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Contribution of the Omnidirectional
Autonomous Mobile Robot to
Manufacturing Systems Agility

Jeannette Flayfel, Guillaume Demesure, Hind Bril El-Haouzi

Abstract: Nowadays, achieving a certain level of agility in a manufacturing system represents
a step forward in the direction of Industry 4.0. As material handling is a very important
aspect of production systems, the use of Autonomous Mobile Robots (AMR) has started to
gain increasing popularity in the manufacturing domain. This paper focuses on two main
problems. The first one is the study related to the agility requirements for a continuous
changing demand in a shopfloor with focus on the material handling solutions, considered
as the best for agility: the Autonomous Mobile Robots. The second problem addressed in
this paper is the actual implementation, on a robot prototype with the help of a Particle
Swarm Optimization algorithm for the robot path planning and sliding mode control for path
tracking.
Keywords: Manufacturing agility, Autonomous mobile robots, Automated Guided Vehicles.

1 Introduction
In a continuously changing world, the idea of constant development is necessary to keep the
inertia of persisting, ongoing growth. As in many other domains, the manufacturing domain
needs to keep up with versatile demands in order to satisfy its customers’ needs. Such needs
involve mainly mixed product types and variations in demand. In the past, the availability
of products consisted of providing products with no variety in size or packaging. Today,
however, companies are promoting a higher product variation in size, type, or package, which
require constant changes in manufacturing lines [1]. This first problem requires agility as a
“must have” element in manufacturing systems so that the product demand is reached. In
general, agility refers to “the successful exploration of competitive bases (speed, flexibility,
innovation-proactivity, quality and profitability) through the integration of reconfigurable
resources and best practices in a knowledge-rich environment to provide customer-driven
products and services in a fast changing market environment” [2].
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The second problem which arises along with the need for agility involves implementing the
appropriate technology so that a manufacturing line could handle the client’s demand. One of
the most important competitive bases to improve the agility is the flexibility. The flexibility
provides companies with possibilities of adaptation to meet customers order’ demands. In
that sense, material handling systems are important resource that enhance the flexibility to
enable the agility. In order to reach a certain level of agility, the material handling means
need to be in accordance with a reconfigurable manufacturing system (RMS) which allows
the production to be flexible and responsive enough to meet customers’ fluctuating demand
as well as the integration of a smaller product family.

The six core features of the RMSs are Modularity, Integrability, Diagnosability, Convert-
ibility, Customization and Scalability. The Convertibility and Customization features of an
RMS refer to the ability of a system to be adaptable to new system changes to manufacture a
different product demand, respectively the flexibility of the system to produce a part, family,
as well as specific parts, leading to a more customized range of products [3]. Hence, the
integration of robots come as a solution for the material handling problem which plays a big
role in obtaining the convertibility and customization features of an RMS. In particular, the
enhancement of new generation of robots with connectivity and smart capability have paved
the way for CPS and IoT paradigms that are the main pillars of Industry 4.0.

In this light, the paper focuses on the treatment of the material handling problem which
contributes to solving the agility need in manufacturing systems. In [1], it is stated that
upgrading the material handling solution could have a positive effect on the manufacturing
system’s level of flexibility, which is the main issue that this paper will address. The discussed
material handling upgrade is the use of Autonomous Mobile Robots (AMR) instead of
Automated Guided Vehicles (AGVs) or conveyors. The aim of this study is to demonstrate
the contribution of AMRs, especially the omnidirectional wheeled mobile robots, to the system
agility and the present an effective implementation to TRACILOGIS test-bed platform.

The rest of the paper is organized as follows. Section 2 gives a better understanding about
the study of the related works. Section 3 shows the proposed methodology and Section 4
presents the findings obtained after the execution of the case study along with an evaluation
of these results and finally section 5 draws the overall conclusions.

2 State of the art
2.1 Material handling in Industry 4.0

The material handling problem generally refers to “the movement, storage, protection and
control of materials and products throughout the complete lifecycle of manufacturing, ware-
housing, distribution and disposal” [4]. Based on this definition, the paper concentrates
primarily on the movement of the products, semi-products or any materials inside the manu-
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facturing stage of a product lifecycle. The main solutions found in literature that responds
to the movement or transportation issues of materials, semi-products, or products refers
to conveyors, automated guided vehicles (AGV) and autonomous mobile robots (AMR).
The most classic material transportation system among those presented above is conveyors.
Mainly, a conveyor is a system of transportation material from one place to another, according
to a design layout that has been primarily installed. The main downside of this kind of
material transportation solution is lack of flexibility. For this reason, another means of
material transport has been introduced, more dedicated to manufacturing systems, namely
AGVs. The first introduction of automated guided vehicle dates back to 1955. It represented
a step forward in the world of industry, where it was mainly used for material handling.
The evolution of the guiding system has gone through different stages including mechanical
guidance, optical guidance, inductive guidance, inertial guidance, laser guidance, and finally
vision-based guidance which is heavily used today [5].

