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Hyperspectral Image Compression: Adapting SPIHT
and EZW to Anisotropic 3-D Wavelet Coding

Emmanuel Christophe, Member, IEEE, Corinne Mailhes, Member, IEEE, and Pierre Duhamel, Fellow, IEEE

Abstract—Hyperspectral images present some specific charac-
teristics that should be used by an efficient compression system.
In compression, wavelets have shown a good adaptability to a
wide range of data, while being of reasonable complexity. Some
wavelet-based compression algorithms have been successfully
used for some hyperspectral space missions. This paper focuses
on the optimization of a full wavelet compression system for
hyperspectral images. Each step of the compression algorithm is
studied and optimized. First, an algorithm to find the optimal 3-D
wavelet decomposition in a rate-distortion sense is defined. Then,
it is shown that a specific fixed decomposition has almost the same
performance, while being more useful in terms of complexity
issues. It is shown that this decomposition significantly improves
the classical isotropic decomposition. One of the most useful prop-
erties of this fixed decomposition is that it allows the use of zero
tree algorithms. Various tree structures, creating a relationship
between coefficients, are compared. Two efficient compression
methods based on zerotree coding (EZW and SPIHT) are adapted
on this near-optimal decomposition with the best tree structure
found. Performances are compared with the adaptation of JPEG
2000 for hyperspectral images on six different areas presenting
different statistical properties.

Index Terms—Compression, EZW, hyperspectral, JPEG 2000,
SPIHT, zerotrees.

I. INTRODUCTION

I MAGE sensors, whether used to observe the Earth from
space or to explore deep space and distant bodies, always

seek better data quality to improve the scientific or the strategic
value of the information provided. Improving the performance
of such sensors often requires an increase in the spatial res-
olution, the radiometric precision and possibly the number of
spectral bands. High-spectral resolution instruments, fall within
this global evolution. Such sensors, named either imaging spec-
trometers or hyperspectral sensors, are becoming increasingly
common nowadays.
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Fig. 1. Example of a hyperspectral data cube (Moffett Field): The front of the
cube is a color composite of three spectral bands while the other sides display
the spectra of the side pixels.

Significant constraints limiting the performance of a new
instrument are the available transmission bandwidth and the
on-board storage capacity. The compression step, therefore,
becomes a crucial part of the acquisition system as it enhances
the ability to store, access and transmit information. Ideally,
the compression should be lossless to ensure preservation of
the scientific value of data. However, lossless compression
techniques provide compression ratios of about two or three,
a limitation which is enforced in the hyperspectral case due to
the noise inherently present is such high-resolution sensors [1].
Near lossless compression becomes an increasingly acceptable
choice during the sensor definition.

Hyperspectral imagery, or spectral imagery, involves ob-
serving the same scene at different wavelengths (Fig. 1).
Typically, each image pixel is represented by hundreds of
values, corresponding to various wavelengths. These values
correspond to a sampling of the continuous spectrum emitted
by the pixel. This sampling of the spectrum at very high res-
olution allows pixel identification (materials, minerals, gases,
etc.). The availability of the spectral information for each pixel
leads to new applications in all fields that use remote sensing
data (agriculture, environment, or military), and can help to
improve the understanding of the solar system (mineral or
gas identification). Hyperspectral data are in a way similar to
video data, where wavelength corresponds to time, but their
statistical properties are different: there is no motion between
hyperspectral spectral planes but changes in color, as illustrated
in Fig. 2.



Fig. 2. Example of hyperspectral data (Moffett Field): the same scene at four different wavelengths (taken from the 224 bands of the original image) at 458 nm
(a), at 664 nm (b), at 712 nm (c), and at 1211 nm (d). Strong similarities exist between the images, the relevant information is present in the details.

Due to the huge amount of information and specific proper-
ties involved, compressing hyperspectral images is a challenge
[2]. A suitable and adapted compression system is still being
awaited. Many actual hyperspectral instruments do not make
use of compression, thus limiting the amount of data that can
be stored and transmitted.

Existing work focuses mainly on two different techniques,
namely vector quantization and wavelets. This paper concen-
trates on the wavelet approach and more precisely on zerotree
based methods. Zerotree have demonstrated a good ability to
compress hyperspectral data [3] and are successfully used in
several space missions. Section II presents the JPEG 2000 com-
pression standard and proposes various adaptations for hyper-
spectral images corresponding to several trade-offs between per-
formance and complexity. Section III defines an algorithm to
find the best 3-D wavelet decomposition for hyperspectral im-
ages in a rate-distortion sense. Section IV proposes two adap-
tations of the zerotree structure and bit plane coding based on
the proposed anisotropic near-optimal wavelet decomposition.
The first adaptation closely follows EZW and the second one
is closer to SPIHT. The results obtained from various hyper-
spectral images are compared to the performance of JPEG 2000
algorithms in term of PSNR in Section V. We conclude and
present perspectives in Section VI.

