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Abstract—Unmanned aerial vehicles (UAVs) evolution has
gained an unabated interest for the use in several applications,
such as agriculture, aerial surveillance, goods delivery, disaster
recovery, intelligent transportation. The main features of this
technology are high coverage, strong line-of-sight (LoS) links,
promising throughput, cost-effective and flexible deployment.
Currently, the Third Generation Partnership Project (3GPP)
is working on the specification of release-17 (R-17) new radio
(NR) for non-terrestrial networks (NTN). Therefore, owing to
the drastic increase of UAV technology, in this paper, we propose
channel state information (CSI) compression and its recovery
with the aid of machine learning (ML)-based twin channel
predictors. Due to the characteristic of gaining higher LoS
communication paths in UAV network, the proposed strategy
can bring potential benefits such as over-the-air (OTA)-overhead
reduction, minimizing mean-squared-error (MSE) of a channel
and maximizing precoding gain. Simulation-based results cor-
roborate the validity of the proposed strategy, which can reap
benefits in multiple factors.

Index Terms—ML, CSI prediction, CSI compression, CSI re-
porting, MIMO, recurrent neural network (RNN), UAVs, 5G/6G.

I. INTRODUCTION

A plethora of cellular users and their tremendous data rate
requirements bring multiple challenges in the current cellular
infrastructure. One of the promising solutions is to densely
deploy small-cell base stations (SCBSs) – the idea is to bring
the cellular users closer to the base station so that data rate can
be maximized. However, such densification of SCBSs brings
the challenge of their connectivity with the core network.
Furthermore, in case of emergencies, e.g., tsunami, earth-
quake; cellular networks can largely be impacted. Therefore,
unmanned aerial vehicles (UAVs) can provide a cost-effective
solution to both of these issues by instant deployment [1],
[2]. For instance, to deal with the connectivity of SCBSs
with the core network, [3] introduced the use of UAVs as the
communication hub between them. Similarly, [4] proposed an
intelligent transportation system with the aid of UAVs.

Despite the fact that UAV can play a pivotal role in the
modern era of wireless communication, there are multiple
challenges associated with such a technology, and many of
them have been addressed in the literature. For example,
association (serving a group of network entities) of SCBSs
with UAVs [5], placement of UAVs [6], [7], channel modeling
[8], and so on. Nevertheless, to the best of our knowledge,

channel state information (CSI) estimation, prediction, com-
pression, and reporting have not been considered so far.
In wireless communication, CSI is, by any measure, main
element of every wireless communication technique, e.g.,
channel scheduling and precoding. To acquire the benefits
of these wireless communication techniques, accurate CSI at
the transmitter side is necessary. More specifically, currently,
the Third Generation Partnership Project (3GPP) has also
been working on the specification of release-17 (R-17) for
non-terrestrial networks (NTN), which include satellite and
high altitude platforms (HAPs). In such kind of NTN, CSI
acquisition is of predominant importance.

The evolution of modern wireless communication tech-
niques such as beamforming is beckoning the use of novel
CSI reporting strategies. At present, in both communication
techniques, i.e., time-division-duplex (TDD) and frequency-
division-duplex (FDD), the base station sends a dedicated
reference symbol (RS) to cellular users to get the estimate of
the CSI. Nonetheless, to reduce over-the-air (OTA)-overhead
cost, cellular users feedback a compressed version of estimated
CSI. Notably, such compression can significantly reduce the
precision of estimated CSI. Currently, 3GPP considers two
types of CSI reports, i.e., type-I and type-II [9], [10]. Both
types, however, consider strong compression of estimated CSI,
which can result in deteriorating the performance of many
communication techniques, e.g., precoding.

Motivated by the above issues and promising benefits of
machine learning (ML) [11], [12], this paper focuses on em-
ploying ML in UAV-enabled wireless networks. In particular,
this work tackles the issue of inaccurate CSI, which is mainly
due to compression of estimated CSI. To this end, we address1

the compression and recovery of CSI along with reducing
the OTA-overhead cost. To acquire such an objective, we
propose the use of twin2 channel predictors at the UAV and
the ground terminal (GT), i.e., SCBS or user equipment (UE).
Here, importantly, in this study, we assume that such UAV can
either belong to low altitude platforms or HAPs, which can
hover from a few 100 meters to 20 kilometers. Feedback at the
GT will be evaluated on the basis of the predicted channel.