As a better solution to the material handling problem response, the so-called “upgraded”
AGVs are considered. These types of robots are most popularly known under the name of
autonomous mobile robots (AMRs) [6]. As by definition, “Autonomous mobile robots are
industrial robots that use a decentralized decision-making process for collision-free navigation
to provide a platform for material handling, collaborative activities, and full services within a
bounded area” [5]. These AMRs are considered to be an “evolution” from the already existent
AGVs which bring within implemented technology that gives the robot the capability to
deliver better results based on a decentralized decision-making process in comparison with
the old AGVs. However, the new capabilities requires better solutions for AMR navigation
that also depends on the locomotion. Thus, the first issue regarding the implementation of
the AMR is the decision over the appropriate locomotion mean for the robot. When it comes
to locomotion, mobile robots could be classified into two categories, such as legged mobile
robots and wheeled mobile robots. The legged mobile robots locomotion is inspired from
nature, imitating the locomotion system of mammals or reptiles. However, the disadvantages
in mechanical complexity and inefficiency for manufacturing systems do not make it a
suitable locomotion mean in our case [7]. The wheeled mobile robots on the other hand
are more popular and they could be equipped with different wheel types like Conventional
wheels, Caster (passive) wheels or omnidirectional wheels. By comparing these three types
of wheels [8], despite their manufacturing complexity and sensitivity to rough surfaces, the
omnidirectional wheels, such as the Mecanum ones, could be considered as better solution
due to their degree of freedom (DoF ) when full equipped on AMRs. Indeed, a robot with 2
conventional wheels and one caster wheel (equivalent to a robot with tracks) can navigate
longitudinally and can turn (with DoF = 2), while the conventional wheels provide AMR
with lateral navigation (DoF = 3).

The other main issue in AMR implementation refers to navigation tools, especially both
trajectory/path planning and tracking control. The path planning problem could be split
into two sub-problems, which are known as Global path planning and Local path planning.
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The global path planning refers to the calculation of the path that the robot needs to do with
the help of a map of the environment which integrates the already existing obstacles. Having
this information, the robot is supposed to calculate the optimal path to reach its destination.
The local path planning, on the other hand, refers to the recalculation of the route according
to the encountering of unexpected obstacles, while keeping the same destination target and
an optimal pathway solution. The map is constantly updated with the help of sensors
installed on the robot. The recalculated map is supposed to lead the robot in such way
that it avoids the newly encountered obstacles and it resembles as much as possible to the
pre-calculated path by the global path planner [9]. For the actual path planning, different
methods have been proposed such as probabilistic roadmaps, cell decomposition, Voronoi
partition, and optimization techniques [10][11]. When manufacturing performances in terms
of completion time are required, optimization-based motion planners seem to be appropriate
tools [12]. However, the complexity of motion planning problem (NP-Hard) leads to the
use of meta-heuristics-like solutions, PSO (Particle Swarm Optimization) algorithm [13],
GA (Genetic Algorithm) [14], ACO (Ant Colony Optimization) algorithm [15]. In order to
generate appropriate trajectories of the robots, path smoothing techniques, which transform
the motion planning problem to parametric optimisation one, are required. The literature
provides different solutions [16] and B-spline curves in comparison with other techniques
offers interesting properties such has the local control of the trajectory generation (especially
to deal with collision avoidance issue).

