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Vector-borne disease outbreak control via instant
vector releases

Luis Almeida∗ Jesús Bellver Arnau† Yannick Privat‡ § Carlota Rebelo¶

Abstract
This paper is devoted to the study of optimal vector release strategies to control vector-borne

diseases, such as dengue, Zika, chikungunya and malaria. Two techniques are considered: the sterile
insect one (SIT), which consists in releasing sterilized male vectors among wild ones in order to
perturb their reproduction, and the Wolbachia one (presently used mainly for mosquitoes), which
consists in releasing vectors that are infected with a bacterium limiting their vector capacity and
then releasing them among wild vectors. In each case, the time dynamics of the vector population
is modeled by a system of ordinary differential equations in which the releases are represented by
linear combinations of Dirac measures with positive coefficients determining their intensity. We
introduce optimal control problems that we solve numerically using ad-hoc algorithms, based on
writing first-order optimality conditions characterizing the best combination of Dirac measures. We
then discuss the results obtained, focusing in particular on the complexity and efficiency of optimal
controls and comparing the strategies obtained.

Keywords: Vector-borne diseases, sterile insect technique, Wolbachia, optimal epidemic vector control,
dengue.

1 Introduction
Vector-borne diseases have a large impact on human health around the world, representing 17% of all
infectious diseases. These diseases can be due to parasites, bacteria or viruses and be transmitted by
different types of vectors like, for instance, ticks, fleas or mosquitoes. A significant part of the models
presented in this paper are applicable in a general setting. In particular, the part concerning the Sterile
Insect Technique (SIT) is applicable to any vector borne disease where male vectors do not transmit the
disease and where the vector has sexual reproduction which will be significantly perturbed by the release
of sterile males.

Many of these diseases, such as dengue, Zika, chikungunya, yellow fever or the West Nile fever are
caused by arboviruses. The vector responsible for the transmission of many arboviruses are the mosquitoes
of the genus Aedes, specially the species Aedes Aegipty and Aedes Albopictus. Dengue is the most prevalent
of these diseases, with more than 3.9 billion people in over 129 countries at risk of contracting it, and an
estimated 40,000 death toll every year according to the World Health Organization [22]. Since, at present,
there is no effective vaccine or antiviral drug, the only treatment option is to relieve the symptoms. As
for preventing the spread of the disease, current methods consist of directly targeting the vector.

In the fight against arboviruses, and in particular dengue, two of the main control techniques targeting
the mosquitoes are the SIT and the use of Wolbachia. Both methods rely on introducing mosquitoes
into the wild population with certain modifications, which allow to control the infections. The SIT
consists on the release of large amounts of sterile male mosquitoes in order to reduce the mosquito
population by mating with the females in the place of the fertile ones. This technique has been both
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studied mathematically [8] and tested in the field [6, 12], not only with mosquitoes but also with other
pests. The Wolbachia technique has mostly been used for Aedes mosquitoes (and this is the context
in which we chose to present it in this paper) but there are also many promising signs indicating that
it should be possible to use it for other types of mosquitoes or even other vectors [21]. The release of
Wolbachia-infected mosquitoes on the other hand, does not seek to eradicate the mosquito population,
but rather to replace it with a new one, less capable of transmitting several diseases. Thus, both males
and females need to be released in order to establish a new population.

The technique is based in the use of the bacterium Wolbachia. This bacterium, naturally present in
many species of Arthropodes, although not in Aedes mosquitoes, has been proven effective in reducing the
vector capacity of mosquitoes for several arboviruses [29, 10]. Its use as a tool for epidemic control relies
on the fact that Wolbachia is vertically transmitted from the mother to the offspring, which makes the
new population self-sustainable. This method also takes advantage of a phenomenon called cytoplasmic
incompatibility [29]. This phenomenon produces a crossed sterility between infected males and uninfected
females, which can lead to a fast spread of the bacteria in the mosquito population despite the fact that
Wolbachia may also shorten the lifespan and reduce the fertility of its hosts. Wolbachia releases have been
shown to be successful both in establishing the new population [20, 26] and in reducing the number of
dengue cases [23, 14].

Our main goal in this work is to study and compare the effect of these techniques in interaction with
the disease dynamics, in order to determine optimal strategies to mitigate the effects of vector-borne
disease outbreaks using mosquito releases. Since the releases occur in a much shorter time scale than
the duration of the outbreak, they will be considered instantaneous. Therefore, impulsive controls are a
natural setting to model field releases. This will be properly detailed in section 3. As stated before, our
models are valid in a much wider setting but, for the sake of clarity, for the remaining of the paper we
will describe them in the setting of arboviruses and of Aedes mosquitoes as vectors. Although with several
differences, previous works model and study the arboviruses transmission between Wolbachia-infected
mosquitoes, wild-type mosquitoes and humans [17, 13]. A previous study of optimal control related issues,
considering only bang-bang controls, can be found in [31].

In order to model the virus dynamics between mosquitoes and humans we consider a SEIR (Susceptible-
Exposed-Infectious-Recovered) model for the humans and a SEI model for the mosquitoes (their short
lifespan leads us to neglect the recovered compartment for the mosquitoes). As for the population dynamics
we assume the humans to have the same birth and death rate and consider a logistic growth with a death
term for the mosquitoes. The human and mosquito populations are subscripted H and M respectively.

S′H = bHH −
βM
H

IMSH − bHSH

E′H = βM
H

IMSH − γHEH − bHEH
I ′H = γHEH − σHIH − bHIH
S′M = bMM

(
1− M

K

)
− βM

H
SMIH − dMSM

E′M = βM
H

SMIH − γMEM − dMEM
I ′M = γMEM − dMIM

(1)

The (positive) parameters used in system (1) are:

• bH , bM , the birth rates for humans and mosquitoes.

• dM , the death rate for mosquitoes. For humans the death rate is assumed to be equal to the birth
rate.

• βM is the rate of mosquito bites giving rise to a transmission between infected mosquitoes and
humans, or infected humans and mosquitoes.

• γH and γM are the progression rates from latent to infectious compartments in humans and
mosquitoes, respectively.

• σH is the recovery rate from the disease.

• H is the total amount of humans, H = SH + EH + IH +RH .
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• M is the total amount of mosquitoes, M = SM + EM + IM .

The equation for the recovered human reads R′H = σHIH − bHRH . Since H is constant we can remove
RH from the system of differential equations and compute it as RH = H − SH − EH − IH .

In order to study these disease controlling techniques we need to modify this basic system in a way
that takes into account the particularities of each one of them.

1.1 The sterile insect technique
To model the effects of the addition of sterile mosquitoes into the system we have to add an equation for
them and a term accounting for the interaction between them and the mosquito population. Following
the same approach as in [4] we introduce the following system

S′H = bHH −
βM
H

IMSH − bHSH

E′H = βM
H

IMSH − γHEH − bHEH
I ′H = γHEH − σHIH − bHIH
S′M = bMM

(
1− M

K

)
M

M + scMS
− βM

H
SMIH − dMSM

E′M = βM
H

SMIH − γMEM − dMEM
I ′M = γMEM − dMIM
M ′S = u− dSMS

(SIT )

Since sterile mosquitoes don’t reproduce we only consider a death term and the function u, representing
the rate at which sterile mosquitoes are introduced in the population and interpreted as a control term
for this system. We also add a birth term in the susceptible mosquitoes compartment, proportional to
the probability that a female mosquito encounters a fertile male to mate (assuming that there are the
same amount of male and female mosquitoes in the wild population). The positive parameter sc accounts
for the competitiveness of the sterile mosquitoes since female mosquitoes may be less inclined to mate
with them. This parameter presents a huge variation in the literature, from works estimating it to be
low (sc = 0.14 in [19]) to works where no difference in competitiveness was found [24]. According to [19],
it would be relevant to assume the parameter sc depending on the ratio of sterile to fertile mosquitoes
which would imply sc = sc(MS/M). Nevertheless, for simplicity, we will assume it to be constant. Note
that there is no need to consider the dynamics of dengue in the sterile mosquito population, since the
released mosquitoes are only male and therefore they do not feed on human blood. Thus, they are unable
to transmit the disease.

