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The phenomenology of turbulent relative dispersion is revisited. A heuristic scenario is
proposed, in which pairs of tracers undergo a succession of independent ballistic sepa-
rations during time intervals whose lengths fluctuate. This approach suggests that the
logarithm of the distance between tracers self-averages and performs a continuous-time
random walk. This leads to specific predictions for the probability distribution of separa-
tions, that differ from those obtained using scale-dependent eddy-diffusivity models (e.g.
in the framework of Richardson’s approach). Such predictions are tested against high-
resolution simulations and shed new lights on the explosive separation between tracers.

1. Introduction

Tracers in a turbulent flow separate in an explosive manner. Their averaged square
distance becomes independent of their initial separation and grows as t3 at large times.
This explains the ability of turbulence to considerably enhance mixing (Dimotakis 2005),
but also links to fundamental issues in turbulence, where a key question is to relate the
irregularity of the Lagrangian flow with the persistence of a finite dissipation at infinite
Reynolds numbers (Cardy et al. 2008; Eyink & Drivas 2014). Since the first observation of
the t3 law by Richardson (1926) and its interpretation in terms of Kolmogorov’s similarity
hypothesis by Obukhov (1941), precise experimental and numerical measurements and
acute modelling of pair separation have proven to be a particularly laborious exercise, as
stressed for instance in the reviews by Sawford (2001) and Salazar & Collins (2009).

A difficulty in observing the explosive law stems from the huge separation of timescales
that it requires. Batchelor (1950) indeed showed that the t3 law is preceded by a ballistic
regime during which the mean-square separation is ∝ t2. This dominates relative disper-
sion as long as the initial velocity difference between the tracers has not changed much,

that is up to times of the order of the eddy turnover time τr0 ∝ r
2/3
0 associated to the

inertial-range initial separation r0 — hereafter referred to as Batchelor’s timescale. The
explosive t3 law takes over at times t� τr0 . While Batchelor’s predictions are quantita-
tively confirmed in particle-tracking experiments (Berg et al. 2006; Ouellette et al. 2006)
and in direct numerical simulations (Yeung 1994; Sawford et al. 2008; Bitane et al. 2012),
the most manifest observations of the t3 law are limited to initial separations r0 close to
the Kolmogorov dissipative scale η (Ott & Mann 2000; Boffetta & Sokolov 2002; Biferale
et al. 2005; Eyink 2011). For particles whose initial separation lies in the inertial range,
the t3 growth is more elusive and emerges at best as a short transient on times both much
larger than τr0 and smaller than the integral timescale, from which the separation be-
tween tracer particles becomes purely diffusive. Even though the t3 explosive law can be
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understood on purely dimensional grounds, there is today a lack of sufficiently accurate
data that would substantiate the t3 law and constrain the underlying mechanisms.

Long-established modelling of relative dispersion is based on the assumption that
distances between tracers undergo a scale-dependent diffusion (Richardson 1926). As
stressed by Falkovich et al. (2001), this presupposes to observe the system on a timescale
t much longer than the Lagrangian correlation time τLr of the velocity difference between
tracers at a distance r. For separations of the order of the typical separation r∼ε1/2t3/2
(with ε denoting the mean kinetic energy dissipation rate of the turbulent flow), this
presumes that τLr �ε−1/3r2/3∼τr and thus leads to the unrealistic assumption that the
Lagrangian correlation time is much shorter than the Eulerian turnover time. Markovian
models involving the joint evolution of separations and velocity differences have been
introduced to circumvent such drawbacks (Kurbanmuradov & Sabelfeld 1995; Thomson
& Wilson 2013). They are mainly based on the shortness of acceleration correlation times
in turbulence and usually rely on the input of Eulerian single-time statistics. Possible
pitfalls in their justification relate to neglecting long-term memory effects due to the
persistence of turbulent flows. In an ideal infinite-Reynolds number turbulent flow, most
Markovian models admit scaling solutions of the form r ∝ t3/2 and v = (dr/dt) ∝ t1/2.
However, at the same time, a small-scale regularization is usually required in order to
prevent particle pairs from collapsing together at a finite time with a vanishing velocity
difference. The scaling solutions depicted above are usually coexisting with their “dual”
r ∝ (t? − t)3/2 with v ∝ −(t? − t)1/2. On the one hand, preventing possible finite-time
singularities requires modelling the dissipative-range physics of turbulence. On the other
hand, such events might correspond to the loss of memory that could justify the appli-
cability of diffusive approaches at sufficiently large times. The recent numerical studies
of relative dispersion by Scatamacchia et al. (2012) and Bitane et al. (2013) have clearly
stressed the importance of small scales on the overall evolution of distances: Some pairs
remain trapped at scales r � r0 for very long times and give an important contribution
to the average separation. Accounting for such trapping events has motivated the in-
troduction of non-Markovian models (Shlesinger et al. 1987; Faller 1996; Rast & Pinton
2011). Most of them rely on prescribing a distribution of waiting times.