2.2 Benefits of AMRs over AGVs in terms of agility

Unlike the AMRs, the well-known AGVs only follow predefined paths, and once they are
deviated from their paths, they cannot find them again without external intervention (from
AGV central system, usually). AMRs, on the other hand, are capable of moving in any given
area without experiencing any incidents. Because an AGV must follow a predefined path, the
reconfiguration of the guiding path in an operational area can be very time-consuming. Aside
from the benefit of a very quick pathway reconfiguration, AMRs have additional advantages
to provide, such as patrolling and collaborating with operators, as well as communicating
among themselves, resulting in decentralized control. To complement navigation and the
identification of objects, the AMRs give better autonomous operational capabilities to avoid
potentially encountered objects in their travel zones in some unpredictable scenarios such as
obstacle avoidance and path recalculation [1]. The AGVs need pre-installed guide paths in
order to operate along with a centralized control unit, whereas AMRs have a so-called “travel
zone” and their control is decentralized. According to [5] after comparing centralized and
decentralized control in terms of performances, the decentralized control has a better response
in favour of system’s control except for when is performing a single-objective optimization
task.
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Since the aim of this paper is to demonstrate the contribution of AMRs to the system
agility, a small comparison between these material handling solutions is presented here. Agility
defined from the perspective of robot transportation problem represents “the ability of a robot
system to succeed in an environment of continuous and unpredictable change by reacting
efficiently and effectively to changing factors” [17]. Determining the overall measurement
of an agile robot system could provide better insights into the real advantages, and most
importantly, the real agility level that a robot system has. Agility could be measured through
a couple of criteria with three time metrics as follows, the Cycle Time (Cy), which is the
period that the robot needs to complete one cycle of an operation or complete one task from
beginning to end, the Planning Time (Pl), which is the time spent by the robot to plan the
desired task before beginning the action of doing that task and finally the Changeover Time
(CO), which is the amount of time it takes a robot to “automate the configuration of the
equipment settings for changing over from one product to another” [17].

To be able to calculate these parameters, a small case study for the proof of concept has
been conducted in which a comparison of these KPIs was done, by considering the execution
of two similar tasks, firstly as executed by a line follower AGV and secondly by an AMR. Here,
to conduct our experiments, the AMR has been downgraded to be considered as an AGV.
Both robots are supposed to recreate two specific paths, illustrated in Fig. 1 for two different
cases. In the first case, the robot needs to go on a trajectory from Machine A to Machine
B; in the second case, the robot considers that the manufacturing process has changed so
it has to go now on the trajectory from Machine C to Machine D. The distance between
Machine A (resp. C) and Machine B (resp. D) is 3m (resp. 2m). The AGV path update is
done by the AGV system, while the AMR updates its trajectory. The speed of the robot is
considered to be 0.5m/s for both. The times measured for those KPIs are shown in Table 1.
The Total Time (Tt) presented in the table is the KPI summation as T = Cy + Pl + Co.

Figure 1: Machines layout for the two proposed cases

Based on the data presented in Tab. 1, the ∆ column shows the difference between
the times needed for the robots to complete the tasks. The results show a substantial
difference using an AMR for the task execution, the advantage being highlighted in the total
time needed for the robot to perform a task. Even if the planning time is greater for an
AMR compared to AGV (for both Case 1 and Case 2), the big difference is noticed in the
Changeover Time where a line-follower AGV would need 72 seconds for Case 1 and 48 seconds
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Case 1: machines A to B Case 2: machines C to D

Cy Pl Co T ∆ Cy Pl Co T ∆

AGV 6 0 72 78
70.5

4 0 48 52
46.6AMR 6 1.5 0 7.5 4 1.4 0 5.4

Table 1: KPIs measurements (in seconds) for an AGV and an AMR

for Case 2 (since the update requires a global update, done by AGV system), but for the
AMR the Changeover Time is 0 since there is no need for a pre-settled guideline for the robot
functioning. Therefore, the agility performance of the AMR is significantly higher compared
with that of an AGV. Moreover, in the previous section, the six core features of RMSs were
presented. The Convertibility feature, which is the ability of a system to be adaptable to
new changes for manufacturing a different product demand, is in line with the high agility
offered by the AMR.

3 Proposal: agile AMR
As mentioned in Section 2, the advantages that the omnidirectional wheels bring within refer
to their capabilities to provide AMR with high degree of freedom (DoF = 3) [18]. In this
section, we propose to present the benefits of omnidirectional wheels to AMR agility. The
objective is to demonstrate that, although using similar tools, these wheels are more suitable
for AMRs to contribute to agility.

3.1 Hardware and software environment

The equipment used for the demonstration of the implemented algorithm is a Lego robot
with an incorporated Lego Mindstorms EV3 brick, a Raspberry Pi microcontroller board (Fig.
2). For the robot path generation, the Python programming language has been used, more
precisely a Python 3.8.3 version and a Spyder IDE. For the robot control implementation,
the Simulink graphical programming environment of the MatlabR2021a has been used. The
AMR prototype is equipped with four Mecanum wheels, which are omnidiretional.