1.2 The Wolbachia method
In this case we add a second mosquito population. This new population is composed by mosquitoes
carrying Wolbachia, and the related quantities will be subscripted by W . It has been shown that
Wolbachia decreases the fecundity and increases the mortality rates of mosquitoes [29], therefore bW < bM
and dW > dM . Also, Wolbachia reduces the vector capacity of the mosquitoes. We thus introduce
0 < βWH < βHW < βM to make the distinction between the rate of mosquito bites giving rise to a
transmission from human to Wolbachia-carrying mosquitoes, βHW , and the rate of mosquito bites giving
rise to a transmission from Wolbachia-carrying mosquitoes to humans, βWH . The first one is smaller
than βM since Wolbachia affects the capability of mosquitoes to feed due to a deformation in the trunk
[27]. The second one should be smaller than the first one since Wolbachia also affects the way the disease
develops inside the body of the mosquitoes and reduces the viral load in their saliva [16, 7]. We also
introduce the term 1− sh W

M+W to take into account the cytoplasmic incompatibility. Finally we introduce
γW since Wolbachia also delays the amount of time it takes for dengue virus to reach the saliva of the
mosquitoes, lengthening like this the effective incubation period of the disease in the mosquitoes carrying
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it [30].

S′H = bH − βM
H

IMSH −
βWH

H
IWSH − bHSH

E′H = βM
H

IMSH + βWH

H
IWSH − γHEH − bHEH

I ′H = γHEH − σHIH − bHIH
S′M = bMM

(
1− M +W

K

)(
1− sh

W

M +W

)
− βM

H
SMIH − dMSM

E′M = βM
H

SMIH − γMEM − dMEM
I ′M = γMEM − dMIM
S′W = bWW

(
1− M +W

K

)
− βHW

H
SW IH − dWSW + u

E′W = βHW
H

SW IH − γWEW − dWEW
I ′W = γWEW − dW IW

(WB)

Before moving on to the control problem we perform two simplifications on the system. We consider
the following variables: M := SM +EM + IM and W := SW +EW + IW . These variables account for the
mosquito population regardless of the dengue dynamics. These variables present the following dynamics

M ′ = bMM

(
1− sh

W

M +W

)(
1− M +W

K

)
− dMM

W ′ = bWW

(
1− M +W

K

)
− dWW + u

(2)

These equations describing the population dynamics of the mosquitoes in our model are those of the
model in [5]. One can observe looking at the values in table 1 that bM � dM and bW � dW . That is, that
the birth rate of the mosquitoes is much higher than the death rate in both populations. In [5, Prop. 1],
it is proven that in the high birth rate limit, i.e. considering bM = b0

M/ε, bW = b0
W /ε and taking the limit

ε → 0, the proportion of mosquitoes p = W/(M + W ) converges uniformly to the solution of a simple
equation on the proportion of Wolbachia-infected mosquitoes. The asymptotic system (2) hence reads:

p′ = f(p) + ug(p).

where

f(p) = p(1− p) dMb
0
W − dW b0

M (1− shp)
b0
M (1− p)(1− shp) + b0

W p
and g(p) = 1

K

b0
M (1− p)(1− shp)

b0
M (1− p)(1− shp) + b0

W p
.

Another consequence is that M +W converges to K and so, in the limit, W = (M +W ) W
M+W = Kp, and

therefore M = K(1− p).
This limit leaves the equations for the humans and for the infected mosquitoes unchanged. In order

to modify the equations for the latent mosquitoes we can straightforwardly set M + W = K. Finally,
using that SM = M − EM − IM and SW = W − EW − IW we can eliminate the two equations for the
susceptible mosquitoes of the system. The equations for the exposed mosquitoes become:

E′M = βM
H

(K(1− p)− EM − IM )IH − γMEM − dMEM

E′W = βHW
H

(Kp− EW − IW )IH − γWEW − dWEW
(3)
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Incorporating these changes into system (WB) we obtain the system we are going to study

S′H = bH − βM
H

IMSH −
βWH

H
IWSH − bHSH

E′H = βM
H

IMSH + βWH

H
IWSH − γHEH − bHEH

I ′H = γHEH − σHIH − bHIH
E′M = βM

H
(K(1− p)− EM − IM )IH − γMEM − dMEM

I ′M = γMEM − dMIM
E′W = βHW

H
(Kp− EW − IW )IH − γWEW − dWEW

I ′W = γWEW − dW IW
p′ = f(p) + ug(p)

(WB′)

2 Study of the uncontrolled system
In this section we study the uncontrolled systems (setting u = 0 for all t ∈ [0, T ]) and compute the
equilibria and the basic reproduction number, R0, of dengue in each case. The R0 is a useful tool in the
study of epidemiological systems. It stands for the average number of cases generated directly by one
case in a population where all individuals are susceptible to the disease (SH = H), which is the setting in
which we will perform the numerical simulations.

2.1 Sterile insect technique
Since we consider u = 0 and MS(0) = 0, MS(t) = 0 for all t ∈ [0, T ], turning system (SIT ) into (1).
So computing the equilibria and R0 of this system boils down to computing those of system (1). In
order to compute the R0 of the system (that we denote RM0 ) we proceed as in [28]. For details of these
computations, we refer to Appendix A. We find a RM0 value of

RM0 = βM

√
K∗γMγH

HdM (bH + σH)(γM + dM )(γH + bH) ,

where K∗ = K(1− dM/bM ). Since M = SM +EM + IM , for any equilibrium of the system (S∗M , E∗M , I∗M ),
we have that M∗ = S∗M + E∗M + I∗M must also be an equilibrium of the equation

M ′ = bMM

(
1− M

K

)
− dMM. (4)

This equation presents two equilibria, M∗ = 0 and M∗ = K(1− dM/bM ). We can use this to simplify
the study of the equilibria of system (1). The system to solve becomes

0 = bHH −
βM
H

I∗MS
∗
H − bHS∗H

0 = βM
H

I∗MS
∗
H − γHE∗H − bHE∗H

0 = γHE
∗
H − σHI∗H − bHI∗H

0 = dMM
∗ − βM

H
S∗MI

∗
H − dMS∗M

0 = βM
H

S∗MI
∗
H − γME∗M − dME∗M

0 = γME
∗
M − dMI∗M

(5)

Solving this simpler system we obtain three different equilibria:

• The extinction equilibrium

(S∗H , E∗H , I∗H , R∗H , S∗M , E∗M , I∗M ) = (H, 0, 0, 0, 0, 0, 0)

• The disease-free equilibrium

(S∗H , E∗H , I∗H , R∗H , S∗M , E∗M , I∗M ) = (H, 0, 0, 0,K∗, 0, 0)
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• The endemic equilibrium

(S∗H , E∗H , I∗H , R∗H , S∗M , E∗M , I∗M ) =
(
H − aHI∗H ,

σH + bH
γH

I∗H , I
∗
H ,

σH
bH

I∗H ,K
∗ − aMI∗M ,

dM
γM

I∗M , I
∗
M

)
where aH = (γH +bH )(σH +bH )

bHγH
, aM = γM +dM

γM
,

I∗H = K∗βM
HbHaM +K∗βM

(
1− 1

(RM0 )2

)
H

aH
and I∗M = βM

aHdM + βM

(
1− 1

(RM0 )2

)
K∗

aM
.

It is enligthening to write the endemic equilibrium in terms of RM0 , since it clearly shows that if
RM0 < 1 the endemic equilibrium does not exist.

For the parameters considered in table 1 we find RM0 ≈ 1.67.

2.2 Wolbachia method
Since the equation p′ = f(p) is independent of the rest we can solve it separatedly. The function f(p)
has only three zeros, p∗ = 0, p∗ = 1 and p∗ = θ, satisfying 0 < θ < 1. The last zero only exists assuming
further that 1 − sh < dMb0

W

dW b0
M

< 1, which is satisfied in our case. The value of θ can be computed from

the parameters of the problem, obtaining θ = 1
sh

(
1− dMb0

W

dW b0
M

)
. This implies that, independently of the

epidemiological part of the model, there exists a Wolbachia-free equilibrium, a full invasion equilibrium
and a coexistence equilibrium in the mosquito population.

