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I - INTRODUCTION

A set of n qualitative nominal variables Xl’ cees i}, cees

X,» 1s measured on a common set of k individuals.

‘We suppose that‘yi has m. levels. Classical factor analysis §

~

fails to find out the relationships beetween the Xi‘

J.P. BENZECRI (1) has proposed to replace each Yi by the
corresponding set of dummy variables and to perform on
these data a formal correspondance analysis.

Another way is to perform on the n sets of dummy variables
a generalized canonical correlation analysis.

J.D. CARROLL's CANCOR (3) leads to the same results as the
first approach. '

In order to reduce computing time, we use some modified
procedure to compute the CANCOR solution : results are
obtained in a Zmi (rather than a k) dimensional vector
space.

IT - MODIFIED CANCOR PROCEDURE

Using CARROLL's earlier notation, we assume n matrices

X ce e Xn’ where

19 * oo ] ]-9
k is the common number of columns,

m. js the number of rows of X
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We assume that all the rows are centered and that the Xi
are non singular. The procedure finds Z (k components vector)
and n transformation vectors Ai (mi components vector) so

that
T 2
Lo mn]

N
nm™Mm23

i
is maximized.

CARROLL shows that Z is the eigenvector of

The procedure produces more than one Z by extracting the
successive eigenvectors of Q.

Let V and H the super-matrices (Zmi) X (zmi) defined by

i




v11 ...... Vij sevees vln\

H = Yil ...... ‘.l“ ...... 1\./1.n
Vg coeees Vi coeees Vin j_z
/

i =1
with Vj£ F Xj XZ

and let A the super-vector

-

A= (Aps vvs Aiy eens AL)

It can be show#ed that A is the eigenvector of HV-1 asso-
ciated with the largest eigenvalue, which is the same that
the largest eigenvalue of Q.

We can also compute Z since

Ay Xy =204
LRy Xy =2(20Q5) = A2
1 1
and Z = 1 % A, X

x

If we choose A such that A V A' =_X, we will have Z 7' = 1,
This procedure produces the same others Z and A as the former.
The successive A are orthogonal for the inner product defined
by V.

A computing problem arises since T

is not a symetric matrix.
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It can be by-passed by putting  H-=-C'- C-and solving

1

(ARC') (CV ~-C')y = x(AC")

THE ANALYSIS OF NOMINAL VARIABLES

We assume now that the n matrices Xi countain only

{0, 1} wvalues. o

The m; rows of Xi~correspond to the m. levels of the
nominal variable Xi and the k columns correspond to the

k individuals.

In one column there is only one non-zero value (equal to
one) in the row corresponding to the level of Y} for the
concerned individual. v

We don't center the rows, so that the rank of Xi is equal
to m (mi - 1 1if centered). werwill see latter the conse-
quences of non-centering.

Matrices V and H can be computed and we see that

Vii = % Xi X

has all its components equal to zero exept those on the
diagonal wich are equal to the proportion of individuals at
each level of X.. The V.. (and V) are non singular.

In the same way,

S | YL . .
le = - Xj Xl is the normalized contingency table
f&l ~
0 Xj and Xl .

When non centering, one can show that the largest eigenvalue
of H V_1 is equal to n and that the corresponding eigenvector
A has all its components equal to one, (it's the same for

A



The Second eigenvalue and the others are the same as if

we had first centered the rows and suppressed one row

in each X..

The corre;ponding Z are centered (orthogonal to a 1 vector).
The weighted sums of the components of A are equal to zero
(the weigth of each component is equal to the proportion

of individuals at the corresponding level of the corresponding
variable). _

It is now necessary to look at the centering problem.

It is necessary, in the general case, that the Z and Ai Xi

be centered. In the nominal case, the Xi columns span a
k

m. dimensional vector subspace in R After centering,

- they span a m. - 1 dimensional subspace, so that‘the°v¥}“’*
matrices are singular. The problem is to choose a "pseudo-

inverse".
An infinity of solutions exists, for example
- centering first and suppress one column,

- centering and impose constraints like : the non-weighted
sums of each Ai components are equal to zero (same as
ANOVA),

- non centering, so that the first eigenvector is 1, and
the others are centered.

The non-trivial eigenvalues are independant of this choice,
but not the eigenvectors. So the values we will obtain for
Z and A depend on it.

The choice we have done lead us to exactly the same numerical
results as the use of correspondance analysis on the super-
matric X' = (X, ..., X;» ...» X), like BENZECRI has proposed
in (1).
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