being able to affect the overall
morphology of a bar, neither face- nor edge-on. This is probably
the reason that this family is not traced in other papers, despite
its promising shape, especially if both z-symmetric branches are
considered.

6.10 mul-periodic bifurcations at high energies

We find that mul-periodic bifurcations of x1- and x1-tree families
at high energies, as well as the planar families beyond the 4:1
resonance gap and its bifurcations at those energies, are in general
not bar-supporting. They correspond to regions of the bar beyond
its inner thick part, or beyond the end of the bar altogether. Their
morphological evolution as E; increases is towards rounder shapes
than the elliptical projections of the x1-tree orbits on the equatorial
plane.

As a further, albeit less strong, obstacle for higher multiplicity
p-o. to determine morphological profiles, is that higher multiplicity
families have longer periods and thus would need longer times
to impose their individual morphologies in all three projections.
Indeed, one can intuitively understand this by considering that
exactly at the bifurcating point the representatives of the mother
and child families are morphologically identical, while the period
of the ‘mother’ is 7 and the period of the ‘child’ is mulT. As E;
increases both 7 and mulT increase. As an example we give in
Table 6 the periods of x1 and rm21 p.o. in the interval —0.331 <
E; < —0.312, in which rm21 exists in our model. Despite the fact
that the T(rm21)/T(x1) ratio decreases with the energy, it is always
larger than one.

4The edge-on views of this family resemble a shape encountered already in
orbits found in triaxial systems, called ‘pretzel’ by Merritt & Valluri (1999,
see their fig. 4). We do not give to it any name here, to avoid confusion,
since a similar term is used by PWG for the side-on shape we find in our
vm33u orbits.
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Table 6. The periods of x1 and rm21 families in the interval —0.331 < E;
< —0.312. We have always T(x1) < T(rm21).

Ey -0331 -033 -0325 -032 -0315 -0.312
T(x1) 23.1 23.8 26.8 29.8 32.7 34.5
T(rm21) 46.2 46.8 49.3 51.5 53.5 54.3

6.11 Model-dependence of the orbits and their role for
supporting specific structures

The orbits we are presenting are not a special class of orbits existing
in our specific model or in rotating Ferrers bars. The orbits, each one
with its own characteristic morphology, are linked to the radial and
vertical resonances of any rotating, triaxial potential in autonomous
Hamiltonian systems. Thus, the patterns we observe in the tables
of this paper, as well as those of the 1-periodic orbits in Skokos
et al. (2002a), have been encountered in several different models
that may include a Ferrers bar or not. Thus, they are expected to
exist also in models with a peanut-shaped bar. In this case their
relative importance for reproducing a peanut morphology should be
estimated by means of Schwarzschild-type, self-consistent models.
Alternatively, one can use an N-body snapshot from which we can
obtain the potential and forces, as well as all the individual orbits
that constitute it. We will follow this latter alternative in future
papers.

6.12 The role of chaotic orbits

We note that in many cases of orbits, the morphological patterns
encountered in orbital analyses correspond to families that are
mainly wunstable. This can happen either because these families
are unstable over large AE; intervals, or even because they are
introduced as unstable and remain unstable as E; varies (see e.g.
the example described by Patsis & Harsoula 2018). If such families
prevail in realistic models indeed, then either the role of sticky
chaotic orbits in building the bars (PKa,b) is much more pronounced
than appreciated until now, or we have mass distributions, where the
stability of the main families is different than in the known, analytic
models.

The main point of this paper was to indicate the origin of mul-
periodic orbits and discuss the obstacles they have to overcome in
order to become important for the overall morphology of galactic
bars. We also compared their morphology with orbital patterns
found and presented in several relevant works. In the subsequent
papers of this series, we will investigate the relative contribution of
the orbits presented here in shaping the morphology of specific 3D
N-body bars.
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APPENDIX A: QUASI- AND NON-PERIODIC
ORBITS

In Sections 3 and 4 we have indicated the origin of the main 2-
, 3-, 4-, 5-, and 6-periodic bifurcations of the planar x1 family,
while in Section 5 we examined the role of mul-periodic orbits
with large energies in determining the structure of the bar. The
structure of these orbits has to be compared with the morphology
of orbits encountered in the relevant literature, which are clearly
not periodic (or at least not mul-periodic with a small mul). The
peanut-supporting orbits depicted in the papers we mentioned in
the introduction, point either to quasi-periodic, or to sticky-chaotic
orbits behaving like regular for a reasonably long time.