II. JPEG 2000 FOR HYPERSPECTRAL DATA

JPEG 2000 is the latest international standard for still image
compression, on which exhaustive bibliography can be found
[4], [5].

Parts 1 and 2 of the JPEG 2000 standard [6], [7] are targeted
at still images in grey level or with three color bands, and pos-
sibly, a fourth alpha band. In these parts, no interband trans-
form is defined apart from color transforms. Part 2, however,
makes provisions for arbitrary spectral decorrelation, including
wavelet transform. Part 10, also known as JP3D, is targeted for
3-D images which are, however, as isotropic as possible [8].
This requirement does not suit hyperspectral images, for which
the spectral dimension involves a much higher correlation than
the spatial dimensions [9]. As a consequence, the JP3D part of
the standard is not ideally suited to hyperspectral image com-
pression. Instead, we propose to use the extensions of the JPEG
2000 standard by introducing transform on the spectral compo-
nents before applying the JPEG 2000 encoder.

The reference implementation of the JPEG 2000 compres-
sion system is the Verification Model (VM). The VM is used
by the JPEG 2000 committees as a vehicle for core experiments
and will ultimately evolve into an implementation of the final
JPEG 2000 standard [10]. During this study, VM 9.1, the latest
version to date, is used to evaluate the performance of JPEG
2000 compression standard on hyperspectral images. With the
options used here, performance is very similar to the one ob-
tained with another well-known implementation of JPEG 2000:
version 5.0 of Kakadu.

As already stated, Parts 1 and 2 do not include specifica-
tions for the case where the image has more than three bands
(color transform). However, the VM let the user specify a com-
ponent transform matrix, allowing Discrete Cosine Transform
(DCT) or Karhunen–Loeve Transform (KLT) (-Mlin option of
the VM). An option which applies a wavelet transform (DWT)
through the components is available as well (-Mtdt option). In
these cases, the 1-D transform is applied in the spectral dimen-
sion before JPEG 2000 encoding of each resulting image. The
Lagrangian rate-distortion optimization is also a very useful in-
gredient, since the various components have very different sta-
tistical properties, due to the energy compaction property of the
transform (-Flra option).

Fig. 3 compares the impact of various transforms, namely
DCT, KLT interband decorrelations or wavelet transform in
terms of Peak Signal to Noise Ratio (PSNR) (1) as a function
of bit per pixel per band (bpppb)

(1)

MSE being the Mean Square Error. The high dynamics of the
image (16 bits) explains the high values reached by the PSNR.

As expected, introducing a decorrelation prior to the JPEG
2000 encoder greatly improves the results. The relative position
of the KLT and DWT are similar to the results obtained in [11].
However, the DCT provides smaller PSNR’s in our study.

The KLT depends on the image and requires more complex
operations: computation of the covariance matrix and eigenvec-
tors. This high complexity is still a deterrent for on-board im-
plementation, especially when the number of components in-
creases even if some work is done to reduce its complexity [12],
[13]. The wavelet transform approach seems more suitable, es-
pecially in the hyperspectral case where the number of compo-
nents is important. The wavelet transform also provides higher
performance than DCT.



Fig. 3. Performances of the JPEG 2000 compression using either no interband
decorrelation, DCT, KLT, or DWT decorrelation on the Moffett Field data set
of Fig. 1.

Generally, the JPEG 2000 algorithm is computationally
demanding, especially in the context of on-board spacecraft,
where the implementation constraints are stiff. To the authors
knowledge, there is only one hardware implementation of
JPEG 2000 designed for space constraints [14]. In his paper,
Van Buren admits that his solution performs significantly lower
than Kakadu in the lossless case due to the absence of rate-dis-
tortion optimization. The Consultative Committee for Space
Data Systems (CCSDS), a working group gathering the main
space agencies (NASA, JAXA, ESA, CNES, CSA), issued
some recommendations for onboard image compression sys-
tems in [15]. The adopted recommendation groups the wavelet
coefficients in a structure similar to zerotrees instead of using
the JPEG 2000 standard. The intent of this recommendation is
to alleviate onboard implementation complexity. One should
view the JPEG 2000 performance in the present article as an
upper-bound to reach: our goal is to obtain performance close
to this improved version of JPEG 2000 (in terms of PSNR
versus bitrate tradeoff), while greatly reducing the algorithm
complexity.

The complexity reduction is not obtained directly through
the use of a wavelet transform in all dimensions, but it turns
out that the use of wavelets enables the use of efficient, simple
coding tools. Therefore, our study first involves the search for
an optimal wavelet decomposition in a rate-distortion sense.
This is the purpose of Section III. Then an efficient coding of
the wavelet coefficients with zerotree methods is proposed in
Section IV.

