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a global dataset for the projected 
impacts of climate change on four 
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Reliable estimates of the impacts of climate change on crop production are critical for assessing the 
sustainability of food systems. Global, regional, and site-specific crop simulation studies have been 
conducted for nearly four decades, representing valuable sources of information for climate change 
impact assessments. However, the wealth of data produced by these studies has not been made 
publicly available. Here, we develop a global dataset by consolidating previously published meta-
analyses and data collected through a new literature search covering recent crop simulations. the  
new global dataset builds on 8703 simulations from 202 studies published between 1984 and 2020.  
It contains projected yields of four major crops (maize, rice, soybean, and wheat) in 91 countries under 
major emission scenarios for the 21st century, with and without adaptation measures, along with 
geographical coordinates, current temperature and precipitation levels, projected temperature and 
precipitation changes. this dataset provides a solid basis for a quantitative assessment of the impacts 
of climate change on crop production and will facilitate the rapidly developing data-driven machine 
learning applications.

Background & Summary
Climate change affects many processes of food systems directly and indirectly1, but the primary effects often 
appear in crop production. Projections of crop production under future climate change have been studied since 
the early 1980s. From the 1990s onward, researchers have used future climate data and crop simulation models 
to project the impacts of climate change on crop yields under various scenarios2. Since then, crop simulation 
models have been used in hundreds of studies to simulate yields for different crops under a range of climate sce-
narios and growing conditions3. The results have been periodically reviewed and assessed by national and inter-
national organisations, in particular by the Intergovernmental Panel on Climate Change (IPCC) Working Group 
II, which provides policy-relevant scientific evidence for the impacts of and adaptation to climate change3. 
Review studies covering the last five IPCC assessment cycles confirm that the overall effects are negative but 
vary significantly among regions4,5.

Before 2010, simulation studies were conducted mainly by individual research groups using different climate 
models, target years, spatial resolution with local management and cultivar conditions. Since 2010, however, 
significant efforts have been made to coordinate modelling studies through Agricultural Model Intercomparison 
and Improvement Project (AgMIP)6, which compares results from multiple crop models using standardised 
inputs. Early AgMIP activities have disentangled sources of uncertainties in crop yield projections and revealed 
that yield projections are variable among crop models and that model ensemble mean or median often works 
better than a single model7–10, underpinning the importance of datasets based on multiple crop models.

Data sets including crop model simulations produced by AgMIP were subjected to statistical analysis and 
the results were used to quantify the impacts of climate change on major crops11,12. A versatile tool to aggregate 
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simulated results is already available for global gridded studies13 to facilitate access to the data. Besides these 
coordinated efforts, however, many simulation results are scattered and not readily available for meta-analysis. 
To deliver policy-relevant quantitative information, we need to develop a shared and well-documented database 
that can be used to assess the impacts of different climate and adaptation scenarios on crop yields.

Here, we have developed a global database for potential use for the IPCC Working Group II assessment, 
obtained through two methods. The first method draws on the dataset used in the meta-analysis of Aggarwal, et al.5,  
which includes studies considered in the previous five cycles of IPCC assessments4,14. The second method is 
based on a new literature search of studies published during the sixth IPCC assessment cycle (covering the period  
2014–2020) reporting crop simulations produced for several contrasting climate change scenarios. The com-
bined dataset covers all six cycles of the IPCC assessment and can serve as a solid basis for analyses from the 
sixth IPCC assessment onward.

The dataset contains the most relevant variables for evaluating climate change impacts on yields of maize, 
rice, soybean, and rice for the 21st century. They include geographical coordinates, crop species, CO2 emission 
scenarios, CO2 concentrations, current temperature and precipitation levels, local and global warming degrees, 
projected changes in precipitation, the relative changes in yield as a percentage of the baseline period obtained 
with or without CO2 effects, and with or without implementation of different types of adaptation options.

