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Synopsis

Efforts are required to desigm Deep Learming models that are not only powerful, but also capable of expressing the certainty of
theiir prediictions.

We evaluate 3 state-of-the-art techmiques for uncertainty quantificatiom : Monte-Carlo Dropout, Deep Ensemible, and
Heteroscedastic models. Evaluation is illustrated om a task of automatic segmentatiom of White-Matter Hyperintensities iim T2-
weighted FLAIR MRI sequences of Multiple-Sclerosis patients. Amallysis is performed at 3 different scales : the voxel, the lesiom,
and the whole image. Results indicate the superiority of the Heteroscedastic approach, wihich ramked first im bott the
umncertaimty and segmentation tasks.

Introduction

Deep Learning (DL) techniques have become the gold standard for biomedical image segmentation. Although extensively used, they tend to be
considered as black-boxes, preventing their full acceptance in clinical routine. This opacity is partly due to the inability of neural networks to
express the uncertainty in their predictions. In recent years, tremendous work has been carried out to alleviate this limitation and develop
models that know when they don't know 1.

In this work, we propose an in-depth evaluation of 3 state-of-the-art approaches to quantify uncertainty attached to DL predictions : Monte-
Carlo Dropout (M1), Deep Ensemble (M2), and Heteroscedastic network (M3). We performed a multi-scale analysis of these techniques by
evaluating uncertainty estimates at the voxel, lesion and image levels. We illustrate this comparison on an automatic segmentation task to
detect White-Matter Hyperintensities (WMH) from T2-weighted FLAIR MRI sequences of Multiple-Sclerosis (MS) patients.

Methods

Each method (M) provides a lesion probability for each voxel, attached with an uncertainty estimate.

M1. Bayesian theory provides a collection of tools to deal with uncertainty, with the drawback of increasing the computational cost. Monte-
Carlo Dropout 2 (MC-Dropout) alleviates this problem by considering dropout as a Bayesian approximation. Dropout is used during both
training and inference. For a given image, the inference process is repeated T times, resulting in T different predictions. The uncertainty is finally
obtained by computing the entropy of the predictive distribution. To test this method, we trained a V-Net 3 convolutional neural network (CNN)
with a dropout rate of 20% applied after each convolution, and made 20 inferences per image at test-time.

M2. Deep Ensembles are an alternative approach to quantify uncertainty 4. To form an ensemble, several models are trained sequentially. At
inference, each model processes the image and the set of predictions is aggregated to compute the final segmentation. The uncertainty is
obtained by computing the variance of the predictive distribution. For the evaluation of this method, we composed an ensemble of 4 different
CNN architectures: a V-Net, a U-Net, a Residual U-Net and a V-Net with attention gates.

M3. Heteroscedastic models propose to deal with uncertainty quantification as a learning problem. This type of model predicts the
segmentation and its uncertainty together, in a single-step. To achieve this result, the label-flip loss 5 is used to force the model to predict high
uncertainties in the areas of unconfident segmentation. To test this technique, we used a Heteroscedastic adaptation of the Vnet CNN.

Evaluation

We used a proprietary brain dataset composed of 238 T2-weighted FLAIR MRI sequences of MS patients, with ground truth segmentations of
WMH. The dataset was split into 187 scans for training and 51 for testing. Segmentation masks and uncertainty maps were generated on the
test images using each of the three techniques. Evaluation was performed at 3 scales : the voxel (E1), the lesion (E2) and the image level (E3).
ET. At the voxel-level, we assessed the quality of uncertainty estimates with Area Under Confidence-Classification Characteristic curves (AUCCC)
6 (Figure 1). This metric is agnostic of the model segmentation performance, which is desired for a fair comparison. An AUCCC of 0.5 indicates
that the uncertainties of correct and incorrect voxels are confounded, hence meaningless. Alternatively, an AUCCC of 1 indicates that correct
voxels are systematically assigned with a lower uncertainty than incorrect voxels.

E2. To convert the voxel uncertainties into lesion-wise uncertainty, we first identified each individual lesion using connected components.
Lesion uncertainty was then obtained by computing the mean of its connected components uncertainties. We progressively filtered out lesions
according to their uncertainty, and monitored the evolution of the predicted segmentations (number of Lesion True Positives (LTP) and number
of Lesion False Positives (LFP)). This stratification approach, inspired from Nair et al. 2020 7, results in a Lesion Stratification curve (Figure 2),
where each point corresponds to a couple (LTP, LFP) for a given uncertainty threshold. A quantitative score was finally obtained by computing
the Area Under the Lesion Stratification Curve (AULSC).

E3. For each scan, the overall image uncertainty was calculated as the mean of uncertainties of all voxels predicted as lesions 8. We plotted
correlation curves between images uncertainties and their Dice scores (segmentation quality) (Figure 3). We used the Pearson correlation
coefficient (PCC) between both quantities to assess the quality of image uncertainties, and the Dice scores to estimate segmentation
performance.

Results and Conclusion

Results of the multi-scale evaluation are presented in Figure 4, with top-scoring techniques highlighted in green. The Heteroscedastic approach
(M3) outperformed competing approaches on 2 of the 3 evaluation scales regarding uncertainty estimates (lanes 1 to 3), as well as for
segmentation performance (Dice scores, lane 4). Interestingly, this technique is also the fastest, as uncertainty and segmentation are
simultaneously obtained in a single-step, contrary to MC-Dropout (M1) and Deep Ensemble (M2) that require the aggregation of multiple
predictions. These multi-steps methods demonstrate lower performances in both the uncertainty and segmentation tasks, while also
prolonging inference time (MC-Dropout, M1) or increasing the computational requirements and training times (Deep Ensemble, M2).
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Figure 1 : Confidence-Classification Characteristic curves for voxel-wise evaluation (E1).
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Figure 2 : Lesion Stratification curves for lesion-wise evaluation (E2).

Figure 3 : Correlation curves between image uncertainties and Dice scores for image-wise evaluation (E3).

Method

Seale MC-Dropout | Deep Ensemble | Heteroscedastic
(M1) (M2) (M3)

& Metrics

Voxel - AUCCC (E1) | 0.731 0.705 | 0.745

Lesion - AULSC (E2) 0.791 0.697 0.766
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Image - PCC (E3) 0.685 0,497

Image - Dice (E3) 0.777 0.780

Figure 4 : Results of the multi-scale evaluation. Top performing methods are highlighted in green.
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