III. OPTIMAL DECOMPOSITION

Before adapting the zerotrees to hyperspectral images, it is
necessary to define the extention of the wavelet transform to
hyperspectral images. Most current extensions are based on
isotropic 3-D decomposition [16]–[18], however, as mentioned
before, hyperspectral data are clearly not isotropic. In the
domain of video processing some anisotropic structure has also
been successfully used [19], [20]. However, no justification has
been given concerning the particular choice of this structure for
hyperspectral data, and more efficient decompositions could be
available. The best choice for video is anyway not obviously
the best choice for hyperspectral images, due to the differences
in their statistical behavior and in requirements for data quality.

Fig. 4. Anisotropic decomposition and notations.

The problem of finding the optimal wavelet decomposition
for 1-D signal has been explored in several publications [21],
[22]. For natural 2-D images, decomposition possibilities were
long restricted to quadratic transforms (leading to square sub-
bands) but have since evolved to a more general framework
with anisotropic decompositions [23]. Several criteria were used
to characterize the optimal decomposition: entropy-based algo-
rithms [24] or rate-distortion compromise [25] for example. The
main advantage of the latest is that it provides simultaneously
the bit allocation between the different subbands [26].

The 3-D anisotropic wavelet decomposition is detailed in
Section III-A. Section III-A (Section III-B) recalls the prin-
ciples of rate-distortion optimization looking for the optimal
decomposition. The idea of the algorithm is illustrated on a
well-known 2-D image in Section III-C. Section III-D details
the algorithm designed to find the optimal wavelet decompo-
sition for hyperspectral images and presents the results. The
last subsection (Section III-E) finds a tradeoff between the
execution time and performance. All results presented in this
section are within the context of rate distortion theory and do
not take into account headers necessary to decode the final
bitstream. These results should not be compared directly with
those from Sections II and V.

A. Three-Dimensional Anisotropic Wavelet Decomposition

Traditionally, on 2-D images, the wavelet decomposition is
isotropic, i.e., for one given subband, the level of decomposition
in the horizontal direction is the same as the level of decomposi-
tion in the vertical direction. This alternation between horizontal
and vertical decompositions leads to square subbands (cubes, in
the case of 3-D data). This is the case of the multiresolution
decomposition of Mallat [27] or the wavelet packets decompo-
sition. The term anisotropic is more general than the usual use
of wavelet packet. In most case for image processing, wavelet
packets correspond to a decomposition in a quadtree structure,
leading to square subbands. This process is justified by the prop-
erties of traditional images: their statistical properties are quite
similar in all directions.

Let us denote the wavelet subband space in the 3-D
case (Fig. 4):

• , , corresponding to the row, column and spectral levels,
respectively (implying the size of the considered subband);

• , , being the row, column and spectral indexes,
respectively.



A relation can be defined between subbands. For a row de-
composition, the anisotropic wavelet space satisfies

(2)

where denotes the direct sum of vector spaces. Note the factor
2 in the indexes, since decomposition level has twice as
much subbands than level .

For a column decomposition

(3)

and for a spectral decomposition

(4)

For any step of the decomposition, for all subbands, we are
able to choose the direction of the next decomposition, thus in-
creasing the flexibility of the space decomposition. Both mul-
tiresolution decomposition and wavelet packet decomposition
are special cases of this representation.

B. Rate-Distortion Optimization

1) Allocation Problem: The problem of bit allocation, i.e.,
distributing optimally the given bit budget between the sub-
bands, is a classical problem in data compression. Shoham and
Gersho [26] address this problem within the framework of rate-
distortion theory. Their solution consists in minimizing the dis-
tortion under the constraint of the available bit budget.

Within the context of wavelet decomposition, different quan-
tizers can be used for different subbands. Let be the finite set
of the quantizer combination for the subbands, let be one ele-
ment of . The problem is to minimize the total distortion
for the given combination of quantizers, , with the total rate

within the bit budget

under (5)

Using the Lagrangian method, this constrained minimization
becomes the minimization of the Lagrangian cost function
without constraint

(6)

In the context of independent coded subbands, using additive
measures for rate and distortion, it can be shown that R-D opti-
mality is attained when all subbands operate at a constant slope
point on their R-D curve. Thus, the problem becomes

for each subband (7)

The proof of the equivalence between the constrained and the
unconstrained problem is actually quite simple and can be found
in [26].

Algorithm: The algorithm is defined to search for the best de-
composition simultaneously with the best operating point. For a
given subband, the algorithm computes the R-D points for dif-
ferent quantizers, thus leading to the R-D curve for the current
subband. For a given quantizer , the distortion is computed
using the square error as it has to be additive between subbands
to comply with (7). Note that, strictly speaking, the additive

Fig. 5. Illustration of the split-merge decision during the algorithm. For sake
of clarity, R-D curves in the hypothesis of decomposition in the two other di-
rections (� or spectral) are not represented and are considered to be above the
others. With the considered � , the decision of splitting the current subband is
taken.

property holds only for orthogonal wavelets, but that the ones
that are used in the JPEG 2000 standard are very close to be
orthogonal.