3.2 Motion planning and tracking strategies

In order to compare AMR with conventional or Mecanum wheels, we used the trajectory
planning and tracking tools from [12]. In this article, the PSO algorithm was chosen to
implement the motion planning with following advantages: simplicity in algorithm implemen-
tation, calculation and conceptual wise, especially compared with other heuristic algorithms
approaches; increased quality in the algorithm convergence with results delivered in shorter
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Figure 2: The EV3 Lego mindstorms robot, equipped with Mecanum-like omnidirectional
wheels.

time compared with other optimization algorithms as well as the capability to deal with
continuous variables.

The searching algorithm of the PSO is based on a method of parallel searching. A swarm
size is initially given and all the particles fly in the search space, having for purpose to find
the global minima (or global maxima). At each tth iteration, the particles move to a new
position xt+1

i (Equation 2) according to its velocity (Equation 1)

vt+1
i = ωvti + c1r

t
1(p

t
best,i − xt

i) + c2r
t
2(gbest − xt

i) (1)
xt+1
i = xt

i + vt+1
i (2)

Where, xt
i and vti are respectively the position and velocity vectors of particle i at iteration

t. ptbest,i is the personal best position of particle i achieved so far and gbest is the global best
position among all particles. ω is the inertia weight and c1 and c2 are positive acceleration
constants which are used to level the contribution of the cognitive and social components
respectively, rt1 and rt2 are random numbers from uniform distribution U ∈ (0, 1) at time
t [13]. The parameters tuning of PSO is done according to Trelea guidelines [19] where
c1 = c2 = 1.4. To determine the number of iterations and the swarm size, some tests have
been effectuated by choosing firstly three swarm size dimensions such as 20, 40 and 80 as
well as for the number of iterations 50, 100 and 150 epochs. In the first test phase, a total
number of 9 parameter combinations has been considered to be tested. For each parameter
combination, the python code has been executed 10 times. The performance of a certain
parameter combination has been measured according to the computation time and the time
needed for the robot to do the path. After testing this first trial set, it has been observed
that a lower number of iterations and a bigger swarm size more appropriate for algorithm
convergence and has a smaller computation time. Thus, a second set of parameters has been
chosen for testing, where the the swarm size takes the values of 120, 150, and 200 and the
number of iterations 20, 35 and 50. Again, a total number of 9 parameter combinations has
been considered to be tested and the performance of the parameter combination has been
measured the same way as before. After this final trial, the best parameter combination

7



seems to have the number of particles equal with 200 and the number of iterations 20. Finally,
the inertia weight ω has also be tuned according to [20],where the values attributed to this
parameter they usually linearly decrease from 0.9 to 0.4. As a result, this solution is better
than a constant value of ω = 0.65. Therefore, the ω = [0.90.80.70.60.50.4] vector has been
chosen to obtain the values for the inertia weight as the number of epochs decreases.

After tackling the motion planning problem, the tracking of the generated trajectory has
been investigated. Since the wheels are different (Mecanum), it requires a different kinematic
model of the robot. For instance, the kinematic model for a car-like mobile robot with four
Mecanum wheels has been implemented with Equation 3 according to [18].

vx
vy
ω

 =
R

4

 1 1 1 1
−1 1 1 −1
−1
a+b

1
a+b

−1
a+b

1
a+b



ω1

ω2

ω3

ω4

 (3)

Where ωk is the angular velocity for each wheel (k = 1...4), R is the radius of the wheel,
a and b are respectively the distances on x and y axis from the centre of the robot and the
wheel axis, vx and vy are the velocity vector components and ω is the angular velocity of the
robot. This model is mandatory to design the closed-loop controller based on the inverse
kinematic model, which transforms the tracking errors to independent control of each wheel
(Eq. 4). After measuring the required parameters to replace in the models, the following
values have been obtained: R = 0.003m, a = 0.125m and b = 0.130m. Then, a sliding mode
controller has been chosen for its robust properties, similarly to [12] and the Matlab/Simulink
environment is used to tune its parameters, as depicted in Fig. 3.