1Within the context of ground cellular networks, the same idea has also
been presented in [13], where the real and imaginary parts of channel model
are trained/predicted separately using ML.

2They have same initialization conditions, i.e., weights, training data, etc.



As a toy example, if the predicted channel is good enough,
then feedback can be eliminated; thus, bringing the necessary
feedback-related overhead to zero. Otherwise, the proposed
strategy can help in reducing the overhead as compared to the
benchmark scheme.

The paper organization is as follows. In Section II, system
model is discussed. The traditional scheme, which is used for
CSI acquisition, is discussed in Section III. Recurrent neural
network (RNN)-based proposed approach is discussed in Sec-
tion IV. Simulation-based results are presented in Section V.
Finally, conclusion is drawn in Section VI.

Notations: Matrices and vectors are denoted by boldface
upper-case and boldface lower-case, respectively, and scalars
with normal lower-case. Moreover, Ĥ, H̃, H, and H depict
the estimated, predicted, actual, and normalized channel, re-
spectively. In addition, Qb(·) and Qp(·) are standard element-
wise quantization functions followed in the benchmark and
the proposed approach, respectively, where real and imaginary
parts of the channel are quantized separately. Also, [·]T denotes
the transpose.

II. SYSTEM MODEL

A. Communication Environment

Consider a UAV-assisted network where a multi-purpose3

UAV is serving multiple ground network entities, e.g., SCBSs
and UEs. In the rest of the paper, for the sake of simplicity,
we will assume one ground network entity, remarking that
this process would be followed by all the ground devices,
served by the UAV. We will denote the ground network entity
as GT in the rest of the paper. Without loss of generality,
let us assume a multiple-input multiple-output (MIMO)-based
communication configuration, which has NT transmit and NR
receive antennas at the UAV and GT, respectively. Considering
such an environment, a MIMO communication model can be
written as

y(n) = H(n) · p(n) + ω(n) (1)

where y(n) =
[
y1(n), y2(n), ..., yNR

(n)
]T

is the received
signal at time instant n, having dimension NR × 1. Also,
H(n) =

[
hnrnt

(n)
]
NR×NT

depicts the channel, which has
dimension NR × NT , and hnrnt

∈ C1×1 is the channel
gain between the ntht transmit and nthr receive antenna. Fur-
ther, p(n) =

[
p1(n), p2(n), ..., pNT

(n)
]T

and ω(n) represent
transmitted pilot symbols and additive white Gaussian noise,
respectively.

B. Channel Model

Assume a UAV located at (xuav, yuav) hovering at an al-
titude huav, which is serving a GT located at (x, y). The
horizontal distance between the UAV and a GT is s =√

(x− xuav)
2

+ (y − yuav)
2, and θ = tan−1

(
huav
s

)
represents

3The UAV can act as a relay between SCBSs and the ground core-network
to route the uplink/downlink traffic of cellular users [3]. Also, it can be used
as a temporary aerial base station (ABS) in the scenario, where ground base
station is somehow damaged [6], etc. Moreover, a UAV can be playing the
role of traffic monitoring for intelligent transportation system [4], etc.

the elevation angle (in degrees) between them. The air-to-
ground channel model including path-loss and fast-fading
effects is written as follows [14]

H =
( H√

Lp

)
(2)

where H and Lp are the normalized channel matrix and path-
loss between the UAV and a GT, respectively. The line-of-
sight (LoS) link between the UAV and a GT at an angle θ, is
available by a certain probability, which is expressed as [15]

%LoS =
1

1 + α · exp[−β(θ − α)]
(3)

where α and β are the constants and their values are dependent
on the environment (urban, suburban, rural, etc.). Besides, the
probability of non-LoS (NLoS) is %NLoS = 1− %LoS.