We compute now the solutions to

0 = bHH −
βM
H

I∗MS
∗
H −

βWH

H
I∗WS

∗
H − bHS∗H

0 = βM
H

I∗MS
∗
H + βWH

H
I∗WS

∗
H − γHE∗H − bHE∗H

0 = γHE
∗
H − σHI∗H − bHI∗H

0 = βM
H

(K(1− p∗)− E∗M − I∗M )I∗H − γME∗M − dME∗M
0 = γME

∗
M − dMI∗M

0 = βHW
H

(Kp∗ − E∗W − I∗W )I∗H − γWE∗W − dWE∗W
0 = γWE

∗
W − dW I∗W

(6)

as a function of p∗.
Let us define aW := γW +dW

γW
,

RW0 :=

√
βHWβWHKγW γH

HdW (bH + σH)(γW + dW )(γH + bH) ,

and RM0 as defined before but usingK instead ofK∗. Note that in the high birth rate limit, K∗ = K(1− dM

bM
)

tends to K. These RM0 and RW0 are the basic reproduction numbers associated with the disease-free
equilibria, for p∗ = 0 (Wolbachia-free) and p∗ = 1 (full invasion) respectively. They are also computed
following the procedure detailed in Appendix A. Let us also define R2

p∗ :=
(
RW0

)2
p∗ +

(
RM0

)2 (1− p∗).
We find that system (6) has the trivial solution (S∗H , E∗H , I∗H , E∗M , I∗M , E∗W , I∗W ) = (H, 0, 0, 0, 0, 0, 0),
which gives three different equilibria for system (WB′): (H, 0, 0, 0, 0, 0, 0, 0),(H, 0, 0, 0, 0, 0, 0, θ) and
(H, 0, 0, 0, 0, 0, 0, 1). In case Rp∗ > 1, the systems presents another equilibrium

(S∗H , E∗H , I∗H) =
(
H − aHI∗H ,

σH + bH
γH

I∗H , Hr

)

(E∗M , I∗M ) =
(
dM
γM

I∗M ,
K

aM

βMr

HbHaW + βMr
(1− p∗)

)
(E∗W , I∗W ) =

(
dW
γW

I∗W ,
K

aW

βHW r

HbHaW + βHW r
p∗
)
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Where r is the positive root of the second order polynomial

P (Z) = Z2
(
βMβHW + aH

(
βMdW

(
RM0

)2 (1− p∗) + βHW dM
(
RW0

)2
p∗
))

+Z
(
R2
p∗aHdMdW −

(
R2
p∗ − 1

)
(βMdW + βHW dM )

)
−
(
R2
p∗ − 1

)
dMdW .

That means that system (WB′) can have up to six equilibria, due to the fact that there are three
different values of p∗ and that Rp∗ can be bigger than one for some values of p∗ but not for others.

The basic reproduction number RM0 is slightly higher than the basic reproduction number for the
sterile insect model due to the change of K∗ by K. For the values in Table 1 we find RM0 ≈ 1.68 and
RW0 ≈ 1.03. That means that even in a fully invaded population, outbreaks could still appear, but would
have a smaller impact. Nevertheless these values should be taken with a grain of salt, since most of the
parameters considered present a lot of variability in the literature.

We present here a result on the persistence of the disease in the system.

Theorem 1. If there exists p∗ such that Rp∗ > 1 then the system (WB′) is uniformly persistent in the
space of the initial conditions such that p(t) → p∗, that is there exists η > 0 such that for each initial
condition with p(0) such that p(t)→ p∗ we have that

lim
t→+∞

(EH + IH + EN + IN + EW + IW )(t) > η.

If Rp∗ < 1 for each initial condition with p(0) such that p(t)→ p∗ we have that limt→+∞(EH + IH +EN +
IN + EW + IW )(t) = 0.

3 Control Problem
We place ourselves in the case of a dengue outbreak in a fully susceptible population. The goal of the
releases will be to minimize the amount of cases during the duration of the outbreak. Therefore, considering
a time window of size T , we want to find u minimizing

∫ T
0 IH(t) dt. Other works have studied related

problems in the case of Wolbachia [31], or problems involving only the mosquito population [2, 3, 1, 4]
considering controls in L∞(0, T ).

Field releases are done with a certain periodicity and in a short amount of time with respect to the
time window considered, this leads us to consider the control denoted u(·) as a linear combination of
pulses, namely

u(t) =
n∑
i=1

ciδ(t− ti).

where δ(t) is the Dirac measure at t = 0 and 0 6 t1 6 . . . 6 tn are the release times. It is natural to
impose some constraints on the control function. Usually it is assumed that the rate at which mosquitoes
are released is bounded (u ∈ L∞(0, T )) but also that the total amount of mosquitoes used is bounded
(
∫ T

0 u(t)dt 6 C). Our approach is different. We also assume that we have a limited amount of mosquitoes
at our disposal, C, but we assume that all of them are used. Since our control function is a linear
combination of pulses, this translates into imposing the constraint

∑n
i=1 ci = C. Therefore, for both

systems (SIT ) and (WB′), the optimization problem we will study is

Minimize J(u) over the set of time jumps (ti)16i6n ∈ [0, T ]n and the nonnegative coefficients

(ci)16i6n such that
n∑
i=1

ci = C, (P)

where the number of jumps, n, and the time horizon, T , are fixed and the cost functional J stands for the
total number of infected humans, given by

J(u) :=
∫ T

0
IH(t)dt. (7)

Since we are going to deal with several jumps it is convenient to introduce some notation first. We consider
n jumps performed at times ti, for i = 1, . . . , n. If needed for the sake of notational simplicity, we will
denote t0 = 0 and tn+1 = T . Since functions may present discontinuities we introduce the notations

F (t−i ) := lim
t→t−

i

F (t), F (t+i ) := lim
t→t+

i

F (t),

7



where F (t) represents any function.
The equations forMS and p in systems (SIT ) and (WB′) must be adapted to the impulsive formulation

of the problem. Details of the procedure can be found in Proposition 1, in Section C of the Appendix.

3.1 Sterile insect technique
In order to find the equation satisfied by MS we take

u(t) =
n∑
i=1

ci
ε
1[ti,ti+ε],

so the equation satisfied by M ′S becomes

M ′S(t) =
n∑
i=1

ci
ε
1[ti,ti+ε] − dSMS(t).

Taking the limit ε→ 0 we obtain that the equation converges to{
M ′S(t) = −dSMS(t), t ∈ [ti, ti+1], i = 0, . . . , n
MS(t+i ) = MS(t−i ) + ci, i = 1, . . . , n (8)

We can solve this equation explicitly. Since the initial condition is MS(0) = 0 the solution reads

MS(t) =
i∑

j=1
cje
−dS(t−tj), t ∈ [ti, ti+1], i = 1, . . . , n (9)

3.2 Wolbachia method
Looking at the equation on p′ in system (WB′) and substituting the control function by

u(t) =
n∑
i=1

ci
ε
1[ti,ti+ε],

we obtain

p′(t) = f(p(t)) + g(p(t))
n∑
i=1

ci
ε
1[ti,ti+ε]. (10)

Let G be the antiderivative vanishing at zero of 1/g(p), that is G(p) :=
∫ p

0
dq
g(q) , when we take the limit

ε→ 0 in equation (10) we obtain:{
p′(t) = f(p(t)), t ∈ [ti, ti+1], i = 0, . . . , n
p(t+i ) = G−1(G(p(t−i )) + ci), i = 1, . . . , n (11)

4 Results
We present in this section the optimal solutions of problem (P), obtained through numerical simulations.
We optimize at the simultaneously the time profile of the releases and the amount of mosquitoes released
in each one. We allow two releases to occur at the same time. This implies that at that time a release with
the total amount of mosquitoes of the two releases combined is done, reducing the number of effective
releases by one. The simulations have been performed using Python. For the numerical optimization, the
time variables are updated by using a standard step variable gradient descent method. Regarding the
weights (ci)16i6n, due to the constraint

∑n
i=1 ci = C, we used an augmented Lagrangian algorithm. An

explanation of the method used can be found in Appendix E. The details about the computation of the
gradients of the functional are detailed in section D of the appendix.

We place ourselves in the context of a fully susceptible population and we introduce a small amount of
infected individuals. Since in our model the total amount of humans is constant, we need to subtract this
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initial amount of infected individuals from the susceptible compartment. Thus, the initial conditions for
our simulations will be

(SH(0), EH(0), IH(0), SM (0), EM (0), IM (0)) = (H − I0
H , 0, I0

H ,K
∗, 0, 0),

with I0
H � H (in particular for the simulations we chose I0

H = 10). All the other variables in the two
systems are set to 0 at the start, namely

MS(0) = 0 and (EW (0), IW (0), p(0)) = (0, 0, 0).

Since RM0 is greater than 1, this will lead to an outbreak of the disease and a spike in the number of
cases. We perform several simulations for different values of C. Throughout the simulations we will fix
the parameters of the systems to the values in Table 1, which correspond to the particular case of dengue.