Periodic orbits are mathematical objects and can be considered
as the backbone of the phase space in a system. However, in order
to follow orbits that are more frequently found in realistic barred
galaxy potentials, those of real galaxies, or of simulated ones, one
has to integrate initial conditions away from those that exactly
correspond to a periodic one. The periodic orbits structure the phase
space and their presence influences the morphology of other quasi-
or non-periodic orbits at the same energy. In 2D models for galactic
bars we have described this already in Patsis et al. (1997) for orbits
that support the outer boxiness of the bars. The orbital patterns
we had found in that paper were hybrid morphologies of existing
periodic orbits, which can be stable or unstable.

One can get a fair impression of the possible morphologies that
can be supported at a given energy by simply integrating directly
a number of initial conditions on a dense grid imposed on a 2D
surface of section. This gave useful results in a number of studies
(see e.g. Patsis et al. 2010; Tsigaridi & Patsis 2015). Unfortunately,
and contrary to 2D models, in 3D systems, starting perturbing planar
orbits for example in (x, p,) surfaces of section, can only reveal a
subset of the morphologies that can be encountered. The Poincaré
surfaces of section are 4D and so, the initial conditions of a single
p-o. are subject to perturbations in four directions. Constructing a
dense 4D grid will lead to a huge amount of data and this is not
easily manageable.

The information we get by inspecting a 2D surface of section
in a 2D model is not available in the 4D surfaces of section
in 3D autonomous Hamiltonian systems. It is not only that we
cannot directly classify as regular or chaotic an orbit by simple
inspection of the location of its initial condition on the surface of
section, but it is mainly the inability to trace the relative location
of the stability islands around a stable p.o. in the chaotic seas,
in which they are embedded. Thus, it is difficult to delimit zones
of morphological influence of a p.o. in phase space. Although we
could visualize 4D invariant tori of stable p.o. (Patsis & Zachilas
1994; Katsanikas & Patsis 2011) and in some cases the manifolds
associated with unstable p.o. (Katsanikas et al. 2011a; Katsanikas
et al. 2013) in the 4D spaces of section, we could only in few
specific cases navigate ourselves in regions of the 4D space, where
several islands of periodic orbits co-exist (Katsanikas et al. 2013;
PKa; KPP). Nevertheless, in the present study we disturbed a
large number of characteristic planar and 3D mul-periodic orbits
and we succeeded in finding quasi- and non-periodic orbits with
morphologies pointing to structures that could be related to the
peanut or X-shaped structures (e.g. frown-smile shapes), which we
encounter in 3D bars.

Even though perturbing p.o. in a non-systematic way does not
provide all the information that a systematic search would, it can
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Figure A1. Three 3D orbits that have in their face-on projection an rm21-
like morphology. This is combined in (a) with a boxy side-on view, in (b)
with a x1v2-like, and in (¢) with a x1v1-like one.