Methods
Data collection. As shown in a PRISMA diagram (Fig. 1), we obtained data through two methods to develop 
this dataset. The first method is based on the previous meta-analysis by Aggarwal et al.5, which includes studies 
published before 2016 (Aggarwal-DS, hereafter). This meta-analysis builds on the dataset used for the 5th IPCC 
assessment report4,14 and an additional search through three types of databases: Scientific database (Scopus, Web 
of Science, CAB Direct, JSTOR, Agricola etc), journals and open access repositories, and institutional Websites 
(FAO database, AgMIP Database, World Bank, etc.) and Google Scholar. See Aggarwal et al.5 for details. Briefly, 
the search terms used by Aggarwal et al.5 include “agriculture” or “crop “or “farm” or “crop yield” or “crop yields” 

Fig. 1 A diagram depicting paper collection and selection using the two search strategies. N is the number of 
studies.
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or “farm yields” or “crop productivity” or “agricultural productivity” or “maize” or “rice” or “wheat” and “climate 
change assessment” or “climate impacts” or “impact assessments” or “climate change impact” or “climate impact” 
or “effect of climate” or “impact of climate change”. The number of selected papers covering the four major crops 
is 166. We further screened them according to the availability of local temperature rise and geographical informa-
tion, and traceability, resulting in 99 studies published between 1984 and 2016.

The second method relies on a new recent literature review conducted using Scopus in March 2020 for four 
major crops (maize, rice, soybean, and wheat) for peer-review papers published from 2014 onward in line with 
the sixth assessment cycle of IPCC. In this method, we used several combinations of terms to retrieve rele-
vant studies reporting simulations of the impacts of climate change on crop yields using recent climate change 
scenarios.

For maize, the following search equation was used: PUBYEAR > 2013 AND TITLE-ABS-KEY((maize OR 
corn) AND ((“greenhouse gas” OR “global warming” OR “climate change” OR “climate variability” OR “climate 
warming”)) AND NOT (emissions OR mitigation OR REDD OR MRV)).

Similar search equations were used for the other crops. Collectively, this search returned a total of 4703 
references between 2014 and 2020: 1899 for maize, 1790 for wheat, 757 for rice, and 257 for soybean with some 
duplications because some papers studied multiple crops. Removing the duplicates, the number is down to 3816 
studies.

To collect climate-scenario-based simulations, we then selected a subset of studies including the following 
terms related to climate scenarios in titles, abstracts, or authors’ keywords; “RCP”, “RCP2.6”, “RCP6.0”, “RCP4.5”, 
“RCP8.5”, “CMIP5”, and “CMIP6”. RCP stands for the Representative Concentration Pathways15, and each RCP 
corresponds to a greenhouse gas concentration trajectory describing different future greenhouse gas emission 
levels. The number followed by RCP is the level of radiative forcing (Wm−2) reached at the end of the 21st cen-
tury, which increases with the volume of greenhouse gas emitted to the atmosphere16. CMIP517 and CMIP618 

Fig. 2 Data availability of crop yield simulations and its breakdown. (a) By global temperature rise from the 
preindustrial era and climate scenarios, (b) By projected time periods (midpoint years) and climate scenarios, 
(c) IPCC regions29 and crop species, and (d) adaptation options and crop species. Note that n = 9812 in 
adaptation options (d) exceeds the total number of simulations (8703) because we collectively add all the 
options used in the simulations, including those that use multiple options. n is the number of simulation results.
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are the Coupled Model Intercomparison Project Phase 5 and Phase 6, respectively, where groups of different 
earth system models (ESMs) provide global-scale climate projections based on different RCPs. Additionally, 
“process-based model” was used to search in the authors’ keywords to select for studies that use crop simulation 
models under CMIP5 or CMIP6 climate scenarios. As of March 2020, no results were found for CMIP6 in any 
search results.

This screening process resulted in a total of 207 references all together for four major crops. These studies 
were further evaluated for their variables and data availability; studies not reporting yield data were excluded. 
Projected yields with and without adaptations and yields of the baseline period were extracted, along with geo-
graphical coordinates, crop species, greenhouse gas emission scenarios, and adaptation options. We also tried to 
obtain local and global temperature changes and CO2 concentrations as much as possible. In addition to extract-
ing data from the literature, we contacted several authors of grid simulation studies to provide aggregated results 
for countries or regions. The authors of the three grid simulation studies responded and provided baseline and 
projected yields, annual temperature and precipitation data aggregated over for countries or regions19–21. The 
results from different ESMs were then averaged.