Table 1: Parameter values for dengue

Category Parameter Name Value Source

Biology

bM Wild mosquitoes death rate 11.16 day−1 [5, 25]
bW Wolbachia infected birth rate 10.04 day−1 [5, 25]
dM Wild mosquitoes death rate 0.04 day−1 [5, 25]
dW Wolbachia infected death rate 0.044 day−1 [5, 25]
dS Sterile mosquitoes death rate 0.12 day−1 [3]
sh Cytoplasmic incompatibility level 0.9 [5]
sc Competitiveness level 0.9
K Carrying capacity 65234 1

bH Human birth/death rate 0.01 year−1

σH Human recover time 0.2 day−1 [17]
H Human population size 65000 [14]
βM Transmission rate H<->M 0.1647 day−1 [17]
βHW Transmission rate H->W 0.157 day−1 [17]
βWH Transmission rate H<-W 0.0785 day−1 [17]
γM Non infected incubation period 0.186 day−1 [30]
γW Wolbachia infected incubation period 0.146 day−1 [30]
γH Human incubation period 0.17 day−1 [9]

Optimization T Final time 590 days
C Amount of mosquitoes released

{
104, 1.5 · 108}

4.1 Sterile Insect Technique
The optimal solution for problem (P) in the SIT setting consists of a linear combination of consecutive
pulses with a similar spacing. The fact that several spaced jumps are more efficient in reducing the number
of susceptible mosquitoes, eventually leading to a reduction in the number of infections, is a result of the
fact that the amount of sterile mosquitoes decreases exponentially between releases. Therefore, by spacing
the releases a population of sterile mosquitoes can be sustained longer than doing one single release with
all the mosquitoes together. We also observe that results do not only depend on the amount of mosquitoes
released, but also in the number of releases considered. Comparing Figures 1 and 2 we can see how, by
increasing the number of releases from 10 to 20, the final amount of infections is considerably reduced,
specially with a comparatively high amount of mosquitoes. Nevertheless, this trend does not continue
indefinitely. Increasing the number of releases way above 20 does not reduced significantly the number of
infections anymore. The times and costs of the instant releases at Figures 1 and 2 are given in Tables 2
and 3 respectively.

1K to H ratios present a huge variability in the litterature. Indeed, the ratio may depend on numerous factors and
may not be constant in time. Lacking on solid evidence to pick a value, we choose K such that the size of the mosquito
population at equilibrium is equal to the human population size.
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Table 2: Results of the simulations performed for the SIT with 10 releases

C Time of releases Amount of mosquitoes released
∫ T

0 IH(t)dt

7.5 · 107

t1 = 236.1, t2 = 242.2 c1 = 5456188.5, c2 = 7588380.7

257800.6
t3 = 249.2, t4 = 256.4 c3 = 8504996.8, c4 = 8770159.3
t5 = 264.0, t6 = 271.9 c5 = 8694098.3, c6 = 8423549.6
t7 = 280.4, t8 = 289.7 c7 = 8018494.5, c8 = 7457952.8
t9 = 300.0, t10 = 312.0 c9 = 6661473.8, c10 = 5424705.6

1.5 · 108

t1 = 189.8, t2 = 201.1 c1 = 15763460.4, c2 = 20325520.9

149533.8
t3 = 213.3, t4 = 226.4 c3 = 21056255.1, c4 = 20080997.4
t5 = 240.5, t6 = 256.0 c5 = 18323670.5, c6 = 15985606.1
t7 = 273.2, t8 = 292.6 c7 = 13382989.4, c8 = 10757244.1
t9 = 314.5, t10 = 340.1 c9 = 8302584.9, c10 = 6021671.2

Table 3: Results of the simulations performed for the SIT with 20 releases

C Time of releases Amount of mosquitoes released
∫ T

0 IH(t)dt

7.5 · 107

t1 = 233.6, t2 = 237.7 c1 = 3134560.7, c2 = 4406797.0

253100.1

t3 = 242.4, t4 = 247.1 c3 = 4733517.6, c4 = 5058460.3
t5 = 251.5, t6 = 255.8 c5 = 4904238.6, c6 = 4580426.7
t7 = 259.9, t8 = 264.0 c7 = 4220789.9, c8 = 4233634.6
t9 = 268.1, t10 = 272.2 c9 = 4040841.7, c10 = 3972420.1
t11 = 276.5, t12 = 280.8 c11 = 3734884.2, c12 = 3680606.4
t13 = 285.2, t14 = 289.8 c13 = 3527981.4, c14 = 3452614.3
t15 = 294.8, t16 = 300.3 c15 = 3434071.9, c16 = 3410438.5
t17 = 306.2, t18 = 312.5 c17 = 3141518.9, c18 = 2908714.7
t19 = 319.3, t20 = 326.6 c19 = 2499073.5, c20 = 1924411.9

1.5 · 108

t1 = 0.0, t2 = 6.4 c1 = 12228453.6, c2 = 14081877.5

427.6

t3 = 13.9, t4 = 21.7 c3 = 14382670.2, c4 = 13780044.8
t5 = 29.8, t6 = 38.2 c5 = 12922770.5, c6 = 11836486.8
t7 = 47.0, t8 = 56.2 c7 = 10707759.9, c8 = 9590809.5
t9 = 66.1, t10 = 76.6 c9 = 8505034.9, c10 = 7442599.2
t11 = 88.0, t12 = 100.4 c11 = 6474091.4, c12 = 5606408.5
t13 = 114.1, t14 = 129.8 c13 = 4849837.5, c14 = 4178186.3
t15 = 147.8, t16 = 169.0 c15 = 3532858.5, c16 = 2919083.3
t17 = 194.2, t18 = 225.2 c17 = 2391988.6, c18 = 2167975.1
t19 = 265.1, t20 = 330.0 c19 = 1959282.5, c20 = 441781.5

As we can observe in Figures 1 and 2, with a comparatively low amount of mosquitoes, C = 7.5 · 107,
the releases are concentrated around the peak of the infections, with the largest releases occurring right
after the peak. Their effect is of only mitigating the outbreak, that is, the curve of infections remains
fairly similar but peaking a bit earlier and lower. For this amount of mosquitoes we do not observe a
great reduction in the number of cases by using 20 releases instead of 10. Namely, for 10 releases we
obtain J10 = 257800.6 and for 20, J20 = 253100.1. We can compute the reduction in the number of cases
by comparing, numerically, J(u) for the uncontrolled system with J(u) for the controlled one. The value
of J(u) =

∫ T
0 IH(t)dt in the case of the uncontrolled system yields J0 = 294009.2. This means that with

C = 7.5 · 107 we obtain approximately a 12.3% reduction in the total amount of cases for 10 releases and
a 13.9% reduction for 20.

A possible interpretation for this solution is that, with the amount of mosquitoes considered, the
population of susceptible mosquitoes cannot be consistently kept low for a long period. Therefore, the
best use of the sterile males is to release them to reduce as much as possible the amount of susceptible
mosquitoes when the transmission is at its prime.

On the other hand, with a comparatively big amount of mosquitoes, C = 1.5 · 108, the releases shift
to the beginning attenuating further the outbreak with 10 releases. With 20 releases the first release
occurs at t1 = 0.0 and it results in an almost complete eradication of the outbreak. The largest releases
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occur soon after the first one. Releases get more sparse and smaller as time advances, specially for 20
releases, where some of them are clearly detached from the rest and occur after the peak of the outbreak.
The difference observed as a result of the different number of jumps in this case is more abrupt. We
obtain a value of J10 = 149533.8 for ten releases, which means a 49.1% less infections in the time window
considered, and a value of J20 = 427.6 for 20 releases, that is, a 99.9% reduction.

With this amount of mosquitoes, specially when they are spread over 20 releases, the population can
be kept low for a long time. Our interpretetation of these results is that due to this long term reduction
the optimal solution consists in reducing the population as soon as possible, preventing the outbreak from
gaining traction in the first place.

Figure 1: Results of the simulations for the SIT with C = 7.5 · 107 (upper row) and C = 1.5 · 108 (lower
row) considering 10 releases. The dashed blue line corresponds to the amount of sterile mosquitoes
released. I∗H , on the right column, corresponds to the uncontrolled case.

Another approach we can take, arguably more in line with applications on the field, is to optimize only
the times of the releases while keeping the amount of mosquitoes constant. This corresponds to having
the mosquitoes conditioned in recipients all containing approximately the same number of individuals.
Of course, the result in the reduction of the infections will be worse than the counterpart we have just
presented. Nevertheless it raises a reasonable question: to which extent it is preferable the use of a more
sophisticated technique over a less efficient but simpler one? The results are presented tables 4 and 5.

Table 4: Results of the simulations performed for the SIT with 10 releases and all ci = C/10.

C Time of releases
∫ T

0 IH(t)dt

7.5 · 107 t1 = 237.7, t2 = 245.0, t3 = 251.7, t4 = 258.4, t5 = 265.2 258160.8
t6 = 272.4, t7 = 280.2, t8 = 288.9, t9 = 299.0, t10 = 311.5

1.5 · 108 t1 = 196.3, t2 = 207.0, t3 = 217.2, t4 = 227.7, t5 = 239.0 164524.8
t6 = 251.5, t7 = 266.0, t8 = 283.3, t9 = 304.7, t10 = 332.2
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Figure 2: Results of the simulations for the SIT with C = 7.5 · 107 (upper row) and C = 1.5 · 108 (lower
row) considering 20 releases.