We follow here a slightly different route to account for non-Markovianity. Numerical
data from a large-scale simulation of 3D homogenous turbulence are used, to question the
possibility that systematic deviations for the distribution of the inter-particle separations
from Richardson’s self-similar solution could stem from a multiplicative process. We
motivate this possibility using a handwaving description of a ballistic phenomenology,
observed to be compatible with the bulk of the distribution of distances. We then flesh
this observation and describe a piecewise-ballistic phenomenological toy model, which
yields a whole family of self-similar distributions for the inter-particle distances, and
predict that the distributions of their logarithms should collapse towards a well-defined
distribution. This prediction is then tested against numerical data.

2. The inter-particle distance as a multiplicative process?

Most models for relative dispersion reproduce the t3 explosive law fo the long-time be-
haviour of the mean-square separation. However, they usually yield different probability
distributions of the distance r between tracers at time t. Richardson’s eddy-diffusivity
approach leads to the self-similar distribution (see Salazar & Collins 2009)

p(r, t) =
426

35

√
286

π

r2

(g ε)3/2 t9/2
exp

[
−1

2
3
√

1287
r2/3

(g ε)1/3 t

]
, (2.1)
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which is uniquely determined by Richardson’s constant g = 〈r2〉/(εt3). The only set-
tings where this distribution is exact is for delta-correlated-in-time flows (Falkovich et al.
2001). Be it using massive numerical simulations or sophisticated particle-tracking exper-
iments, one expects to measure some systematic deviations from this distribution. Those
deviations exist and have been reported but, quite remarkably, they are rather mild:
Richardson’s diffusive mechanism appears to predict correctly the bulk of the distribu-
tion and only fails to accurately describe rare events. More precisely, for tracers with
an initial distance r0 of the order of the Kolmogorov scale, Richardson’s distribution
seems to overestimate the fraction of particles separating faster than t3 (Scatamacchia
et al. 2012). When r0 lies within the inertial range, it underestimates the fraction of
pairs that separate faster than the average (Bitane et al. 2013). As those deviations are
very fine, one cannot preclude that they are either a consequence of intermittency or of
finite-Reynolds-number effects that would contaminate the statistics at both very large
and very small scales. A more serious concern exists, though: As stated earlier, the eddy-
diffusivity framework entails short correlation times for the velocity differences between
tracers and has thus debatable physical origins.

In order to remain closer to phenomenological considerations, we propose a completely
different mechanism that relies on Batchelor’s ballistic separation of pairs. Let us imagine
the following simplified scenario. Two tracers initially separated by a distance r0 inside
the inertial range will follow a ballistic motion with a velocity difference δu0 for a short
period of time τ0. By Kolmogorov 1941 phenomenology the time and velocity should scale