We removed duplicates between the datasets produced by the two methods and ultimatelly obtained a 
total of 202 unique studies. Both datasets include studies with different spatial scales: site-based, regional, and 
global. Among these, the results from the global gridded crop models were aggregated to country levels, and 
we focused on top-producing countries, which account for 95% of the world’s production of each commodity 
as of 2010 (FAOSTAT, http://www.fao.org/faostat/en/, accessed on September 4, 2020). As a result, the dataset 
contains 8,703 sets of yield projections during the 21st century from studies published between 1984 and 2020 
(Online-only Table 1).

Relative yield impacts. Simulated grain mass per unit land area is used to derive the impact of climate 
change on yield (YI), which is defined as:

= − ×YI(%) (Y /Y 1) 100f b

Where Yf is the future yield, and Yb is the baseline yield. One study20 simulated yields separately under both 
climate change and counterfactual non-climate change scenarios from the pre-industrial era toward the end of 
the 21st century, also accounting for yield increases due to non-climatic technological factors over time. In this 
case, YI obtained with the above equation under the climate change scenario was not fully relevant because it 
combines effects of both climate change and technological factors. Thus, for this study, YI was derived from the 
average yield in the 2001–2010 period under climate change and the average yield in the same period assuming 
no climate change, as follows:

YI(%) [{(Y Y ) (Y Y )}/Y 1] 100f_cc b_cc f_ncc b_ncc b_cc= − − − − ×

Where Yf_cc and Yb_cc are the future and baseline average yields with climate change, Yf_ncc and Yb_ncc are the 
future and baseline average yields under counterfactual no climate change scenario.

Projected absolute grain yield (t/ha) is also included in the dataset, when available. These values should be 
used with caution because absolute grains yields are not always comparable due to the use of different yield defi-
nitions or assumptions. Different definitions include graded or non-graded yields, husked or unhusked, milled 
or non-milled yield. Moisture content correction factors can also be different, but these are not often explicitly 

Fig. 3 Distribution of relative yield change due to climate change from the baseline period (2001–2010) with 
and without adaptation.
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indicated in the literature. Contrary to absolute yields, relative yields are unitless and rule out differences of yield 
defintions between studies.

adaptation to climate changes. Various management or cultivar options are tested in the simulations. If 
the authors of the article consider these options as ways to adapt crops to climate change, we treat them as adap-
tation options, which are categorised into fertiliser, irrigation, cultivar, soil organic matter management, planting 
time, tillage, and others. Specifically, in the fertiliser option, if the amount and timing of fertiliser application 
are changed from the current conventional method, we treat them as adaptation. In the irrigation option, if the 
simulation program determines the irrigation scheduling based on the crop growth, climatic and soil moisture 
conditions, we treat this as adaptation because the management is adjusted to future climatic conditions. If rain-
fed and irrigated conditions are simulated separately, we do not consider irrigation as an adaptation. We define 
cultivar option as the use of cultivars of different maturity groups and/or higher heat tolerance than conventional 
cultivars. The planting time option corresponds to a shift of planting time from conventional timing. If multiple 
planting times are tested, we select the one that gives the best yield. The soil organic matter management option 
corresponds to application of compost and/or crop residue. The tillage option corresponds to reduced- or no-till 
cultivation compared to no conventional tillage. When studies consider adaptation options, we compute YI from 

Fig. 4 Climate change impacts (% of yield change from the baseline period) on four crops without adaptation 
under RCP8.5. (a) Mid-century; (b) End-Century. Maps with bluish symbols show positive effects (yield gain); 
Maps with reddish symbols show negative effects (yield loss). Projections under RCP2.6 and RCP4.5 are given 
in Supplementary Fig. S3.
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the ratio of yield with adaptation under climate change to baseline yield without adaptation. To measure our 
capacity to adapt to climate change, we calculated adaptation potential - defined as the difference between yield 
impacts with and without adaptation - when a pair of yield values were available in the same study.