Table 5: Results of the simulations performed for the SIT with 20 releases and all ci = C/20.

C Time of releases
∫ T

0 IH(t)dt

7.5 · 107

t1 = 233.8, t2 = 238.2, t3 = 242.2, t4 = 245.9, t5 = 249.5

253334.7t6 = 253.0, t7 = 256.5, t8 = 260.1, t9 = 263.8, t10 = 267.5
t11 = 271.4, t12 = 275.5, t13 = 279.8, t14 = 284.3, t15 = 289.2
t16 = 294.5, t17 = 300.3, t18 = 306.8, t19 = 314.3, t20 = 323.6

1.5 · 108

t1 = 4.7, t2 = 11.6, t3 = 17.7, t4 = 23.5, t5 = 29.4

2464.4t6 = 35.3, t7 = 41.4, t8 = 47.9, t9 = 54.7, t10 = 62.1
t11 = 70.1, t12 = 79.1, t13 = 89.2, t14 = 100.7, t15 = 114.2

t16 = 130.3, t17 = 149.9, t18 = 174.6, t19 = 206.6, t20 = 249.4

In figures 3 and 4 we can see that optimal strategies in time do not differ a lot with those of figures 1
and 2 respectively. Still, releases are done around the peak of the outbreak in the case of a relatively low
amount of mosquitoes. As we increase the amount of mosquitoes and the number of releases they shift to
the left, resulting in a further reduction of the infections.

As for the effectiveness of this approach, we show a comparison of the results of the optimization
of the times alone and that of the times and the costs in tables 6 and 7. As we can see there does not
seem to be a significant advantage in optimizing both times and costs except in one case, the case with
C = 1.5 · 108 and 10 releases.

The fact that the optimal strategy also changes drastically when the number of releases is increased
suggests that solutions for this setting are very sensitive to changes on the problem characteristics.
Comparing figures 1 with 3, and 2 with 4, we see that optimizing the amount of mosquitoes at each release
makes the first releases move to the left but also increases their time span, a similar effect to the addition
of new releases. Elaborating further in our biological interpretation of the results, this suggests that for
ten releases and C = 1.5 · 108 we can already keep the population low during a certain amount of time,
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Figure 3: Results of the simulations for the SIT with C = 7.5 · 107 (upper row) and C = 1.5 · 108 (lower
row) considering 10 releases and an equal distribution of the mosquitoes between the releases.

but not enough to prevent the outbreak. A slight improvement of the technique (either an increase on the
number of releases or an optimization of the number of mosquitoes released at each impulse) enables to
keep the wild mosquito population at a low level over a longer period of time, thus improving the results.
On the other hand, when we are far from significantly reducing the outbreak or when we can almost
prevent it, the advantage of also optimizing the amount of mosquitoes at each release becomes smaller.

Table 6: Comparison of the reductions in the infections obtained on the simulations performed for the
SIT with 10 releases.

C Times Times and costs
7.5 · 107 12.2% 12.3%
1.5 · 108 44.0% 49.1%

Table 7: Comparison of the reductions in the infections obtained on the simulations performed for the
SIT with 20 releases.

C Times Times and costs
7.5 · 107 13.8% 13.9%
1.5 · 108 99.2% 99.9%

4.2 Wolbachia method
Regarding the Wolbachia method in all cases all the pulses cluster in one single pulse. In other words, the
optimal solution is performing a single release with all the available mosquitoes. This makes useless to
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Figure 4: Results of the simulations for the SIT with C = 7.5 · 107 (upper row) and C = 1.5 · 108 (lower
row) considering 20 releases and an equal distribution of the mosquitoes between the releases.

optimize the amount of mosquitoes released in each jump and turns the problem into a one-dimensional
optimization one: min

t1∈[0,T ]
J(u), with J(u) =

∫ T
0 IH(t)dt and u(t) = Cδ(t− t1).

As found in other works studying the use of Wolbachia to produce a mosquito population replacement
[2, 5], solutions present two clearly distinct behaviours. Since the equation p′ = f(p) is bi-stable, if the
proportion of Wolbachia infected mosquitoes exceeds a certain threshold, p = θ, then the system moves to
a full invasion state without further intervention. The parameter determining the two regimes is the total
amount of mosquitoes, C. If there are more mosquitoes than the amount needed to lead the system to
p = θ we will observe one kind of behaviour, different from the case where there are less. From the initial
conditions we have p(0) = 0. We can compute the amount of mosquitoes needed to reach p = θ in a single
jump. If we reach p = θ in the first jump, θ = p(t+1 ) = G−1 (G(p(t−1 ) + C)

)
= G−1(C), thus C = G(θ).

For the parameters considered here, G(θ) ≈ 14800.
In figure 5 we plot the optimal solutions to problem (P) for system (WB′) with the parameters of

table 1. In case C < G(θ) the jump occurs before the outbreak reaches its peak. The larger is C, the
smaller is t1. In Figure 5, for C = 10000, t1 = 208.2. Instead, in case C > G(θ) the jump is at t1 = 0.
The system from this point tends to p = 1 without the need of releasing mosquitoes anymore. The value
of J(u) =

∫ T
0 IH(t)dt in the case of the uncontrolled system yields J0 = 294327.7. With C = 10000 the

profile of the outbreak is not altered very much, but it peaks at a lower value. The value of J(u) in this
case is J10000 = 288414.6, roughly a 2.0% reduction in the total amount of cases. With C = 20000 the
change is the infected humans curve is much more appreciable. The curve peaks at a much lower level but
decays slower. In this case the value of

∫ T
0 IH(t)dt is J20000 = 58020.9, which is a 80.3% reduction in the

number of cases.
The biological interpretation of these results is in line with the one for the sterile mosquitoes. When

it is not possible to trigger a population replacement, the optimal strategy is to release the mosquitoes
before the peak of the epidemic. Since the number of Wolbachia-infected mosquitoes declines with time,
this policy minimizes the presence of the wild mosquitoes (with a greater vector capacity) during the
phase of largest transmission. On the other hand, if it is possible to trigger the population replacement,
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Figure 5: Results of the simulations for the Wolbachia method with C = 10000 (upper row) and C = 20000
(lower row). The proportion of Wolbachia infected mosquitoes corresponds to the dashed blue line on the
left column. I∗H , on the right column, corresponds to the uncontrolled case.

the sooner we act in the system, the better. Since the proportion of Wolbachia-infected mosquitoes is
going to increase naturally there are no incentives in waiting to make the release.

We remark that the amount of mosquitoes needed for this technique to be effective is much lower
than for the SIT. This makes sense, since the Wolbachia population is self-sustainable while the sterile
mosquitoes must be constantly released. Nonetheless, the exact values of mosquitoes released, or the ratio
of mosquitoes needed in one technique with respect to the other cannot be drawn directly from our study
due to the limitations of the model and the uncertainty on the parameters.

Appendix

A R0 computations
We detail in this section the computations of RM0 and RW0 defined in section 2. To compute the value of
these quantities we follow the lines of [28]. The relevant compartments for these computations are only the
infected ones. As [28] points out, this distinction is determined from the epidemiological interpretation of
the model and cannot be deduced from the structure of the equations alone. The infected compartments
in our case are those in which there are individuals carrying the dengue virus. For model (1) these are
EH ,IH ,EM and IM .

We need then to separate the changes in the compartments due to new infections from the rest. We
write system (1) in the following way x = (EH , IH , EM , IM , SH , SM ),

ẋ = F(x)− V(x),

where F contains the rate of appearance of new infections in each compartment and V the rate of transfer
of individuals into the compartments by all other means.
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Let’s see the decomposition of the first equation, E′H , as an example:

E′H = βM
H

IMSH︸ ︷︷ ︸
F1(x)

− (γHEH + bHEH)︸ ︷︷ ︸
V1(x)

.

Doing this decomposition for all the equations we obtain

F(x) =
(
βM
H

IMSH , 0,
βM
H

SMIH , 0,−
βM
H

IMSH ,−
βM
H

SMIH

)
and V(x) containing all the other terms.

Then we construct the matrices

F =
(
∂Fi
∂xj

(x0)
)
i,j

and V =
(
∂Vi
∂xj

(x0)
)
i,j

, i, j = 1, . . . , 4

where x0 represents the equilibrium for which we compute the R0, i.e., the disease-free equilibrium
x0 = (0, 0, 0, 0, H,K∗). The values taken by i and j are given by the fact we labeled the infected
compartments 1 to 4. These matrices for our model read

F =


0 0 0 βM
0 0 0 0

0 βM
H

K∗ 0 0
0 0 0 0

 and V =


γH + bH 0 0 0
−γH σH + bH 0 0

0 0 γM + dM 0
0 0 −γM dM

 .