The rate of each subband is evaluated using the arithmetic
coder from [28]. The choice of the coder is not critical here.
What is important is the relative position between the different
subbands, not the absolute performances. Simulations per-
formed with other rate estimation as the entropy of the subband
coefficient or using a combination of run length coding and
Rice coder lead to similar results. The independent coding of
the wavelet subbands is an implicit assumption here.

The R-D curve is also computed for the three possible further
decompositions (corresponding to the three directions). A rep-
resentation similar to Fig. 5 is obtained. For each value of ,
the cost function is computed for each admissible R-D point.
The decision of splitting or not the given subband is taken ac-
cording to the minimum cost.

As an example, Fig. 5 shows a case for which the slope
leads to take the decision of splitting the given subband in
direction.

Denote as the Lagrangian cost of coding the current sub-
band without further decomposition. The Lagrangian costs ,

and evaluate the costs corresponding to a decomposition
of the current subband, respectively, on , or direction. The
search for the best basis is done as follows:

Algorithm 1: Best-basis search

• Recursive function:

— compute the cost using Shoham and Gersho
algorithm for the current subband

— compute the cost

• if the minimum size is not reach for the rows:
by

recursive calls

• otherwise

— compute the cost : similar to for the columns



Fig. 6. Barbara image and the best anisotropic wavelet decomposition obtained
for a bitrate of 0.9 bit per pixel (bpp).

— compute the cost : similar to for the spectral dimension

— return the value

• Global Function

— For each : call

— Full rate-distortion curve for the given image

This algorithm leads to a different decomposition for each
image and each target bitrate. It has to be emphasized that due
to the recursivity of the algorithm, the optimal R-D curve is first
calculated for the smallest subbands then the algorithm gathers
these values to take the splitting decision and finally to find the
optimal decomposition for each subband.

This search for the optimal basis is similar in spirit to the
one defined by Ramchandran in [25], with an extension to
anisotropic decomposition in a 3-D space.

C. On 2-D Images

The search for the best wavelet decomposition has been first
applied to natural 2-D images as an illustration. For some im-
ages (the well-known Lena for example), the best wavelet de-
composition is not so far from the classical multiresolution de-
composition. This result agrees with the choice of the multires-
olution decomposition for 2-D images in standard like JPEG
2000. However, in the case of images containing strong fre-
quency features, such as Barbara for example (Fig. 6), the de-
composition manages to concentrate the energy in very few sub-
bands (subband 1) and to group many coefficients within the
same subband (subband 2). The gain can reach 1.5 dB com-
pared to the classical multiresolution decomposition as shown
in Fig. 7. However, in the general case, for 2-D images, the gain
obtained with optimal decomposition is not sufficient to justify
such an increase in the complexity.

D. Optimal Decomposition for Hyperspectral Images

The results presented on Fig. 10 are obtained on data from the
AVIRIS hyperspectral sensor from JPL/NASA over the Moffett
Field site in California (Fig. 8). Moreover, they were confirmed
on different sites as well as on images acquired by the satellite
sensor from NASA: Hyperion.

As can be seen from Fig. 10, the best basis decomposition
brings a clear improvement, leading to an increase of the quality
of 8 dB compared to the isotropic decomposition. If the limit

Fig. 7. Comparison between the classical decomposition and the best basis de-
composition in the case of a 2-D image containing strong frequency features.
For more natural images without strong frequency features, as Lena for example,
the gain is negligible.

is fixed in term of quality, let say for example a PSNR greater
than 70 dB, the necessary bit budget cuts down from 1 bit per
pixel per band (bpppb) to 0.5 bpppb which doubles the com-
pression rate. It is clearly seen that, due to the specific nature
of hyperspectral images, the adaptation of the transform has a
much larger impact.

E. Fixed Decomposition

There are two main drawbacks to this optimal search:
• the processing cost;
• the dependency from the image.
The processing cost is important, as an example, the pro-

cessing of an hyperspectral cube of 256 256 224 pixels with
a minimum subband size of 8 8 7 (5 decomposition levels)
requires to process the full rate distortion curve for 250 047 sub-
bands (arrangement of all possible subband sizes and positions
in the 3 dimensions). The dependency from the image also poses
a problem for the implementation of the transform. In general,
data independent transforms are preferred.

The aim is to define a fixed transform close enough to the
optimal one to give near-optimal results for a wide variety of
images and bitrates. After observing the general structure of the
optimal decomposition for different images at different bitrates,
it appears that one regular decomposition is close to the optimal
performance in many cases. This regular decomposition actu-
ally consists in decomposing first the spectra with a 1-D mul-
tiresolution wavelet and then using the standard multiresolution
decomposition on the resulting components.