still be most useful. The first thing that one can estimate is the
easiness or difficulty with which some patterns appear in the three
projections of orbits in different models. As expected, the patterns
that one encounters easier are associated with the presence of 1-
periodic orbits, since the latter are found in the centres of stability
islands that occupy large volumes in the phase space. In barred
galaxy models these orbits are the x1 family and its 1-periodic 3D
bifurcations that build the x1-tree (Skokos et al. 2002a), which have
elliptical shapes in the (x, y) plane. Three-dimensional, non-periodic
orbits with elliptical projections on the equatorial plane can be found
either by perturbing quasi-periodic orbits corresponding to invariant
curves close to x1 in (x, p,) surface of section, or by perturbing one
or more of the four initial conditions of the 3D orbits belonging to
the families of the x1 tree (x1v1, x1v2, etc.). Independently of their
origin and their regular or sticky-chaotic character, the supported
elliptical morphologies on the equatorial plane are almost identical
and are ubiquitous in papers about orbits in barred galaxy models
(e.g. the orbits in fig. 6, third row in AVSD; the orbits in fig. 3, first
row and the orbits in fig. 10 in Chaves-Velasquez et al. (2017); the
orbits in figs 6, first row and fig. 7, first and second rows, in GLA;
the orbits in figs 3 and 4 in KPP; the orbit in fig. 15 in PKa; the
orbits in fig. 1, three first rows, in fig. 3, first row, right, and fig. 4,
fouth and fifth row in VSAD; the orbits in figs 10 and 11 in WM-D,
etc.). In order to avoid elliptical shapes in the (x, y) projections of
the orbits, one has to deviate more from the initial conditions of
the x1- or x1-tree orbits and consider orbits close to the edges of
the stability islands (both at their ‘regular’ and their ‘chaotic’ side).
This can lead to single (only in one projection), or double (both in
their face-on and edge-on views) boxiness of orbits of galactic bars
(Chaves-Velasquez et al. 2017) and can be particularly important
for the structure of the peanuts when we consider orbits in the VILR
resonance region (PKb).

Depending on the various resonant families that exist at a given
energy, the face-on view of a quasi- or non-periodic orbit can be
combined with different side-on projections. We give as an example
three 3D orbits with face-on views pointing directly to the planar
rm21 family (Fig. Al). As we already commented, the frequency
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with which the rm21 morphology appears in orbits presented in the
orbital studies of rotating barred potentials is large (see Section 2.2
above). This is due to the fact that it exists in considerable energy
ranges in the models, close to the VILR region, and its stability
islands, together with those of rm22, always surround the very
central invariant curves around x1, forming a zone of morphological
influence in this area (see e.g. Fig. 1). By inspecting of surfaces of
section like the one in Fig. 1, we realize e.g. that orbits with a
|Ap, £ 0.1] from the periodic orbit, enter the zone of influence of
the rm21 and rm22 families. This can easily happen if the dispersion
of velocity is locally slightly increased in a model. In other cases
of stronger bars, there is also a sticky zone with orbits of similar to
rm21, rm22 and rm21u, rm22u morphologies around the x1 stability
island (a characteristic case is given in fig. 1 in PKb).

By perturbing these regular and/or sticky chaotic orbits in the
vertical direction we reach orbits that retain until a certain value of
the perturbation the rm21 face-on morphology. However, they differ
between them in their edge-on projections. The latter depend on the
location of the z, p, initial conditions in the 4D space of section,
which we use. It is difficult to predict a priori how the morphology
of quasi-periodic orbits, or of orbits on manifolds, changes as we
move along a certain direction in phase space. Until now it has been
described only in particular cases, such as the case of the x1, x1v1,
and x1v2 orbits in Katsanikas et al. (2013) and in PKb. In general
we could say that the morphology is influenced by the proximity
of the initial conditions of an orbit to those of other periodic orbits
at the same energy. The orbits in Fig. Al are integrated for a few
rm21 periods and have in (a) £;=—0.32396 with initial conditions
(0475, 0, 0, 0.05), in (b) E; = —0.3268 and (0.385, 0.06, 0, 0) and
in (¢) E; = —0.3268 and (0.3, 0.14, —0.02, 0.03). We can clearly
see the similarity of their (x, y) projections with the orbits of the
rm21 family, while the side-on views are different. The side-on view
of the orbit in Fig. Al(a) can be characterized just ‘boxy’ already
just after three rm21 orbital periods, while those of Figs Al(b)
and (c) are similar for example with those in fig. 7, fourth row
and fig. 7, third row in GLA, respectively. They have a x1v2-like
(Fig. A1b) and a x1v1-like (Fig. Alc) side-on morphology. Also in
WAM (fig. 5, second and third column) we encounter orbits with
similar combinations of face- and side-on profiles as in Figs A1(b)
and (c). We can find more edge-on profiles combined with rm21
face-on morphologies, if we consider also quasi- and non-periodic
orbits associated with its 3D bifurcations, as e.g. the rm21_vm4 orbit
given in Table 2 or the orbit in fig. 2 in Katsanikas et al. (2011b).