In [28] is shown that R0 = ρ(FV −1), where ρ denotes the spectral radius of the resulting matrix,
namely

RM0 = ρ(FV −1) = βM

√
K∗γMγH

HdM (bH + σH)(γM + dM )(γH + bH) .

In the case of system (WB′), where also mosquitoes with Wolbachia are present, there are six infected
compartments and two relevant R0, one at the disease-free/Wolbachia-free equilibrium and one at the
disease-free/full invasion equilibrium. We follow, step by step, the same procedure, adapting it to the new
system for each of the R0. We define x = (EH , IH , EM , IM , EW , IW , SH , p) and we write the system as
ẋ = F(x)− V(x), where

F(x)> =



βM
H

IMSH + βWH

H
IWSH

0
βM
H

(K(1− p)− EM − IM )IH
0

βHW
H

(Kp− EW − IW )IH
0

−βM
H

IMSH −
βWH

H
IWSH

0


,

and V(x) contais the rest of the terms.
The two relevant equilibria are both disease-free, one is the Wolbachia-free equilibrium, xM

0 =
(0, 0, 0, 0, 0, 0, H, 0) and the other the full invasion equilibrium, xW

0 = (0, 0, 0, 0, 0, 0, H, 1). Matrix V is
the same in both cases, namely

V =


γH + bH 0 0 0 0 0
−γH σH + bH 0 0 0 0

0 0 γM + dM 0 0 0
0 0 −γM dM 0 0
0 0 0 0 γW + dW 0
0 0 0 0 −γW dW

 .
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On the other hand, F has a different value at each equilibrium, namely

FM =



0 0 0 βM 0 βWH

0 0 0 0 0 0

0 βM
H

K 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


and FW =



0 0 0 βM 0 βWH

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 βHW
H

K 0 0 0 0
0 0 0 0 0 0


.

Although computed differently, we recover the value of RM0 obtained in system (1) (keep in mind that
in the high birth limit K = K∗). As for the value of RW0 we obtain

RW0 = ρ(FWV −1) =

√
βHWβWHKγW γH

HdW (bH + σH)(γW + dW )(γH + bH) .

B Proof of Theorem 1
Let us fix p∗ = 0, the remaining cases can be dealt analogously. First of all we assume Rp∗ > 1 and apply
[11, Theorem 1] in order to obtain our persistence result. The set of initial conditions which we refer in
the theorem is {

(SH , EH , IH , EM , IM , EW , IW , p) ∈ R7
+0 × [0, θ[

}
.

Note that it is an immediate consequence of the equations that if one of the latent or of the infectious
classes is nonempty then it will remain always nonempty. Moreover we know that if p(0) < θ then
p(t)→ p∗. Hence in order to prove persistence in our set we can consider a 0 < ζ < θ and prove persistence
in {

(SH , EH , IH , EM , IM , EW , IW , p) ∈ R7
+0 × [0, θ − ζ]

}
.

Notice that we assumed the human population constant and equal to H and that the mosquito population
satisfies a logistic growth. Taking this into account there exists a constant K̄ > 0 such that the set

K =
{

(SH , EH , IH , EM , IM , EW , IW , p) ∈ R7
+0 × [0, θ − ζ] : SH + EH + IH + EM + IM + EW + IW ≤ K̄

}
is a positively invariant compact set and each solution of system (WB′) with initial condition in R7

+0 ×
[0, θ − ζ] enters in K. For each x0 = (S0

H , E
0
H , I

0
H , E

0
M , I

0
M , E

0
W , I

0
W , p

0) ∈ K there exists exactly one
solution x(t;x0) of system (WB′) defined in R0+ and such that x(0;x0) = x0 and x(t;x0) ∈ K for all
t ≥ 0. We have that x0 → x(t;x0) is a semi-dynamical system in K.

Consider the set

S = {(SH , EH , IH , EM , IM , EW , IW , p) ∈ K : EH + IH + EM + IM + EW + IW = 0} .

We have that the set K \ S is invariant by the remark above about the latent and the infectious classes.
As we have Rp∗ > 1 we can consider δ1 > 0 and η > 0 such that(

γMβ2
M

HdM (γM +dM ) − (1+δ1)(γH +bH )(σH +bH )
γH

)
(K(1 − p∗) − 2η)+

+
(

γW βHW βW H
HdW (γW +dW ) − (1+δ1)(γH +bH )(σH +bH )

γH

)
(Kp∗ − 2η) > 0.

(12)
We consider ξ and δ2 such that 0 < δ2 < ξ < δ1 and define in K the map

P (SH , EH , IH , EM , IM , EW , IW ) =

(1 + ξ)EH + (1+δ1)(γH +bH )
γH

IH + γMβM
dM (γM +dM )EM + (1+δ2)βM

dM
IM + γW βW H

dW (γW +dW )EW + (1+δ2)βW H
dW

IW .

Let us consider also for sufficiently small ε the neighbourhood of S

U = {x ∈ K : P (x) < ε} .

We have that
P (x) = 0⇐⇒ x ∈ S.
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Moreover let us assume, in order to arrive to a contradiction, that:

∃x0 ∈ U \ S such that P (x(t;x0)) < ε for all t > 0. (13)

Let φ(t) = P (x(t;x0)), we are going to prove that there exists k > 0 such that

φ′(t) ≥ kφ(t) (14)

for large t. In fact, taking into account (13), we obtain that there exists ε∗ > 0 such that lim inft→+∞ SH(t) >
bHH
ε∗+bH

and this ε∗ > 0 can be chosen sufficiently small if we choose ε small. We assume that ε is chosen

in order to imply ε∗ + bH
bH

(1 + δ2) < 1 + ξ and also that the latent and infected mosquitoes classes are
smaller then η for t > 0 (this will be useful after and is possible by (13)). Then we evaluate φ′(t) and
recall that p(t)→ p∗ when t→ +∞. We obtain

φ′(t) =
(

bH
ε∗ + bH

(1 + ξ)− (1 + δ2)
)

(βMIM + βWHIW ) +

+ (δ1 − ξ)(γH + bH)EH + δ2

(
βMγM
dM

EM + βWHγW
dW

EW

)
+

+
((

γMβ
2
M

HdM (γM + dM ) −
(1 + δ1)(γH + bH)(σH + bH)

γH

)
(K(1− p)− EM − IM )+

+
(

γWβHWβWH

HdW (γW + dW ) −
(1 + δ1)(γH + bH)(σH + bH)

γH

)
(Kp− EW − IW )

)
IH .

We have that p(t)→ p∗ and hence by (12) we have that for sufficiently large t the coefficient of IH in the
last expression is positive. The existence of k > 0 satisfying (14) follows and this contradicts (13). We
conclude that S is an uniform repeller and the result for Rp∗ > 1 follows.

The case Rp∗ < 1 can be obtained in the spirit of the previous one constructing this time a function
φ∗ for which there exists k∗ < 0 such that for each t > 0

φ∗′(t) ≤ −k∗φ∗(t). (15)

C Instant releases
By considering u defined by u(t) =

∑n
i=1 ciδ(t − ti) in systems (WB′) and (SIT ) we can pass from a

infinite dimensional optimization problem to a discrete one. Here we detail how, by doing this passage,
these systems where the control appears become differential equations with jump discontinuities. In order
to do so we consider u given by u(t) =

∑n
i=1

ci

ε 1[ti,ti+ε] and we take the limit ε→ 0. The following proof
is adapted from [18]. We detail the deduction of equation (11). However, equation (8) can be easily
obtained following the same reasoning.

Proposition 1. Let us consider pε, solving the following equation{
p′ε(t) = f(pε(t)) + ci

ε 1[ti,ti+ε]g(pε(t)), t ∈ [ti−1, ti+1]
pε(ti−1) = pi−1.