as τ0 ∼ r2/30 and δu0 ∼ r1/30 . Therefore, after the time τ0 the pair will be separated by a
distance rτ0 = r0+τ0 δu0 = r0(1+a0), where a0 is in principle a scale-independent random
variable that accounts for the fluctuations of the flow. Applying the same argument to
rτ0 we find rτ0+τ1 = r0 (1 +a0) (1 +a1) where a1 is independent of a0, and so on. Finally,
the relative distance between the two tracers at time t is given by rt = r0 (1+a0) · · · (1+
an) with t = τ0 + · · · + τn, where by construction the number of terms is n ∼ ln t.
Although naive, such a piecewise-ballistic phenomenology relies on the physical ideas
of Batchelor and makes use of the ballistic separation between tracers whose validity is
strongly assessed by numerics and experiments. This scenario suggests that the t3 law
may appear as the consequence of the separations increasing multiplicatively rather than
additively. If such was indeed the case, the natural observable is not the distance but
rather its logarithm, which is then expected to self-average. Indeed all the n random
variables ai are independent and identically distributed. By the law of large numbers, we
thus expect at large times ln rt ∝ n ∼ ln t.

To test those ideas we analyse data from a large direct numerical simulation of 3D
homogeneous turbulence inside a triply-periodic box, which uses 40963 grid points to
achieve a Taylor-based Reynolds number Rλ ' 730 and is seeded with 107 tracers (see
Bitane et al. 2013, for more details). Figure 1(a) shows the evolution of the average of
the logarithm ρ = ln (rt/r0) of the inter-particle separations, together with its standard
deviation. The statistics are conditioned on the initial distances r0 between the particles,
which are chosen to lie within the inertial range (between 12 and 64η). To deal with
dimensionless quantities, distances between pairs of tracers are divided by their initial
separations, while timescales are divided by the associated Batchelor time scale. At large
times the averaged logarithm of the separation exhibits a slant asymptote, whose linear
slope cannot be quantitatively distinguished from 3/2: The dashed line shows a behaviour
〈ρ〉 ≈ (3/2) ln t+const. From the law of large numbers, one also expect that the variance
〈δρ2〉 = 〈ρ2〉 − 〈ρ〉2 increases as ln t. This feature is clearly not observed: The standard
deviation of the logarithm rather reaches a plateau for times much longer than the
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Figure 1. (Colour online) (a) Average value and standard deviation of ρ = ln(r(t)/r0) for

various initial separations r0 and as a function of ln(t/τr0) with τr0 = ε−1/3r
2/3
0 . The dashed

line is 〈ρ〉 = (3/2) ln(t/τr0) + (1/2) log g−0.46 with g = 0.52 and the solid line 〈δρ2〉1/2 = 0.748;
both correspond to Richardson’s self-similar predictions. (b) Distributions of ρ for r0 = 12η and
various times; the two vertical arrows mark the dissipative scale η and the integral scale L. The
dashed line is Richardson’s distribution.

Batchelor time τr0 . From the latter observation, we cannot exclude that the evolution of
the inter-particle distances be multiplicative. Yet, such a multiplicative evolution would
need to be non-Markovian. In other words a non constant time stepping may be involved
in the above phenomenology. This would break the assumptions of the law of large
numbers.

Figure 1(b) shows the time evolution of the probability distribution of ρ. After a short
transient, one observes a self-similar regime, which might explain the behaviours of both
the average and the standard deviation. Indeed, if the distribution of distances takes
the scale-invariant form p(r, t) = r−1Φ[r/`(t)], with `(t) an arbitrary function of time,
then the distribution of ρ = ln (r/r0) can be written p(ρ, t) = Ψ[ρ − log(`(t)/r0)], with
Ψ[z] = Φ[ez]. This leads to