The resulting decomposition and the resulting coefficients
values are illustrated in Fig. 9. This decomposition is compared
with the standard isotropic decomposition. Coefficients in grey
represent coefficients close to 0, white are positive and black are
negative coefficients. As can be seen in Fig. 10, the chosen fixed
transform is almost as efficient as the optimal one. The results
are illustrated here on the Moffett data cube [Fig. 8(b)] but were
confirmed on various hyperspectral images with very different
characteristics (sea, forest, mineral, cities; see Fig. 8) and from
different sensors (AVIRIS and Hyperion). The same experiment
applied on the popular video sequence tempete and on the 3-D
MR medical image sag_head confirm that this decomposition,



Fig. 8. Different hyperspectral images used during the experiments. (a), (b) Different parts from the f970620t01p02_r03 run from AVIRIS sensor on Moffett Field
site. (a) Uniform spatial area with strong spectral features. (b) Mixed area with city (strong spatial frequency features). (c) From f010903t01p01_r03 AVIRIS run
over Harvard Forest, it contains mostly vegetation. (d), (e) From f000414t01p03_r08 run over Hawaii. (d) Two areas (mineral and sea) delimited by a coast line.
(e) Selected to illustrate a run containing clouds, thus a higher dynamic level and strong contrasts. (f) From Hyperion space sensor (EO1H0440342002212110PY)
and cover an area similar to (a) and (b) but with a different sensor.

Fig. 9. Classical 3-D isotropic decomposition (a) and anisotropic decomposition (b) with three levels of decomposition (simulation are done with five levels of
decomposition). For the isotropic decomposition, it can be seen easily that an important correlation remains between the coefficients in the lower spectral and
spatial frequencies. The remaining correlation (e.g., lines of coefficients with similar values on the side of the cube) is lower for the anisotropic decomposition.

also used in [19] or [20], is near optimal in the context of video
compression or medical image compression.

These results are also a posteriori justification for the trans-
form used in [29] and [30] in the context of hyperspectral image



Fig. 10. Results on hyperspectral data, the anisotropic best-basis clearly im-
proves the performance. The fixed anisotropic decomposition performs closely
to the optimal decomposition.

compression. It should be noted also that this near optimal trans-
form is actually similar to the one implicitly used by JPEG with
the options described in Section II.

IV. ZEROTREES

One possible weakness of JPEG 2000 is that it does not make
use of the relation that exists between the locations of significant
subband coefficients. According to Taubman and Marcellin [4],
the benefits from choosing the truncation point compensates for
the fact that the parent-child relations are not used. This may
no longer be true for hyperspectral images as the correlation
between subbands is unusually high.

Zerotrees of wavelet coefficients were developed to make use
of the relationships between the locations of significant subband
coefficients. After the wavelet transform, it can be observed that
the location of the insignificant coefficients is similar within the
different subbands, even if their value is decorrelated. The idea
behind zerotrees of wavelet coefficients is that if a coefficient
is insignificant in one subband, the coefficient in the same lo-
cation and in a higher frequency subband is probably also in-
significant. This idea has been successfully used by Shapiro in
[31], developing the embedded zerotree coding of wavelet coef-
ficients (EZW), as well as, few years later, by Said and Pearlman
in their SPIHT algorithm [32].

The main benefits of zerotree coding are presented in Sec-
tion IV-A and B, which also discusses their adaptation to the
anisotropic decomposition, as defined above. The application
of EZW algorithm on hyperspectral images is explained in Sec-
tion IV-C. Another adaptation closer to SPIHT is developed in
Section IV-D.

A. Main Ideas

At the time of its publication, embedded zerotree coding
of wavelet coefficients (EZW) from Shapiro [31] produced
state-of-the-art compression performance at a modest level
of complexity. Later, zerotrees were generalized by Said and
Pearlman in [32] and a set partitioning method was introduced
to efficiently encode these zerotrees. This generalization is
known as set partitioning in hierarchical trees (SPIHT).

TABLE I
BITPLANE CODING FOR THREE DIFFERENT EXAMPLE COEFFICIENT VALUES:

7, 30, AND 180. CODING PROCESS FROM TOP DOWN

These two algorithms share some properties which make
them particularly attractive in the context of on-board hy-
perspectral image compression. Both of them produce an
embedded bit-stream: every prefix of a bitstream produced by
EZW (resp. SPIHT) is a valid EZW (resp. SPIHT) bitstream,
leading to a decompressed image with a lower quality. Both
algorithms manage to achieve this at a relatively modest level
of complexity.

Low complexity is one of the main constraints for on-board
implementation of compression algorithms since the processing
power is limited. This is especially true in the case of spacecraft.
Buffer constraints make the embedded property useful as they
help to avoid overflow and to assure the best image quality given
the available on-board memory and processing resources.