temperature and precipitation changes. Both local temperature rise (ΔTl) and global mean temper-
ature rise (ΔTg) from the baseline period have important implications. The former directly affects crop growth 
and yield, and the latter represents a global target associated with mitigation activities. We extracted both ΔTl and 
ΔTg from the literature as much as possible, but ΔTg is not available in many studies. In such cases, we estimated 
ΔTg using the Warming Attribution Calculator (http://wlcalc.climateanalytics.org/choices). In the dataset, we 
provide two estimates for ΔTg: one from the current baseline period (2001–2010) and the other from the prein-
dustrial era (1850–1900). We also extracted precipitation changes (ΔPr) and baseline precipitation data reported 
in the selected studies. When only relative changes were available for precipitation data, we estimated ΔPr using 
the reported relative change and current precipitation levels described in the next section.

Current temperature and precipitation levels. Current annual mean temperatures and precipitation 
were obtained from the W5E5 dataset22, which was compiled to support the bias adjustment of climate input data 
for the impact assessments performed in Phase 3b of the Inter-Sectoral Impact Model Intercomparison Project 
(ISIMIP3b, https://www.isimip.org/protocol/3/). The W5E5 dataset includes half-degree grid resolution daily 
mean temperature and precipitation data from 1979 to 2016, which we averaged for the period from 2001 and 
2010. They were then extracted for each simulation site or region using the geographic information. For global 
simulations, which were aggregated to the country level, central coordinates were used to link gridded tempera-
ture and precipitation data with each country. As centroids may not represent the centre of the growing regions, 
particularly in large countries, growing-area weighted averages of annual temperature and precipitation were also 
provided using MIRCA 200023, which contains half-degree grid harvested areas (a total of irrigated and rainfed) 
around the year 2000.

Co2 concentrations. Several studies report two series of yield simulations obtained using two CO2 levels to 
infer the CO2 fertilization effects: one obtained with CO2 concentrations fixed at the current levels and the other 
obtained with increased future CO2 concentrations provided by the emission scenario considered. In the dataset, 
we make this explicit in the following two variables:

 1. CO2: Binary variable equal to “Yes” if future CO2 concentrations from the emission scenarios were used 
and “No” if the current CO2 concentration was used for the yield simulations.

 2. CO2 ppm: if available, CO2 concentration was extracted from the original paper. If not, we calculated  
it from projected changes in CO2 concentrations based on the scenarios and periods studied. CO2 
concentration data were obtained from https://www.ipcc-data.org/observ/ddc_co2.html for CMIP3 and 
Meinshausen, et al.16 (http://www.pik-potsdam.de/~mmalte/rcps/) for CMIP5.

Baseline correction. Because baseline periods differed between studies, we corrected YI, ΔTl, ΔTg, ΔPr to 
the 2001–2010 baseline period by a linear interpolation method following Aggarwal et al.5. Namely, the impacts 
YI were first divided by the year gap between the future period midpoint year and the baseline period midpoint 
year of the original study. The impact per year was then multiplied by the year gap from our reference baseline 
period midpoint year (2005). The same method was applied to express ΔTl and ΔPr relatively to 2001–2010.

We made all data publicly available to increase accessibility (see Data Records section for access).

Data Records
All the data and R scripsts associated with the dataset are stored in the figshare repository24, where the following 
files are uploaded:

Per decade impact (% decade−1) Per degree impact (% °C−1)