〈ρ〉 = ln(`(t)/r0) + 〈z〉, 〈δρ2〉 = 〈δz2〉 (2.2)

where the (time-independent) moments of z are obtained by using the distribution Ψ[z].
Note that by construction 〈log r〉 does not depend on the initial conditioning r0. If in
addition `(t) is a power-law of t, then 〈ρ〉 ∝ ln t and 〈δρ2〉 ' const, as observed in the
data. For Richardson distribution (2.1), `(t) = (g ε)1/2 t3/2 and, remarkably, the full dis-
tribution of z depends neither on the constant g, nor on any other physical quantities.
Hence, once 〈ρ〉 is known, the distribution of ρ induced by (2.1) does not require any fit-
ting. The behaviours associated to Richardson’s distribution are displayed in Figure 1(a)
— dashed and solid lines. They give a good approximation for both the mean and the
standard deviation of ρ. As seen in Figure 1(b), after the transient given by the Batche-
lor timescale, Richardson’s distribution reproduces well the bulk but fails to accurately
predict the extreme fluctuations of ρ. This can hardly be blamed on finite-range effects
as almost all separations are well inside the inertial range — as indicated by the two
vertical arrows.

The most noticeable departure from Richardson’s distribution occurs at separations
much smaller than their average. We indeed clearly observe p(ρ) ∝ e2ρ, hereby evidencing
a power-law behaviour p(r) ∝ r for distances (as already observed by Bitane et al.
2013). This contrasts to the scaling p(r) ∝ r2 obtained from eddy-diffusivity models
in the K41 framework, including in addition to Richardson’s model those where the
diffusion coefficient depends also on time (i.e. of the form D ∼ εαrβtγ , see Hentschel &
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Procaccia 1984). This suggests that the statistics of extreme events cannot be captured
by simple diffusive models. However, as we will now see, the heuristic multiplicative
approach described earlier can be refined. It leads to a qualitative understanding of the
self-similarity and the tails of the distributions observed in Figure 1(b).

3. A piecewise-ballistic heuristic scenario

A model that predicts the long-time t3 explosive law but disregards the short-time
ballistic behaviour may yield some biased insights, as it will probably fail to take into
account the intrinsic non-Markovian nature of pair separation. Ilyin et al. (2010) and
Eyink & Benveniste (2013) therefore choose to study pair dispersion in terms of a dif-
fusion equation with a memory kernel. We explore here an alternative scenario where
we literally implement the ballistic ideas. We argue that this short-time behaviour can
be thought of not only as a transient feature but as the central ingredient, that yields
the explosive regime. To this end, we propose a piecewise-ballistic scenario of tracers
separation, described in terms of a toy stochastic model which fits into the general class
of so-called Continuous-Time Random Walks (CTRW, see Hughes 1995). The model is
rooted on a very intuitive phenomenology, which is in a sense built in to yield the t3 law.
Yet, it also captures non-trivial features of the large-time statistics of the separations be-
tween tracers, among which their self-similarity, their explosive nature, and a qualitative
description of the distributions of extreme events.

3.1. Intuitive description of a stochastic piecewise-ballistic model

Given a pair of tracers, we denote r(t) and δu(t) their separation and relative velocity,
respectively. A “ballistic modelling” consists in assuming that during a time-lapse τ , the
velocity δu(t) remains constant, so that r(t + τ) ' r(t) + τδu(t). As demonstrated by
Bitane et al. (2012) for separations inside the inertial range, the ballistic motion holds
typically for a time τ of the order of the time needed to damp out |δu(t)|2 with the average
turbulent dissipation rate ε, namely τ ' |δu(t)|2/(2ε). Applying recursively this heuristic
argument suggests that the separation between the two tracers undergoes a sequence of
non-correlated ballistic increases or decreases at times t0 = 0, t1, t2 . . . tk (see Figure 2
Left). Defining the origin of time such that r(0) = r0, the separation rk = r(tk), and
corresponding time tk will then evolve jointly as

rk+1 = rk +
|δuk|2

2ε
δuk and tk+1 = tk +

|δuk|2
2ε

. (3.1)

In the language of CTRW, the values (rk, tk) are called the turning points of the process.
Between two successive turning points, the separation is by construction ballistic, so that
its value at any time can be obtained by linear interpolation. This choice corresponds
to a leaping CTRW, as already used by Shlesinger et al. (1987) in the context of a
Levy walk description of turbulent pair dispersion. To entirely describe the statistics
of the separations, one now only needs to prescribe statistics (i) for the moduli of the

relative velocities |δuk|, and (ii) for the longitudinal components of the velocities δu
‖
k =