To ensure that the property of embedded bit stream is ad-
hered to, the algorithm uses bit-plane encoding of coefficients.
Let us define as the wavelet coefficient at column , line

and spectral plane . Also, define a sequence of thresholds,
, such as . The initial threshold is

chosen such that for all wavelet coefficients.
For convenience of binary representation, we also choose
as a power of 2. The coefficient is considered significant
in bitplane if . Bit planes are encoded one after
the other, reducing the distortion at each step.

An example of bitplane coding is presented in Table I for
three coefficient values. The value 7 is considered as insignifi-
cant until bitplane 2, the value 30 is insignificant until bitplane
4 and the value 180 is significant from bitplane 7. After a coeffi-
cient is marked as significant, bits following the first significant
bit have to be coded. Coefficient signs are coded separately.

B. Tree Structure

Given the near optimal decomposition found on the previous
section, several tree structures can be defined. We can use the
link between the spatial subbands, between the spectral sub-
bands or use both. One key advantage of zerotree coder is to
encode an important amount of zero coefficients using very few
symbols. Thus, the best tree structure is the one which maxi-
mizes the length of the zerotrees, leaving only a small amount
of isolated zeros. In fact, the significant coefficients are always
the same ones, and do not depend on the definition of the trees.
The difference in efficiency between various tree structures is
only due to the gathering of the zeros.

There are three different regular tree structures to chose from.



TABLE II
NUMBER OF COEFFICIENTS FOR A 3-D TREE STRUCTURE AT EACH BITPLANE

• Use only spatial relationship between coefficients: spatial
trees.

• Use only spectral relationship between coefficients: spec-
tral trees.

• Use both relationships between coefficients: 3-D trees.
The optimal choice is not straightforward. Including more zero
coefficients in one tree potentially allows more coefficients to
be encoded with a single symbol, but also increases the risk to
find a significant symbol destroying the tree.

Statistics computed on a transformed hyperspectral image are
presented on Tables II–IV. Tables present the number of signif-
icant coefficients for each bitplane (these coefficients have to be
coded and are independent of the choice of the tree structure),
the number of isolated zero and the number of zerotrees. For a
given bitplane, a certain amount of coefficients are set to 0. The
purpose of zerotree structure is to encode most of these 0 coef-
ficient in one zerotree using one symbol (ZTR in EZW termi-
nology detailed later). 0 coefficients which cannot be included in
zerotrees are coded with a single symbol (IZ). The two different
symbols, ZTR and IZ, are used to code the 0 coefficient. The
purpose of the tree structure is to minimize the number of sym-
bols used or to maximize the number of 0 coefficient encoded
within one symbol. In order to compare the different tree struc-
tures, the average number of 0 coefficients coded by ZTR+IZ is
provided on Tables II–IV.

From these tables, it appears that the choice of the 3-D struc-
ture is more efficient and uses less symbols to code the 0 co-
efficients at any bitplane. This corresponds to the tree structure
illustrated in Fig. 12. This structure is different from the one de-
fined in [16] (illustrated in Fig. 11).

TABLE III
NUMBER OF COEFFICIENTS FOR A SPATIAL TREE STRUCTURE

AT EACH BITPLANE

C. Embedded Zerotree of Wavelet Coefficients (EZW)

The critical part in bit plane encoding is the encoding of the
significance map, i.e., the binary decision as to whether a sample
is significant with respect to a given threshold . EZW algo-
rithm provides an efficient way of encoding the significant map.

In the general case, with the optimal tree structure found in the
previous section, one coefficient, , has two spectral,
and , and four spatial children, , ,

and . The lower frequency subbands, ei-
ther spatial or spectral, are special cases which differ between
EZW and SPIHT.

Each magnitude bit plane is encoded in two passes. The first
pass, called the refinement pass, encodes a bit for every coeffi-
cient that is significant, where the significance of the coefficient
has been declared by a previous pass. The second pass, called
the significance pass, encodes the significance map of the co-
efficients for the current magnitude bit plane. Zerotree struc-
tures help to reduce the cost of the significance map encoding
by using self-similarities between the subbands.

As shown by Shapiro, it is useful to encode the sign of sig-
nificant coefficients along with the significant map. In practice,
four different symbols are used: Zero Tree Root (ZTR), Isolated
Zero (IZ), Positive significant (POS) and Negative significant
(NEG). Each of these four symbols can be coded using two
bits. IZ symbol indicates that the current coefficient is below
the current threshold and that at least one of its descendants
that has not been processed in the significant pass is above
the threshold. ZTR symbol indicates that the current coefficient
is below the current threshold and all its descendants are also
below the threshold or already noticed as significant (thus



TABLE IV
NUMBER OF COEFFICIENTS FOR A SPECTRAL TREE STRUCTURE

AT EACH BITPLANE

Fig. 11. Parent-child dependencies of subbands for the classical isotropic case.

processed during the refinement pass). It is important to note
that coefficients already noticed as significant will be processed
during the next refinement pass and could be considered as a
part of a zerotree. Particular attention should be paid during the
definition of the EZW algorithm as one given coefficient can
have spatial and spectral parents, leading to tree crossings as
we can see in Fig. 13. This phenomenon is particular to the tree
structure used here.