Maize Rice Soybean Wheat Maize Rice Soybean Wheat

Minimum −40.0 −40.8 −30.0 −35.4 −158.7 −71.7 −112.6 −122.3

Maximum 14.2 26.2 13.8 21.2 70.8 120.7 58.3 153.7

Mean −3.9 −1.4 −2.6 −1.8 −13.5 −2.6 −8.8 −5.6

1st quartile −5.5 −2.5 −6.7 −3.5 −18.1 −7.1 −16.9 −10.9

Median −2.1 −0.7 −1.2 −1.2 −7.1 −2.3 −4.0 −3.7

3rd quartile −0.3 0.8 1.7 0.7 −1.1 2.7 6.3 2.3

Standard deviation 7.0 4.7 7.4 5.0 25.4 12.0 26.3 17.4

Skewness −1.8 −2.6 −0.9 −1.7 −1.9 1.0 −1.1 −1.2

Kurtosis 8.6 21.9 4.7 10.8 8.6 24.4 5.2 17.4

Table 1. Summary statistics of climate change impacts on four major crops expresses as per decade impact and 
per degree impact without adaptation.
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 1. “Projected_impacts_datasheet_11.24.2021.xlsx” includes three worksheets. “Projected_impacts” work-
sheet contains the final dataset after screening, and “Adaptation_potential” is the extracted subset of the 
paired data comparing yield impacts with and without adaptation. “Excluded” has untraceable simulation 
results in the Aggarwal-DS.

 2. “Meta-data_11.25.2021.xlsx” contains the summary of the dataset, such as the definition and unit of the 
variables used in “Projected_impacts_datatasheet.xlsx”.

Fig. 5 Projected yield changes relative to the baseline period (2001–2010). (a) Mid-century (MC) projections 
without adaptation under RCP8.5 scenario, upper panels showing positive impacts and lower panels negative 
impacts, (b) End-century (EC) projections under three RCP scenarios by current annual temperature (Tave), and 
(c) Yield change as a function of global temperature rise from the pre-industrial period by three Tave levels. The 
box is the interquartile range (IQR) and the middle line in the box represents the median. The upper- and lower-
end of whiskers are median 1.5 × IQR ± median. Open circles are values outside the 1.5 × IQR.

https://doi.org/10.1038/s41597-022-01150-7
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 3. “Online_only_summary_tables_11.18.2021.xlsx” contains data distribution, median, and mean impacts of 
climate change, presented in the online-only tables.

 4. “Supplementary_materials_11.29.2021.pdf ” contains methods for estimating local temperature rise and 
summary distribution of climate change impacts on four crop yields.

 5. “Reference_11.24.2021.docx” provides a list of references that provided data.
 6. “R_script_for_Hasegawa_et.al.11.26.2021.zip” contains R scripts used to estimate missing values of 

ΔTl,ΔTl and ΔPr and draw Figs. 2–6.

Coverage of the data. A total of 8703 yield simulations are registered in the consolidated dataset. The num-
ber of simulations grows exponentially with publication year: 20 in the 1980s, 304 in 1990s, 830 in 2000s and 7549 
in 2010s (Online-only Table 1). About 80% of the simulations use CMIP5 climate scenarios, and 11% use CMIP3. 
From CMIP5, RCP2.6, RCP4.5 and RCP8.5 are the most used concentration pathways (Online-only Table 2, 
Fig. 2a). ΔTg from the baseline period (2001–2010) ranges from 0 to 4.8 °C (0.8 to 5.6 °C from the preindustrial 
period). Almost all simulations with ΔTg > 3 °C use RCP8.5, resulting in a greater ΔTg range under CMIP5 
(RCPs) than under previous scenarios (SRES and others).

Projected time periods span widely in the 21st century, but the midpoint years peak at 2020 for the near 
future, 2050 for mid-century, and 2080 for end-century (Fig. 2b). Major emission scenarios such as RCP2.6, 
4.5 and 8.5 are almost equally distributed across time periods. About 5% of the simulations assume no CO2 
fertilisation effects.

Relative frequency of the regions studied generally reflects harvested areas of the four crops in each region 
(Fig. 2c). About 41% of the simulations were performed in Asia, which accounts for about 47% of the har-
vested area of the four major crops (mean of 2017–2019, FAOSTAT, http://www.fao.org/faostat/en/, accessed 
on April 28, 2021). Europe is slightly overstudied (22%) for its world share of the harvested areas (12%). Central 
and South Americas is slightly under-researched (9%) for the regional share of harvested areas (15%), whereas 
Africa’s share (15%) is comparable to the area harvested (10%). Altogether global harvested areas for these four 
major crops is 7 × 108 ha: wheat represents 31% of this area, followed by maize (28%), rice (23%) and soybean 
(18%). Maize studies are over represented, accounting for about half of the simulations (52%), followed by 
wheat (26%) and rice (17%); soybean accounts only for 3% of the simulations (Fig. 2c). Regionally, maize and 
wheat are harvested across almost all regions, and simulations follow the actual distribution of these crops. Rice 
is predominantly studied in Asia, reflecting actual distribution (85% of the harvested area is in Asia). Soybean 