δuk · rk/|rk|. In principle the distribution of turbulent velocity differences non-trivially
depends on the scale |rk|. This can be due to finite-size effects, so that one has to
distinguish between dissipative, inertial, and integral scales. We focus here on separations
that always remain within the inertial range and exclude any intermittent corrections to
K41 similarity hypothesis. While crude, such an assumption will prove to be sufficient
to reproduce the main mechanisms of relative dispersion. In this framework, the relevant
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Figure 2. (Color online) Left: Sketch of a piecewise-ballistic scenario. Right: A typical real-
ization of λ as a function of the physical logarithmic time θ, and the corresponding evolution
of ρ = ln(r/r0) (inset). Here, α is uniform between −1 and 1, and log β is Gaussian with zero
mean and unit variance (Please see the text for the definitions).

inputs are the statistics of

αk =
δu
‖
k

|δuk|
and βk =

|δuk|3
2 ε |rk|

. (3.2)

The variables αk ∈ [−1, 1] should have an asymmetric distribution in order to reproduce
the skewness of longitudinal velocity differences in turbulence. The variables βk account
for the fluctuations in the rate of energy transfer and, under K41 assumptions, should be
independent of the rk’s. The time lapses between two consecutive turning points may be
thought of as correlation times: It is then natural to prescribe that both αk and βk be
independently distributed. We later refer to the distributions of the noises αk and βk as
α and β — without a subscript — and denote with 〈·〉 the average over their realizations.

Under these assumptions the dynamics of the distance rk = |rk| reduces to

rk+1 = rk
(
1 + 2αk βk + β2

k

)1/2
and tk+1 = tk + (2 ε)−1/3 (βk rk)

2/3
. (3.3)

Note that this process is not purely multiplicative. As discussed in the previous section,
if the time increments τk = tk+1 − tk were constant, then the distributions of the log-
arithms of the distance at a given observation time would evolve towards a Gaussian
distribution given by the Central Limit Theorem. This is however not the case here, as
the time associated to a given pair of tracers is itself a random variable, which is neither
additive nor multiplicative. In the present paper, we do not need to prescribe further the
distributions of α and β. The only constraint concerns the quantity 〈ln

(
1 + 2αβ + β2

)
〉.

It is required to be positive in order to ensure that the times tk go to infinity as the
number of turning points diverges. This prevents the sequence tk from converging and
the two tracers from touching each other in a finite time.

3.2. Statistics of the separations from the piecewise ballistic perspective

We shall not here attempt to work out in full mathematical details the statistics of the
separations which the model predicts. Rather, we focus on a general and qualitative
description of those, based on simple physical arguments.

3.2.1. Self-Similarity

The piecewise-ballistic scenario as modeled by the system (3.3) yields a whole family
of self-similar distributions for the separations. To understand the origin of this self-
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similarity, it is convenient to introduce the non-dimensional “logarithmic” variables

θk = ln(tk/τ0), ρk = ln(rk/r0), and λk = ln(rk/r0)− (3/2) ln(tk/τ0), (3.4)

where τ0 = (2 ε)−1/3 r
2/3
0 is a characteristic time lapse associated to the initial separation

r0. The largest values of λ indicate pairs that separate faster than the typical explosive
separation, while large negative values are obtained when they get close to each other. We
next define pθ(ρ) the probability density of ρ conditioned on θ, regardless of the number
of turning points needed to reach this time, and write 〈·〉θ the corresponding average.