The scanning of the coefficients is done by subbands in such
a way that no child node is scanned before any of its par-
ents.Within each subband, coefficients are visited in raster order,
beginning with the subband with the lowest spatial and spectral
frequency and continuing with subbands of higher frequency.

Fig. 12. Parent-child dependencies of subbands. Note that spectral and spatial
descendants interfere, leading to a redundant relationship. The parent-child re-
lation is no longer single-parent.

Fig. 13. Example of a tree crossing: the coefficient in grey can be considered
as the spectral child of coefficient 1 together with coefficient 3 or as the spatial
child of coefficient 2 together with 4, 5, and 6.

TABLE V
EZW PERFORMANCES ON MOFFETT3 (PSNR). 3-D CORRESPONDS TO THE USE

OF THE 3-D TREE STRUCTURE, SPAT TO THE USE OF THE POPULAR SPATIAL

TREE STRUCTURE, AC DENOTES THE USE OF AN ARITHMETIC CODER.
THE 3-D TREE STRUCTURE BRINGS A CLEAR IMPROVEMENT

Coding is done by a 4-ary alphabet of the previously defined
symbols (POS, NEG, ZTR, and IZ).

Performance on the image moffett3 are detailed in Table V
for the 3-D tree structure as well as for the more popular spa-
tial tree structure. An optional arithmetic coder as described in
[28] can be applied on the EZW stream. This coder is avail-
able for research purposes at http://www.cs.mu.oz.au/~alistair/
arith_coder/. The arithmetic coder (for the results denoted AC)
is applied directly on the EZW stream and does not consider any
context. As we can see from Table V, the 3-D structure leads to
a clear improvement compared to the spatial tree.

D. Adaptation of SPIHT

The SPIHT algorithm was first described by Said and
Pearlman in [32]. The main properties of EZW are preserved:
progressivity and low-complexity. Some differences, however,
lead to improved performance for classical 2-D images. The



TABLE VI
SPIHT PERFORMANCES ON MOFFETT3 (PSNR). 3-D CORRESPONDS TO THE

USE OF THE 3-D TREE STRUCTURE, SPAT TO THE USE OF THE POPULAR

SPATIAL TREE STRUCTURE, AC DENOTES THE USE OF AN ARITHMETIC CODER.
THE TREE-CROSSING PHENOMENON CAUSES MORE PROBLEM HERE THAN IN

THE CASE OF EZW, THE 3-D TREE STRUCTURE DOES NOT PERFORM PROPERLY

Fig. 14. Comparison of compression performance between JPEG 2000 and
EZW (resp. SPIHT) with and without arithmetic coder for the 3-D tree.

SPIHT algorithm maintains three lists of coefficients: List
of Significant Pixels (LSP), List of Insignificant Pixels (LIP)
and the List of Insignificant Sets (LIS). represents
the children of (only one level), are all
the descendants and
(descendants without the children). The function is
0 if all the descendants of are below (zerotree) and
1 otherwise.

The first main difference to be noted with the EZW algorithm
is the fact that every output is binary. The second difference is
that the coefficient order is more dependent on the data. Whereas
coefficient are processed in a raster order for EZW in each sub-
band, the list system of SPIHT leaves the order entirely depen-
dent on the data. Coefficients are processed according to their
order in the list. The parent-child relation is also different in the
case of the lower subband. In the 2-D case, for EZW, each co-
efficient from the lower subband (LL) has three descendants (in
LH, HL, and HH). For SPIHT, one out of four coefficients from
the lower subband has no child whereas the three others have
four children. The definition is also slightly different as SPIHT
considers two different types of zerotree: type A where all the
descendants are not significant and type B where all descendants
except the children are not significant. It has to be noted that the
zerotree root can be significant in both cases.

On hyperspectral images, with the previously defined parent-
child relationship, the SPIHT algorithm works as follows.

Algorithm 2: Anisotropic SPIHT

Initialization step:

•

•

• LIP: all the coefficients without any parents (coefficient from
the LLL)

• LIS: all coefficients from the LIP with descendants (as type A)

Sorting pass:
For each entry of the LIP

• Output

• If , move in LSP and output the
sign of

For each entry of the LIS

• If the entry is type A

— Output

— If then

For all : output ; if
, add to the LSP and output the

sign of else, add to the end of the LIP.
Critical point for tree-crossing !

If , move to the end of the LIS as a
type B entry

Else, remove from the LIS

• If the entry is type B

— Output

— If

Add all the to the end of the LIS
as a type A entry

Remove from the LIS

Refinement pass:

• For all entries of the LSP except those included in
the last sorting pass

• Output the th most significant bit of

Increment of k and return to the sorting pass.