In reverse, basing ourselves on the edge-on views, at energies
larger than those of the VILR region, the 3D orbits that have side-
on profiles pointing to the x1v1 and x1v2 families are ubiquitous.
Besides the quasi-periodic orbits of these two families (with ellip-
tical or boxy face-on projections) and their associated sticky orbits,
frown-smiles and ‘co’-like edge-on profiles can be found combined
with various face-on morphologies. The morphology of the planar
unstable families rm21u and rm222u, bifurcated together with rm21
and rm22, can also support the known profiles of the vertical
families bifurcated at the vILR. Examples are given in Fig. A2.
In (a) we have an orbit with an rm21u-like face-on morphology
with E; = —0.32281, and initial conditions (0.266, 0.24, 0, 0), in
(b) a rm21u-like orbit with —0.318 (—0.026, 0.3, 0, 0), and in (c) a
rm22u-like orbit with —0.3268, (0.168, 0.07, 0.12, 0), respectively
(the rm21u and rm22u families have the same morphology, and
symmetric with respect to the x-axis). The combination of face-
on and side-on views of the orbit in Fig. A2(b) is encountered
also in fig. 7, fifth row in GLA, while different side-on views in
combination with an rm21u-like face-on morphology are found in

MNRAS 490, 2740-2759 (2019)
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Figure A2. Face-on rm21u and rm22u morphologies combined with side-
on x1vl-like (a) and (b), and x1v2-like shapes (c).
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Figure A3. Three profiles of 3D orbits with vm33u-like side-on views,
but with considerably different face-on views. The energies of the orbits
increase from —0.333 (a), to —0.31 (b), and to —0.28 (c¢). We observe that
the Zmax/Ymax ratio increases with the energy.

orbits mentioned at the last column of the rm21u entry in Table 2.
The rm21u and rm22u are the unstable p.o. we find between the
rm21 and rm22 stability islands (Fig. 1). Thus, their morphology is
also a common one.

Besides the x1v1 and x1v2 edge-on profiles, the next common
morphology that is encountered in the various models, is a boxy one,
with sharply defined edges, but without a particular morphology
inside the box. The mechanism that favours the appearance of such
a structure, instead of a particular edge-on shape, is presented in
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Figure A4. An orbit with initial conditions on an rm21 stability island
perturbed in the vertical direction, at E; = —0.3268.
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Figure AS. Three examples of 3D orbits reproducing the side-on profile of
the unstable family x1mul2u (vm21u). In (a) and (c) they are for energies
—0.333 and —0.33307, while in (b) for —0.325.
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Figure A6. Two examples of 3D orbits with similar lengths along the x and
y axes. They are typical in bar orbital studies and may contribute in building
the bar central parts.

PKb and in Chaves-Velasquez et al. (2017). Apart from the cases
that are presented in these two papers, many examples of boxy orbits
can be found in the relevant literature, as e.g. in AVSD (fig. 6, first
and fourth row), Deibel et al. (2011) (fig. 11), GLA (fig. 6, two last
rows), VSAD (all orbits in fig. 1 and the orbits in fig. 4, three first
rows), WAM (fig. 21, first and last columns).