Self-similarity is achieved if the statistics of the variable λk become steady at long
times, e.g. when θ � 1. A rigorous proof that λk evolves towards a stationary distribution
p∞ goes beyond the scope of the present paper. Still, let us give qualitative arguments,
starting from the evolution of θk and λk. The combination of (3.1) and (3.4) yields

λk+1 = λk +
3

2
ln

(
1 + 2αkβk + β2

k

) 1
3

1 + β
2
3

k e
2
3λk

and θk+1 = θk + ln
(

1 + β
2
3

k e
2
3λk
)
. (3.5)

The equation for λk is closed as it does not involve the time variable θk. A typical
realization of the λk’s is shown in Figure 2 (Right). They fluctuate around the specific
value λ?, univocally defined by〈

ln
(
1 + 2αβ + β2

)〉
= 3

〈
ln
(

1 + β2/3e2λ
?/3
)〉

. (3.6)

It is easily shown that λ? is always negative. The evolution of λk can then be decomposed
as the sum of a noise W with zero mean and a restoring stochastic force F , namely

λk+1 = λk +W(αk, βk) + F(λk, βk), with

 W(α, β) = 3
2 ln
|1+2αβ+β2|1/3
1+β2/3e2λ?/3

,

F(λ, β) = 3
2 ln 1+β2/3e2λ

?/3

1+β2/3e2λ/3
.

(3.7)

The force F(λ, β) is a decreasing function of λ and changes sign at λ = λ?. We therefore
expect λ? to be a recurrent point. This is the source of the stationarity of the process
λk, which we have observed numerically. The stationarity of λk has several consequences.
First, the average logarithmic separation grows asymptotically when θ � 1 as 〈ρ〉θ =
3θ/2 + 〈η〉∞ + o(1) (see inset of Figure 2 Right), while its variance becomes constant, as
observed earlier in our data. Second, the stationarity of λk implies an explosive behaviour
of separations. The initial separation r0 does not appear in the dynamics (3.5). Also,
one can easily see that the specific choice of τ0 ensures that r0 can be simplified in
the definition of λk. The dependence upon the initial separation is thus entailed in the
definition of θk. However, this dependence disappears when t→∞, so that the stationary
distribution of λk is independent of r0. Finally, for large-enough times the probability
density of the logarithmic separations is simply translated by the dynamics around its
average value: pθ(ρ) = p∞(ρ − 3θ/2). This implies that, at large times, the statistics of
the distance r approach the self-similar form p(r, t) ' r−1p∞[ln(r/(ε1/2 t3/2))], which is
independent of r0.

3.2.2. Tails

The piecewise ballistic mechanism does not yield a single but a whole family of self-
similar distributions p∞, depending on the choices of α and β. We can however try to
characterize the tails of p∞.

The right-end tail (λ > λ?) corresponds to tracers that separate faster than the average.
At large times, the piecewise model (3.5) predicts that λ(θ) is negative, or in other words,
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that the logarithmic distance ρ is strictly smaller than three halves of the logarithmic
time. It is indeed easily checked that if λ is negative at a given turning point, then it
remains negative afterwards. As λ winds up fluctuating around λ? < 0, it is almost
surely negative at large times. A noticeable consequence is that the limiting self-similar
distributions have a right-end cutoff. Such a behaviour contrasts that obtained from
eddy-diffusivity models (including Richardson’s), whose tails fall as a double exponential
at large values.

The other tail (λ → −∞) captures the statistics of pairs that are not separated.
Numerical simulations of the model reveal that its form does strongly depend on the dis-
tribution of α and β. To understand further this behaviour, let us define Γ = 〈F(−∞, β)〉
and κ = 〈W(α, β)2〉1/2, and describe two asymptotic regimes κ� Γ and κ� Γ.
(i) κ � Γ describes a situation where tracers almost never come close to each other.
When they do so, they are immediately pulled back to their initial separation by the
restoring force F . In this case, one-step excursions dominate the left-end tail of the
statistics, which is therefore entirely determined by the distribution of W.
(ii) The case Γ � κ is opposite. Here, two particles need to undergo a large number of
ballistic steps to be pulled back towards λ?. The time of each step is in average smaller
than typical correlation time ∆θ? = 〈log(1 + β2/3e2λ

?/3)〉 at λ = λ?. In this limit, the
noise is dominant and the discrete dynamics can be approximated by a Brownian mo-
tion with a positive drift. One can check that this yields a stationary distribution whose
left-end tail is ∝ e(2/3+γ)λ where γ > 0 depends on the noise kernels. With an accurate
choice of the noises, the left exponential slope is therefore likely to be shallower than
Richardson’s left exponential slope of 3, as suggested by the numerical data.