The decoder is obtained replacing output by input in the pre-
vious algorithm.

The tree-crossing phenomenon has a greater impact on
SPIHT than on EZW. During the algorithm, one coefficient
can be processed before one of his parent has been seen by the
algorithm, special care has to be taken not to process the same
coefficient twice.

The same arithmetic coder than in the EZW case can be used
on the SPIHT stream.



Fig. 15. Results on six different hyperspectral data sets. SPIHT2 on the spatial tree structure provides performance very similar to JPEG 2000 in all the different
situations. The raw arithmetic coder does not improve the results significantly for SPIHT. EZW does not perform as well, but with the arithmetic coder and for the
optimal truncation point, performances are almost the same as JPEG 2000 and SPIHT.

From Table VI, we can observe that, surprisingly, the 3-D tree
structure performs lower than expected and does not bring any
improvement compared to the spatial tree. This is due to the
tree crossing phenomenon which is more problematic in SPIHT
case. In Fig. 14, performances of SPIHT using the 3-D tree are
illustrated whereas on Fig. 15, SPIHT2 corresponds to a coder
using the spatial tree structure.

V. RESULTS

JPEG 2000 with the multicomponent wavelet transform
as well as the adaptation of EZW and SPIHT algorithms are
applied to hyperspectral data cubes from NASA/JPL airborne
sensor AVIRIS and from NASA spaceborne sensor Hyperion.
The chosen images are presented in Fig. 8. One of the dataset
is the same as the one used in [16].



Comparisons of our proposed utilization of JPEG 2000 (pre-
sented in Section II) and the adaptation of [33] show similar
performance. The proposed adaptations of EZW and SPIHT al-
gorithms presented above are compared with JPEG 2000. The
results obtained with JPEG 2000 consists in one compression
step using several quality layers as defined in [6]. 20 quality
layers are set from 0.1 to 2.0 bpppb. The decompression is done
using the corresponding quality layers. EZW and SPIHT per-
formances are plotted both with and without arithmetic coder.
Performances are plotted in term of PSNR (1). The image is
fully compressed with the bitstream saved on disk and then the
bitstream is decoded writing the output image on disk. PSNR is
measured between the original image and the output image.

EZW performs significantly better when the decompression
reaches the end of a bit-plane. This can be seen by the inflexion
point in Fig. 14. This particularity is not so visible for SPIHT.
When used with an arithmetic coder, EZW gives similar results
as JPEG 2000 and even outperforms it at some bitrate. Perfor-
mance of SPIHT is surprisingly low at high bitrate and tends to
improve over EZW at small bitrates. This can be explained by
the fact that SPIHT used with the 3-D tree structure is particu-
larly sensitive to the tree-crossing effect.

One simple solution to avoid the tree-crossing effect con-
sists in using the spatial tree defined before. This modification,
leading to a structure similar to the one found in [19], yields
improved results as shown in Fig. 15. In this case, the arith-
metic coder provides only a limited improvement; thus, the re-
sults are presented without arithmetic coder to further reduce
the coder complexity. However, this solution is not fully satis-
factory as one can feel that the spectral relationship is not fully
used. Yet, keeping the 3-D tree structure would require an im-
portant modification of the SPIHT algorithm to make full use of
the tree-structure.

VI. CONCLUSION

In this paper, different hyperspectral image compression al-
gorithms are proposed and compared. First, a method is defined
to find the optimal (in a rate-distortion sense) 3-D anisotropic
wavelet decomposition for hyperspectral images. This method
leads to the justification for the use of a particular fixed trans-
form. On this decomposition, several tree structures are pos-
sible. A statistical study on the proportion of zerotree is made
on the different structures, leading to the choice of a 3-D tree.
Then, different compression algorithms based on this wavelet
transform and this tree are defined. The first method is based on
an adaptation of the EZW algorithm. The second one is an adap-
tation of the well-known SPIHT. Their results are compared to
the JPEG 2000 standard. Even if the rate-distortion optimiza-
tion included in JPEG 2000 makes it difficult to be considered
for on-board implementation on spacecraft, its performance can
be seen as an upper bound to be reached.

This study demonstrates the potential of using zerotrees of
wavelet coefficients in the compression of hyperspectral im-
ages. With a low complexity, EZW manages to give perfor-
mance similar to those given by JPEG 2000, while providing
a fully embedded bit stream. SPIHT performs well, even if used

without arithmetic coder. These properties are particularly ap-
pealing for the on-board processing of hyperspectral images on
space systems. Further improvement of the presented algorithm
have since been developed on EZW [34], [35] and on SPIHT
[36], [37]. Making full use of the double linked tree structure
or adding an adapted arithmetic coder would yield improved
results.

Of course, before using such a compression algorithm for a
real mission, an extensive quality study, beyond the scope of the
present paper, needs to be performed accordingly to the mission
objectives and sensor characteristics.
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