Fig. 6 Adaptation potential, defined as the difference between yield impacts with and without adaptation in 
projected yield impacts, for three RCPs by mid- and end-century (MC, EC). The box is the interquartile range 
(IQR) and the middle line in the box represents the median. The upper- and lower-end of whiskers are median 
1.5 × IQR ± median. Open circles are values outside the 1.5 × IQR. (a) By adaptation options and (b) by IPCC 
regions.
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remains understudied compared to the other three crops despite its large cultivated area (about 75% of the rice 
harvested area). Regionally, simulation sites or regions for soybean are mostly in the Americas, which account 
for 76% of the total soybean harvested area.

About 39% of the simulations (3376) use current management practices, and the rest (5327) consider dif-
ferent management or cultivars as adaptation options (Fig. 1d). More than half of the simulations are run with 
multiple options. Among these options, fertiliser accounts for 32% followed by irrigation (29%), cultivar and 
planting date (17% each). There are 2005 pairs of yield simulations available for comparing results obtained 
with and without adaptation. These pairs of yield data can be used to compute the adaptation potentials of the 
different options considered.

technical Validation
Data quality check. We repeatedly checked the data with multiple authors for the new dataset. For the 
Aggarwal-DS, we reviewed the sources of references. In case of missing information such as climate scenarios, 
CO2 concentration, or temperature increase, we came back to the original reference. Inconsistencies between 
the dataset and original papers were corrected when possible. Overall, corrections were made on 333 simula-
tions from 10 studies, which we flag with “*” in the remark column of the dataset. We removed all data of the 
Aggarwal-DS that were untraceable in the original paper. This quality control excluded 47 simulations from 9 
articles listed in the “Excluded” sheet.

We first examined the distribution of the climate change impacts on crop yields, which span from −100 to 
136% (Fig. 3). This distribution is skewed to the left, as indicated by the negative skewness. The large kurtosis 
shows that distribution tails are longer than than those of the normal distribution. We tested the effects of 
potential outliers outside the 1.5-fold interquartile range (IQR) on the summary statistics of the climate change 
impacts on crop yields25. Removing values outside the 1.5-fold IQR decreases the number of simulations by 
907(10.4%) and the negative effects of climate change on crop yields by 3.0% for the mean and 0.6% for the 
median, suggesting that the deletion affected the original distribution. We, therefore, keep all the simulation 
results in the dataset.

Methods to estimate local temperature and precipitation changes. Out of 8703 simulations, local 
temperature change (ΔTl) and global temperature range (ΔTg) were available in 4316 and 8109 simulations, 
respectively. To estimate ΔTl for 3793 simulations with missing ΔTl, we examined the relationship between ΔTl 
and the following six input variables in 4316 simulations where ΔTl was available: ΔTg, average temperature 
(area weighted), latitudes, longitudes, time periods, and emission scenarios. Values of ΔTl were estimated using 
random forest algorithms trained to establish a function relating local temperature rise to the six inputs consid-
ered. We tested and compared four models based on different combinations of the input variables. Among the 
four models, a reduced model with three variables (ΔTg, latitude, and longitude) showed the highest percentage 
of explained variance (97.1%), and led to a cross-validated RMSE as low as 0.18 °C (Supplementary Table S1 and 
Fig. S1). We, therefore, used the reduced model to impute ΔTl for the 4430 missing data. We also estimated ΔTg 
for 504 simulations with missing ΔTl from ΔTg, average temperature (area weighted), latitude, longitude, climate 
scenarios, future-midpoint year (Supplementary Table S2 and Fig. S2).

Likewise, we applied a random forest model to estimate ΔPr from current annual precipitation and aver-
age temperature (area weighted), latitude, longitude, local temperature change from 2005), climate scenario, 
future mid-point year, and climate change impact on yield relatively to 2005. Among eight models tested, a one 
with ΔTg, ΔTl, latitude, longitude, RCP, future-mid-point year and current annual precipitation perfomed best, 
which accounted for 96.9% of the out-of-bag variation of the data (n = 3560) and led to a cross-validated RMSE 
was 18 mm (Supplementary Table S3). We then applied this model to estimate all missing ΔPr.