Coming to discuss the side-on profiles in Fig. A3, we need to
specifically mention the side-on profiles given in fig. 2 in PWG.
While the orbits in panels E and F of their fig. 2 point to sticky
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chaotic and quasi-periodic, x1v1-like morphologies, respectively
(with any kind of face-on projection they may be combined), those
in panels A to D are almost absent from the rest of the orbital studies
we cite. An exception is the profile in panel C, emphasized in their
fig. 5 bottom, which appears also in fig. 6, last row in AVSD, in
fig. 4, last row in VSAD and in fig. 21 (second and third columns)
in WAM. The side-on morphology of all these orbits points directly
to vm33u, the unstable, 3-periodic vertical bifurcation of x1 at its
second tangency with the b = —2 axis, when it is also considered
to be 3-periodic (see Table 4). Three non-periodic orbits that retain
the side-on vm33u morphology are given in Fig. A3. The orbits are
vertically unstable (the vertical index b2 = —5.3 at E; = —0.29), so
the depicted side-on structure is preserved only when small radial
deviations from the initial conditions of the p.o. are applied. In
Fig. A3(a) we have E; = —0.333 and (0.2, 0.203, 0.02, —0.082).
In Fig. A3(b) we have respectively —0.31 and (0.15, 0.398, 0.0182,
—0.137), which are the initial conditions of the periodic orbit at the
same energy, differing only by Axy =0.0074. The orbit is integrated
for about three orbital periods of the periodic orbit. By continuing
the integration for two more periods, the morphology becomes boxy.
In Fig. A3(c), E; = —0.28 and the initial conditions (0.190.695,
0.0486, —0.1396). In this case we observe, that the z-dimension of
the orbit is larger than the one along y. The fact that the side-on
views of the orbits reach a maximum length (i.e. a maximum extent
along the y axis) at a given energy, beyond which they practically
increase only in height, is a known property of the 3D orbits in
Ferrers bars. It has been discussed in Patsis et al. (2002b) in relation
to the extent of the x1v1 peanut and we will also return to this in
Section 6. The family becomes stable in our model at even larger
energies, where the zy.x/Ymax ratio of the orbits is even larger. The
face-on view of the orbit combined with the vm33u profile given
by PWG in their fig. 5, top, belongs to the rm21-like patterns, with
an asymmetry in its loops that is typical for many of the orbits we
encountered. We give in Fig. A4 an example of an orbit with E; =
—0.3268, (0.138, 0.05, 0.12, 0), for which we take initial conditions
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on a stability island in the (x, px) plane of section belonging to rm21
and we add z = 0.05 in its initial conditions. So, here we have one
more example of different morphological combinations in different
projections.

We find similar results for the profile in panel A in fig. 2 in PWG.
It is the family bifurcated from x1, at the same energy as x1mul2,
but as unstable. Despite the fact that we did not encounter a similar
side-on profile in other studies, we note that it is easily obtained
by perturbing orbits of the stable family (x1mul2), underlying the
fact that the initial conditions of the representatives of the two
families at a given energy are close. In Fig. A5 we give three such
characteristic orbits. In (a) we have an orbit with £; = —0.333 and
initial conditions (0.108, 0.294, —0.0066, 0.0537), in (b) —0.325
and (0.3, 0.13, —0.007, 0.2), while in (c) —0.33307 and (0.08, 0.3,
0, —0.05), respectively. Here we have a situation similar to the
one presented by Patsis & Harsoula (2018) for the x1v1/x1v2 pair,
where at a given energy side-on profiles can be easily built either
by quasi-periodic or by sticky chaotic orbits.

Finally, we note that there is a class of non-periodic orbits, well
represented in papers with orbital studies, with a characteristic shape
in their face-on views. Most of them have morphologies similar to
rm21u at energies much larger than the one at which this family
introduced in the system. Two examples are given in Fig. A6. The
orbit in (a) has £;=—0.319 and initial conditions (0.306, 0.1, 0.23,
0), while the one in (b) —0.318 and (0.47, 0.07, 0.13, 0) respectively.
Their face-on structure is similar to the one of orbits like the one in
fig. 11, middle row in Deibel et al. (2011), the orbit in fig. 3, third
row right, in VSAD or the orbit in fig. 5, left column, in WAM.
These orbits reflect the morphological evolution of the rm21 and
rm2?2 pair of families as energy increases. Such orbits, not being
elongated along the major axis of the bar can populate only the
central parts of galactic bars, and can be associated with the thick
part of the bar.
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