ω1

ω2

ω3

ω4

 =
1

R


1 −1 −(a + b)
1 1 (a + b)
1 1 −(a + b)
1 −1 (a + b)


vx
vy
ω

 (4)

Figure 3: Simulink model used for controller parameter tuning
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Figure 4: Above view of AMR environment and motion planner results from PSO

3.3 Results and experimentation

To highlight the operational capabilities of the robot after the implementation of the proposed
solution to the problem, a study case has been set up inside the laboratory. The environment
where the robot has to operate consists of a small surface 3m long and 2m wide with two
obstacles, with a short range one. The reference point which helped calculate the position of
the obstacles is, for our experiments, situated at (x, y) = (0, 0). Figure 5 shows an above-view
of the room layout and the results given by the motion planner after running the Python
code with a swarm size = 200 and a number of epochs = 20. It depicts as well the resulted
path that the robot needs to track and the already known obstacles. We can notice that this
trajectory should be, for AMR manufacturing application as in [12], a last second update to
avoid an unpredicted obstacle.

The blue line represent the control polygon which are searched by the algorithm; the red
line is the trajectory obtained after applying the spline function to obtain the B-spline curve.
The black circles circumscribe the physical obstacles with their corresponding radius and the
green dotted circles are the maximum limit that the red line could cross (obstacle radius
augmented by the robot size). The provided results shows the effectiveness of the designed
algorithm to provide collision-free trajectory.

After running the Simulink model presented in Figure 3, the computed path that the
robot is supposed to track, according to the values received from the python code, is plotted
in Figure 5.

Figure 6 shows four different pictures of the implemented Lego robot successfully avoiding
the obstacle without having to change its orientation. Also, a full demonstration of the
robot’s performance could be found online1.

This experiment shows the advantage of omnidirectional wheels and the possibilities to
1https://www.youtube.com/watch?v=QkRbZMfBBgk
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Figure 5: Path tracking results from simulation

Figure 6: Pictures of AMR avoiding the obstacle

implement them in manufacturing processes. Indeed, by equipping the robot with this type
of wheels, not only that we benefit from the high degree of freedom but also, the robot is able
to avoid imminent obstacle in a manner that the conventional wheels could not, as shown
Figure 7. This ability clearly contribute to agility since the AMR become capable to adapt its
plan, without important delay and with few disturbances on others AMRs (or other entities)
that may cross the area where the AMR is navigating/manoeuvring.

Figure 7: Obstacle avoidance by AMR with a) conventional wheels, b) Mecanum wheels
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4 Conclusion
In the manufacturing domain, the constant changes in product demand lead to the need for
a manufacturing system which is capable to cope with agility requirements. As a response
to this need, a so-called Reconfigurable Manufacturing System (RMS) has been proposed.
This system introduces a manufacturing system which is superior in comparison with the
previously proposed one in terms of product demand, flexibility, machine structure, product
family formation, productivity, systems structure and variety. This paper mainly focused
on the implementation of the solution to solve the material transportation problem in a
Reconfigurable Manufacturing System. A literature survey has been deducted for this problem,
and among the most widely used transportation means in manufacturing, we could enumerate
conveys, AGVs and AMRs. Despite their easy implementation and low cost compared with
the other two, the conveyors do not offer the required flexibility to implement a RMS. Even
though the AGVs are a more flexible material transportation solution, they still lack primarily
the convertibility aspect which AMRs have. To reach the sufficient flexibility that contribute
to agility, we focus on the use of omnidirectional wheels for AMRs while implemented the
required navigation tools. The two main navigation problems for an AMR represent the
path planning and the path tracking. For the path planning, heuristics and meta-heuristics
approaches could be found in literature and among them we could enumerate GA, PSO or
ACO. The proposed solution to the path planning, which is the PSO implementation, includes
the following main advantages, such as easy implementation, low computational cost and
simplicity. The biggest issue that has been encountered during this project was manoeuvring
of the Lego Robot. As all these robots are only used for educational purposes, their capacities
are limited in terms of command precision. As it has been mentioned in Section 4, the
tracked trajectory that the robot executes compared with the planned trajectory presents
some errors. The lack of robustness in the mechanical assembly of the robot, especially for
the assemblage structure of the wheels which do not benefit from any suspension system,
affected the route tracking. We could also underline that the robot’s final performance is
affected by the vibrations and wheel slippage. Regardless of the robot’s performances that
were limited by external factors, its successful implementation represents a very good lead
for future developments in material handling, especially for manufacturing system.
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