Comparison with previous studies. The overall effects of climate change on crop yields are negative, with 
the mean and median of −11% and −6.2% without adaptation and −4.6% and −1.6% with adaptation, respec-
tively (Online-only Tables 3 and 4). The median per-decade yield impact without adaptation is −2.1% for maize, 
−1.2% for soybean, −0.7% for rice, and −1.2% for wheat (Table 1), which are consistent with previous IPCC 
assessments14. The median per-warming-degree impact is −7.1% for maize, −4.0% for soybean, −2.3% for rice, 
and −3.7% for wheat (Table 1). Per-degree yield impacts for each crop are generally within the range reported 
in the previous meta-analysis11. Among the four crops, soybean has the least number of simulations, resulting 
in a greater variation in both per-decade and per-degree impacts. Maize consistently shows the largest negative 
impacts, while rice shows the least.

The climate change impacts by IPCC regional groups reveals that Europe and North America are expected to 
be less affected by climate change in the mid-century (MC) and the end-century (EC) than Africa, Central and 
South America, particularly for maize and soybean. Both positive and negative effects are mixed in all regions 
(Fig. 4, Supplementary Figs. S3, S4).

Regional differences in the impacts in MC and EC are associated with the current temperature level. In MC, 
positive or neutral effects are projected when current annual average temperatures (Tave) are below 10–15 °C, but 
the effects become negative as Tave increases beyond these levels regardless of RCPs (Fig. 5a). This accounts for 
the regional differences as a function of latitude reported in previous meta-analyses4,5. In EC, the threshold Tave 
shifts lower, and the negative effects become more severe, particularly under a high emission scenario (RCP8.5) 
(Fig. 5b). The effect of ΔTg from the baseline period onYI differs depending on the Tave (Fig. 5c); At Tave < 10 °C, 
YI is generally neutral even where ΔTg > 2 °C in most crops, but at Tave > 20 °C, YI is negative even with small 
ΔTg, notably in maize. The difference in the YI dependence on ΔTg between regions is also consistent with the 
previous study4.
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Adaptation potential averaged 7.3% in MC and 11.6% in EC (Fig. 6, Supplementary Fig. S5), which is not 
sufficient to offset the negative impacts, particularly in currently warmer regions. Residual damages will thus 
likely remain even with adaptation, which is also supported by other lines of evidence26,27.

Usage Notes
Crop yield simulation studies can provide a narrative of when, where, and what will happen to crop production 
under different GHG emissions and climate scenarios. They are also expected to provide quantitative infor-
mation on the potential and limits to adaptation. However, robust estimates covering different temporal and 
spatial scales need to draw on multiple results obtained from various simulation studies. Nearly four decades 
have passed since the model projections based on future climate scenarios started. This dataset covers the entire 
period of simulation studies using climate scenarios, which can help update the quantitative review of climate 
change impacts on crops. The full list of references is provided in the reference file (https://doi.org/10.6084/
m9.figshare.14691579.v4).

Currently, studies are heavily biased towards major cereals such as maize, rice, and wheat, but this can be 
expanded to include other crops. As of 2020, our literature search failed to find published reports using CMIP6 
climate scenarios, but this dataset can be easily updated when new simulations using new climate scenarios or 
other crop species become available. The next IPCC assessment cycle can fully utilise this dataset by adding the 
latest simulation results.

One of the caveats to the current dataset is that it only includes crop yield data, notwithstanding crop simu-
lation studies are expected to produce other results than yield. Because of the recent progress in crop modelling, 
grain quality projections are emerging28. We have extensively included the temperature and precipitation levels 
to account for the impacts concerning the warming and current temperature, but there is a need to include other 
key climatic variables such as soil moisture. It will be useful to expand our dataset in the future to include this 
type of data.

Code availability
Script files were created using the R statistical programming to estimate missing values of ΔTl, ΔTl and ΔPr and 
draw Figs. 2–6 which are available in the figshare repository24.
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