Let G be the antiderivative vanishing at zero of 1/g(p), that is G(p) :=
∫ p

0
dq
g(q) . Then when ε tends to 0,

pε(·) converges pointwise to p(·) given by

p(t) =
{
p−(t), t ∈ [ti−1, ti]
p+(t), t ∈ (ti, ti+1]

where p− and p+ solve{
dp−

dt (t) = f(p−(t))
p−(ti−1) = pi−1,

and
{

dp+

dt (t) = f(p+(t))
p+(ti) = G−1(G(p−(ti)) + ci),

respectively.
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Proof. Outside the interval [ti, ti + ε] the behaviour of p(t) is clear. We study the behaviour of pε(t) in
[ti, ti + ε], in order to establish the jump of p(t) at ti.

pε(t) = p−(ti) +
∫ t

ti

f(pε(s)) + ci
ε
g(pε(s))ds,

then for every t ∈ [ti, ti + ε], one has

|pε(t)| 6
∣∣p−(ti)

∣∣+
∫ t

ti

|f(0)|+ ci
ε
|g(0)| ds+

∫ t

ti

(
Lf + ci

ε
Lg

)
|pε(s)| ds

6 1 + ci
K

+
∫ t

ti

(
Lf + ci

ε
Lg

)
|pε(s)| ds

where Lf and Lg are the Lipschitz constants of f(·) and g(·) respectively. These constants exist since
both functions are C1 in [0, 1]. Using Grönwall’s inequality we obtain that

|pε(t)| 6
(

1 + ci
K

)
exp (εLf + ciLg),

which is bounded. Let us consider now zε, the solution to{
z′ε(t) = ci

ε g(zε(t))
zε(ti) = p(t−i ),

We prove now that, in the limit, both zε and pε present the same jump at ti. In order to do this we
compute for t ∈ [ti, ti + ε],

|zε(t)− pε(t)| 6
∫ t

ti

|f(pε(s))| ds+
∫ t

ti

ci
ε
|g(zε(s))− g(pε(s))| ds

6 εMf +
∫ t

ti

ci
ε
Lg |zε(s)− pε(s)| ds

where Mf = maxp∈[0,1] f(p). Using again Grönwall’s Lemma we obtain

|zε(t)− pε(t)| 6 εMf exp (ciLg)→ 0 as ε→ 0.

This proves that supt∈[ti,ti+ε] |zε(t)− pε(t)| → 0 when ε→ 0, and therefore zε and pε present the same
jump at ti in the limit. To conclude, we solve zε(t) in [ti, ti + ε],∫ ti+ε

ti

z′(s)
g(zε(s))

ds =
∫ ti+ε

ti

ci
ε
ds = ci,

which leads to G(zε(ti + ε))−G(zε(ti)) = ci and thus zε(ti + ε) = G−1(G(zε(ti)) + ci). Taking the limit
ε→ 0 we conclude that p+(ti) = G−1(G(p−(ti)) + ci).

D Optimality conditions
We devote this section to the computation of the gradients of the functional J in problem (P) for systems
(SIT ) and (WB′). These gradients will be used in the numerical simulations of section 4. We discuss it
first in a general setting to later apply to our problems.

Let X : R+ → RN be the solution to{
X′(t) = A(X(t)) +B(X(t))y(t), t ∈ [0, T ]
X(0) = X0,

(16)

with A,B : R+ → RN continuous and y : R+ → R the solution to the differential equation with jump
discontinuities {

y′(t) = a(y(t)), t ∈ [0, T ]
y(t+i ) = b(y(t−i ), ci), i = 1, . . . , n
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with a, b : R+ → R. Now, consider yε(t), the solution to
y′ε(t) = a(yε(t)), t ∈ [0, T ]
yε(t+i ) = b(yε(t−i ), ci), i 6= k
yε(t̃+k ) = b(yε(t̃−k ), ck),

where t̃k = tk + ε. Finally, lets consider also Xε the solution to{
X′ε(t) = A(Xε(t)) +B(Xε(t))yε(t), t ∈ [0, T ]
Xε(0) = X0,

We consider X to be a function of time, nevertheless, the value of the parameters ti and ci, i = 1, . . . , n
affects the value of X(t) for any t > t1. In general, and for the rest of the section, we define the variation
of any given function of time, Fχ, depending on a parameter, χ, as

δχFχ(t) := lim
ε→0

Fχ+ε(t)− Fχ(t)
ε

.

As an example, in the case of the variation of X with respect to a given tk we have

δtk X(t) := lim
ε→0

Xε(t)−X(t)
ε

.

From equation (16) we have that

X(t) = X0 +
∫ t

0
A(X(s))ds+

∫ t

0
B(X(s))y(s)ds.

For a given k ∈ {1, . . . , n}, in case t < tk, one has δtk X(t) = 0, since the time of the jump has no effect
until it occurs. In case t > tk

δtk X(t) = δtk

∫ t

0
A(X(s))ds+ δtk

(∫ tk

0
B(X(s))y(s)ds+

∫ t

tk

B(X(s))y(s)ds
)

=
∫ t

0
δtkA(X(s))ds+B(X(tk))y(t−k )−B(X(tk))y(t+k ) +

∫ t

0
δtk (B(X(s))y(s)) ds

=
∫ t

0
(DA(X(s)) + DB(X(s))y(s)) δtk X(s)ds+B(X(tk))(y(t−k )− y(t+k )) +

∫ t

0
B(X(s))δtky(s)ds.

We can express this as an ordinary differential equation with a jump discontinuity: (δtk X)′ (t) = (DA(X(t)) + DB(X(t))y(t)) δtk X(t) +B(X(t))δtky(t), t ∈ [0, T ]
δtk X(0) = 0,
δtk X(t+k ) = δtk X(t−k ) +B(X(tk))(y(t−k )− y(t+k )).

But since δtk X(t) = 0 for t < tk, we can simplify this system to:{
(δtk X)′ (t) = (DA(X(t)) + DB(X(t))y(t)) δtk X(t) +B(X(t))δtky(t), t ∈ [tk, T ]
δtk X(t+k ) = B(X(tk))(y(t−k )− y(t+k )) (17)

where δtky(t) := limε→0(yε(t)− y(t))/ε.
Following the same lines we consider now yε(t) as the solution to

y′ε(t) = a(y(t)ε), t ∈ [0, T ]
yε(t+i ) = b(yε(t−i ), ci), i 6= k,
yε(t+k ) = b(yε(t−k ), ck + ε).

In this case, for t > tk we have

δck
X(t) =

∫ t

0
δck
A(X(s)) + δck

B(X(s))y(s) +B(X(s))δck
y(s) ds

=
∫ t

0
(DA(X(s)) + DB(X(s))y(s)) δck

X(s) +B(X(s))δck
y(s) ds.
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Since δck
X(t) = 0 for t < tk, we can express this as the following ordinary differential equation:{

(δck
X)′ (t) = (DA(X(t)) + DB(X(t))y(t)) δck

X(t) +B(X(t))δck
y(t), t ∈ [tk, T ]

δck
X(t+k ) = 0. (18)

with, again, δck
y(t) := limε→0(yε(t)− y(t))/ε.

In problem (P), the functional we want to minimize is J(u) =
∫ T

0 IH(t)dt. Since IH(t) is continuous
we have that

δtkJ(u) =
∫ T

0
δtkIH(t)dt,

we also have that δck
J(u) =

∫ T
0 δck

IH(t)dt. Hereafter we use expressions (17) and (18) in order to compute
δtkJ and δck

J for systems (SIT ) and (WB′).

D.1 Sterile Insect Technique
We consider system (SIT ). The variable satisfying a differential equation with a jump discontinuity is
MS(t). Therefore, considering X(t) = (SH(t), EH(t), IH(t), SM (t), EM (t), IM (t)) and y(t) = MS(t) we
find that δtkJ =

∫ T
tk

(δtk X(t))3 dt and δck
J =

∫ T
tk

(δck
X(t))3 dt where δtk X(t) and δck

X(t) are defined
by equations (17) and (18) respectively and the subscript stands for the third component of the vector.
There are nonetheless two more terms to compute, δtkMS(t) and δck

MS(t). In the case of the Sterile
Insect Technique we have a closed expression for MS(t), see equation (9), therefore the computation of
the variation of J with respect to tk and ck is straightforward. We have

δtkMS(t) =
{

0, t ∈ [0, tk]
dScke

−dS(t−tk) t ∈ (tk, T ],
(19)

and

δck
MS(t) =

{
0, t ∈ [0, tk]
e−dS(t−tk) t ∈ (tk, T ].

(20)

D.2 Wolbachia method
In the case of the use of Wolbachia (system (WB′)) the variable satisfying a differential equation with a
jump discontinuity is the proportion of Wolbachia infected mosquitoes, p(t). We consider now X(t) =
(SH(t), EH(t), IH(t), EM (t), IM (t), EW (t), IW (t)) and y(t) = p(t). Once more, δtkJ =

∫ T
tk

(δtk X(t))3 dt

and δck
J =

∫ T
tk

(δck
X(t))3 dt. Since the expressions of δtkp(t) and δck

p(t) are significantly harder to find
than in the sterile insect case we compute them in the following propositions.

Proposition 2. Let p solve p′(t) = f(p(t)) +
n∑
i=1

ciδ(t− ti)g(p(t)), t ∈ [0, T ]

p(0) = p0.

with p(t+i ) 6= θ for all i = 1, . . . , n. Let ci be fixed for all i = 1, . . . , n and let pε(t) solve
p′ε(t) = f(pε(t)) +

n∑
i=1
i6=k

ciδ(t− ti)g(p(t)) + ckδ(t− (tk + ε))g(pε(t)),

pε(0) = p0.

