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I In nt tr ro od du uc ct ti io on n

Deep Learning (DL) techniques have become the gold standard for biomedical image segmentation. Although extensively used, they tend to be considered as black-boxes, preventing their full acceptance in clinical routine. This opacity is partly due to the inability of neural networks to express the uncertainty in their predictions. In recent years, tremendous work has been carried out to alleviate this limitation and develop models that know when they don't know 1. In this work, we propose an in-depth evaluation of 3 state-of-the-art approaches to quantify uncertainty attached to DL predictions : Monte-Carlo Dropout (M1), Deep Ensemble (M2), and Heteroscedastic network (M3). We performed a multi-scale analysis of these techniques by evaluating uncertainty estimates at the voxel, lesion and image levels. We illustrate this comparison on an automatic segmentation task to detect White-Matter Hyperintensities (WMH) from T2-weighted FLAIR MRI sequences of Multiple-Sclerosis (MS) patients.

M Me et th ho od ds s

Each method (M) provides a lesion probability for each voxel, attached with an uncertainty estimate. M M1 1.. Bayesian theory provides a collection of tools to deal with uncertainty, with the drawback of increasing the computational cost. Monte-Carlo Dropout 2 (MC-Dropout) alleviates this problem by considering dropout as a Bayesian approximation. Dropout is used during both training and inference. For a given image, the inference process is repeated T times, resulting in T diIerent predictions. The uncertainty is 5nally obtained by computing the entropy of the predictive distribution. To test this method, we trained a V-Net 3 convolutional neural network (CNN) with a dropout rate of 20% applied after each convolution, and made 20 inferences per image at test-time. M M2 2.. Deep Ensembles are an alternative approach to quantify uncertainty 4. To form an ensemble, several models are trained sequentially. At inference, each model processes the image and the set of predictions is aggregated to compute the 5nal segmentation. The uncertainty is obtained by computing the variance of the predictive distribution. For the evaluation of this method, we composed an ensemble of 4 diIerent CNN architectures: a V-Net, a U-Net, a Residual U-Net and a V-Net with attention gates. M M3 3.. Heteroscedastic models propose to deal with uncertainty quanti5cation as a learning problem. This type of model predicts the segmentation and its uncertainty together, in a single-step. To achieve this result, the label-\ip loss 5 is used to force the model to predict high uncertainties in the areas of uncon5dent segmentation. To test this technique, we used a Heteroscedastic adaptation of the Vnet CNN.

E Ev va al lu ua at ti io on n

We used a proprietary brain dataset composed of 238 T2-weighted FLAIR MRI sequences of MS patients, with ground truth segmentations of WMH. The dataset was split into 187 scans for training and 51 for testing. Segmentation masks and uncertainty maps were generated on the test images using each of the three techniques. Evaluation was performed at 3 scales : the voxel (E1), the lesion (E2) and the image level (E3). E E1 1.. At the voxel-level, we assessed the quality of uncertainty estimates with Area Under Con5dence-Classi5cation Characteristic curves (AUCCC) 6 (Figure 1). This metric is agnostic of the model segmentation performance, which is desired for a fair comparison. An AUCCC of 0.5 indicates that the uncertainties of correct and incorrect voxels are confounded, hence meaningless. Alternatively, an AUCCC of 1 indicates that correct voxels are systematically assigned with a lower uncertainty than incorrect voxels. E E2 2.. To convert the voxel uncertainties into lesion-wise uncertainty, we 5rst identi5ed each individual lesion using connected components. Lesion uncertainty was then obtained by computing the mean of its connected components uncertainties. We progressively 5ltered out lesions according to their uncertainty, and monitored the evolution of the predicted segmentations (number of Lesion True Positives (LTP) and number of Lesion False Positives (LFP)). This strati5cation approach, inspired from Nair et al. 2020 7, results in a Lesion Strati5cation curve (Figure 2), where each point corresponds to a couple (LTP, LFP) for a given uncertainty threshold. A quantitative score was 5nally obtained by computing the Area Under the Lesion Strati5cation Curve (AULSC). E E3 3.. For each scan, the overall image uncertainty was calculated as the mean of uncertainties of all voxels predicted as lesions 8. We plotted correlation curves between images uncertainties and their Dice scores (segmentation quality) (Figure 3). We used the Pearson correlation coebcient (PCC) between both quantities to assess the quality of image uncertainties, and the Dice scores to estimate segmentation performance.

R Re es su ul lt ts s a an nd d C Co on nc cl lu us si io on n

Results of the multi-scale evaluation are presented in Figure 4, with top-scoring techniques highlighted in green. The Heteroscedastic approach (M3) outperformed competing approaches on 2 of the 3 evaluation scales regarding uncertainty estimates (lanes 1 to 3), as well as for segmentation performance (Dice scores, lane 4). Interestingly, this technique is also the fastest, as uncertainty and segmentation are simultaneously obtained in a single-step, contrary to MC-Dropout (M1) and Deep Ensemble (M2) that require the aggregation of multiple predictions. These multi-steps methods demonstrate lower performances in both the uncertainty and segmentation tasks, while also prolonging inference time (MC-Dropout, M1) or increasing the computational requirements and training times (Deep Ensemble, M2). 
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