4. Scaling of the distribution of distances

At this point, one may wonder whether the piecewise-ballistic phenomenology achieves
a better description of the full statistics than Richardson’s distribution. As the precise
shape of the statistics obtained from the piecewise-ballistic scenario are noise-dependent,
a detailed answer would require to plug into our stochastic model some “realistic noises”
for the distributions of α and β. This goes beyond our intention, since we consider here
the set of equations (3.1) as a “scenario” rather than a genuine “modelling” of the
separations.

To our taste, the main virtue of the model is that it provides a non-Markovian physical
interpretation to the explosive nature of the inter-particle separations, viz., the indepen-
dence upon the initial separation. We believe that dynamical memory effects are essential
for the understanding of extreme events in relative dispersion. One may therefore won-
der whether such effects are universal and whether their signature is intrinsically linked
to the explosive separation. A related question concerns the origin of the observed de-
viations to Richardson’s self-similar distribution. Are they due to finite-size effects, to
the intermittency of velocity statistics, or rather, as we think, to the limits of the eddy-
diffusivity approach? Our impression is that this question has been somehow overlooked
in the previous literature. Experimental and numerical datasets are often confronted to
Richardson’s distribution using a linlog representation of the distance neighbour func-
tion p(r, t)/(4π r2) in such a way that Richardson’s distribution appears as a straight
line (see, e.g., Ouellette et al. 2006). Such a representation puts a visual emphasis on
the collapse of the bulk of the distribution, but is not optimal for a thorough study
of the tails. In Figure 3, we use linlog coordinates to represent the distributions of the
rescaled logarithmic distances ρ̃ = [ρ− 〈ρ〉]/[(〈ρ2〉 − 〈ρ〉)1/2] observed in the numerical
simulation for six different initial separations r0 inside the inertial range and for each at
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Figure 3. (Color online) Probability density function of the logarithm of the inter-particle dis-

tance ρ = ln(r(t)/r0) for various r0 and, in each case, at time t ≈ 9 τr0 with τr0 = ε−1/3r
2/3
0 . The

dashed line is Richardson’s distribution. The black solid line is the steady distribution obtained

numerically from the ballistic model for lnβ ∼ N (0, 1) and p(α) = (5/6) ((α+ 1)/2)−1/3.

the fixed time t ≈ 9 τr0 . With such a choice, the distribution of the logarithmic distances
seems to converge towards a single distribution, regardless of r0. The collapse of the full
distribution makes the explosive nature of pair separation explicit. It is also once again
clear that the limiting distribution is not Richardson’s (dashed line). Note that a casual
choice for the statistics of α and β makes the piecewise ballistic steady distribution (solid
line) fit the data better. The model predicts a sharp cutoff at large values. However, the
current statistical accuracy does not enable us to discriminate between such a behaviour
and the double exponential obtained in the framework of eddy-diffusivity approaches.

To conclude, let us stress again that the piecewise-ballistic phenomenology provides a
new and intuitive way of thinking about the problem of pair dispersion and reproduces
some salient statistical features of tracer separation. While it might also be used to
investigate possible effects of the fluid flow intermittency, we limited here our study
to the K41 framework. The proposed toy model displays a number of general trends
that include (i) the explosive nature of the statistics, or in other words the property
that the steady distributions do not depend on the initial separation; (ii) their self-
similarity, which makes the statistics of the logarithm of the separation collapse towards
a single distribution; (iii) the presence of a right-end cutoff in the associated probability
density; (iv) the growth of the average of the logarithmic separation as three halves of
the logarithmic time, compatible with the t3 law, resulting from the multiplicative nature
of the separation process.
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European Community’s Seventh Framework Program (FP7/2007-2013 Grant Agreement
No. 240579) and from the French Agence Nationale de la Recherche (Programme Blanc
ANR-12-BS09-011-04).
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