Then, the variation of p(t) with respect to tk, δtkp(t) := limε→0
pε(T )−p(T )

ε , is

δtkp(t) =


0, t ∈ [0, tk]
f(p(t−

k
))g(p(t+

k
))−f(p(t+

k
))g(p(t−

k
))

g(p(t−
k

))
f(p(t))
f(p(t+

i
))

i∏
j=k+1

g(p(t+
j

))
g(p(t−

j
))

f(p(t−
j

))
f(p(t+

j−1)) , t ∈ (ti, ti+1], k 6 i 6 n.

(21)
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Proof. We begin considering t ∈ [ti, ti+1]. In each one of these intervals we have that p′(t) = f(p(t)).
Since f is bistable, f(p) < 0 in (0, θ) and f(p) > 0 in (θ, 1). Therefore, since we assumed p(t+i ) 6= θ for all
i = 1, . . . , n, p(t) is injective in [ti, ti+1], and we can write∫ p(t)

p(t+
i

)

dq

f(q) = t− ti.

We define F to be the antiderivative of 1/f vanishing at p(t+i ), that is F (p) :=
∫ p
p(t+

i
)
dq
f(q) , thus we obtain

the relationship
F (p(t))− F (p(t+i )) = t− ti. (22)

We remark that p(t) = pε(t) for all t ∈ [0, tk]. Therefore in that interval δtkp(t) = 0. Hence, we can
restrict ourselves to the case k 6 i 6 n. Differentiating implicitly this equation, we get

1
f(p(t))δtkp(t)−

1
f(p(t+i ))

δtkp(t+i ) = 0

and thus
δtkp(t) = f(p(t))

f(p(t+i ))
δtkp(t+i ).

To compute δtkp(t+i ) we use that p(t+i ) = G−1(G(p(t−i )) + ci), therefore

δtkp(t+i ) = (G−1)′(G(p(t−i )) + ci)G′(p(t−i ))δtkp(t−i ) = g(p(t+i ))
g(p(t−i ))

δtkp(t−i )

where we used the inverse function theorem to write (G−1)′ = 1/(G′ ◦G−1). Analogously to equation
(22) we find that F (p(t−i ))− F (p(t+i−1)) = t− ti−1, so δtkp(t−i ) = f(p(t−

i
))

f(p(t+
i−1))δtkp(t

+
i−1). We can repeat this

process iteratively until we get to F (p(t−k+1))− F (p(t+k )) = t− tk, then

1
f(p(t−k+1))

δtkp(t−k+1) = −1 + 1
f(p(t+k ))

δtkp(t+k ) = −1 + 1
f(p(t+k ))

g(p(t+k ))
g(p(t−k ))

δtkp(t−k )

and δtkp(t−k ) = δtk
∫ tk
tk−1

(f(p(t)))dt = f(p(t−k )) from which we can deduce the final expression.

Note that in the expression of δtkp(t) we are using the convention that if the productory subscript is
bigger than the superscript, then its equal to 1.

Proposition 3. Let p solve{
p′(t) = f(p(t)) +

∑n
i=1 ciδ(t− ti)g(p(t)), t ∈ [0, T ]

p(0) = p0.

with p(t+i ) 6= θ for all i = 1, . . . , n. Let ti be fixed for all i = 1, . . . , n and let pε(t) solve
p′ε(t) = f(pε(t)) +

n∑
i=1
i6=k

ciδ(t− ti)g(p(t)) + (ck + ε)δ(t− tk)g(pε(t)),

pε(0) = p0.

Then, the variation of p(t) with respect to ck, δck
p(t) := limε→0

pε(t)−p(t)
ε , is

δck
p(t) =


0, t ∈ [0, tk]

g(p(t+k )) f(p(t))
f(p(t+

i
))

i∏
j=k+1

g(p(t+
j

))
g(p(t−

j
))

f(p(t−
j

))
f(p(t+

j−1)) , t ∈ (ti, ti+1], k 6 i 6 n.
(23)
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Proof. Following a very similar process to the one carried out in the proof of Proposition 2, we obtain
δck
p(t) = f(p(t))

f(p(t+
i

))δck
p(t+i ). In problem (P), the ci must satisfy the constraint

∑n
i=1 ci = C, but we are

not dealing with this constraint for the moment, therefore δck
ci = δki, where δki is the Kronecker’s delta.

We compute δck
p(t+i ), obtaining

δck
p(t+i ) = (G−1)′(G(p(t−i )) + ci)

(
G′(p(t−i ))δck

p(t−i ) + δki
)

= g(p(t+i ))
g(p(t−i ))

δck
p(t−i ) + δkig(p(t+i )).

Following the same lines of the proof of Proposition 2, from equation (22) applied in the interval [ti−1, ti],
differentiating implicitly we obtain δck

p(t−i ) = f(p(t−
i

))
f(p(t+

i−1))δck
p(t+i−1). Finally, iterating the process until the

interval [tk, tk+1] and rearranging the terms we obtain the result.

E Numerics: an augmented Lagrangian algorithm
In this section, we explain and detail further the numerical method used for obtaining the results. We
implemented a gradient descent to optimize the times of the releases, ti. At each step, the coefficients
(ci)16i6n being given, the control function was updated according to

uk+1 = ΠT (uk − εt∇tJ(uk)) , where ∇tJ(u) = (δt1J(u), . . . , δtnJ(u))

and where ΠT denotes the projection onto the set of controls{
n∑
i=1

ciδ(t− ti), 0 6 t1 6 . . . 6 tn

}
.

Here, J(u) =
∫ T

0 IH(t)dt. The values of δtiJ(u) for i = 1, . . . , n have been computed in Proposition 2
(see Appendix D).

Starting from a random initial condition we optimize the time of the releases, ti, until a certain level
of functional flatness is attained. Then we optimize the ci, that is, the amount of mosquitoes released at
each ti.

The costs, ci, have been optimized using an augmented Lagrangian algorithm, which comes to consider
the following functional

L(u, λ) =
∫ T

0
IH(t)dt+ λ

(
n∑
i=1

ci − C

)
+ ρ

2

(
n∑
i=1

ci − C

)2

.

The second term is added in order to take into account the constraint
∑n
i=1 ci = C. The real number

λ is the Lagrange multiplier associated this constraint, which has to be find numerically at the same
time than u. The augmented Lagrangian method transforms the constrained minimization problem into
an unconstrained one, similarly to the Uzawa algorithm. The new functional has to be minimized with
respect to u, and maximized with respect to λ. The solution to the problem is hence searched as a saddle
point of L. The addition of the third term can be seen as a convexification of the dual problem. The
addition of the squared term to the Lagrangian accelerates the convergence whenever ρ is chosen carefully.

In order to find the saddle point of L we take one step at a time, minimizing with respect to u and
maximizing then it with respect to λ, following the scheme:

uk+1 = uk − εc (∇cJ(uk) + λk + ρ (
∑n
i=1 ci − C)) ,

λk+1 = max (λk + ρ (
∑n
i=1 ci − C) , 0) .

Where ∇cJ(u) is the gradient of the functional J(u) with respect to the costs, analogous to ∇tJ(u). The
components of ∇cJ(u) have been computed in Proposition 3 (see Apendix D). Additional explanations
regarding augmented Lagrangian type algorithms can be found in [15].

In order to picture better the algorithm implemented we provide in figure 6 an example of history
of two key quantities along the iterations of the algorithm, namely J(u) =

∫ T
0 IH(t)dt and

∑
i ci − C
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during a simulation. We take as an example the simulation for the sterile insect technique with 20 releases
and C = 7.5 · 107. The value of J falls sharply at the begginning as the times of the releases, (ti)16i6n,
move from their initial random positions. The oscillations observed later correspond to the first time we
optimize the weights, (ci)16i6n. Since we are looking for a saddle point of L there are iterations where
the value of J actually increases. Then it starts a slow convergence to the final state where the values of
(ti)16i6n and (ci)16i6n are refined. The simulation stops when a certain level of functional flatness is
attained. In Figure 6, on the right the x-axis presents less iterations since we only show the iterations
on the weights. At first this quantity oscillates until the value of L stabilizes. Since we alternate the
optimization of the times and the weights, whenever the times are adjusted, new oscillations appear as the
weights, (ci)16i6n, adjust to the new (ti)16i6n values. As expected, in the long run

∑
i ci − C stabilizes

around 0, so the constraint
∑
i ci = C is respected.

Figure 6: Evolution of the functional J(u) and
∑
ci−C during the sterile insect simulation for 20 releases

and C = 7.5 · 107.
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