The path-loss for LoS and NLoS links are [16]:

LLoS
p (dB) = 20 log10

(4πfcl

c

)
+ ηLoS (4)

LNLoS
p (dB) = 20 log10

(4πfcl

c

)
+ ηNLoS (5)

where l =
√
s2 + h2uav, fc is the carrier frequency and c is

the speed of light. Also, ηLoS and ηNLoS are the attenuation
factors for the LoS and NLoS links, respectively, which are
dependent on the environment. By using Equation (3), (4) and
(5), the average path-loss is given as

Lp = %LoS × LLoS
p + %NLoS × LNLoS

p . (6)

The fast-fading channel, H, is modeled as a Rician fading
channel, which is composed of LoS and NLoS components,
and is expressed as [14]

H =

√
K

1 +K
· ejφ ·HLoS

+

√
1

1 +K
·HNLoS

(7)

where K is the Rician factor and is selected such that
%LoS = K

1+K , φ is the phase shift of the signal between

transmit and receive antenna. Additionally, H
LoS

is the con-
stant term corresponding to LoS component, and H

NLoS
is the

Rayleigh fading channel representing the multi-path reflections
for NLoS components.

Assuming a FDD system, owing to the absence of channel
reciprocity, UAV sends RS to the GT for channel acquisition.
Consequently, the GT estimates the channel using a dedicated
channel estimator and feedback the compressed version of
the estimated channel to reduce the OTA-overhead. In the
following, we briefly summarize the CSI acquisition strat-
egy, followed in the benchmark scheme. Later on, we will
address the CSI compression and its recovery in the proposed
approach.



Fig. 1. A graphical representation of an RNN-based channel predictor.

III. BENCHMARK SCHEME FOR CSI ACQUISITION

Traditionally, to the best of our knowledge, CSI acquisition
has not been considered in UAV communication. All the
same, for the sake of comparison, we give an overview of
the benchmark scheme, which can be followed for the CSI
compression in UAV communication. However, importantly,
such benchmark scheme has been considered in many other
contexts, e.g., type-I and type-II CSI feedback [9], [10], but
not in the domain of UAV communication. Briefly, in the
benchmark scheme, the UAV transmits pilot symbols to the GT
to estimate the channel. In consequence, the GT estimates the
channel, denoted by ĤGT, using a dedicated channel estimator,
e.g., Kalman filter (KF). Also, to reduce the OTA-overhead, the
estimated channel is compressed using a quantization function
and is written as

ĤQ(n) = Qb(ĤGT(n)) (8)

where Qb(·) represents the quantization function. Subse-
quently, this quantized version is fed back to the UAV, which
is considered as an estimated channel at the UAV. Hence, the
acquired channel at the UAV can be written as

Ĥuav(n) = Qb(ĤGT(n)) . (9)

However, such compression can deteriorate the performance of
the estimated channel. Further, in massive MIMO, feedback
grows largely; thereby, such compression effects the perfor-
mance of MIMO precoder. Moreover, in excessive feedback
demand, a portion of UAV’s energy can decrease; thus, UAV
cannot stay aloft for a longer time period. For instance, when
the performance of MIMO precoder is poor, to achieve a
given bit error rate, UAV would need more transmit power;
consequently, UAV’s flying time would decrease. Motivated
by these issues, in the following, we present our proposed
approach, which is based on twin channel predictors.

IV. RNN-BASED CSI COMPRESSION AND RECOVERY

In the beginning of the proposed approach, we assume
that both the network entities, i.e., UAV and the GT, are

operating on traditional CSI acquisition scheme (as discussed
in Section III). Consequently, UAV and GT can establish a
past amount of channel realizations; thus, we assume that
the compressed version of the estimated channel, i.e., ĤQ,
is available on both sides. Additionally, we consider a twin
channel predictor, which is deployed on UAV and the GT. The
feedback at the GT will be evaluated based on the predicted
channel at GT. As a toy example, if the prediction at the
GT is perfect, then there is no need to feedback anything.
On the other hand, if there is anything to feedback, then the
update function (the difference between predicted channel and
estimated channel) will introduce less noise in the compression
as compared to (8). Below, we first describe the channel
predictor, which is used in this study. Later on, compression
strategy and its recovery will be explained.

A. RNN-Based Channel Prediction

Recently, ML has emerged as a paradigm shift in the modern
era of wireless communication [5], [11], [12]. Although ML
has been considered in many aspects of wireless commu-
nication, applications at the physical layer are still lagging.
Therefore, this work introduces a channel prediction-aided CSI
reporting, which is shown to reduce both feedback overhead
and improve CSI precision. Specifically, within the domain
of ML, RNN has proven to be a powerful technique for
making the time-series prediction [17]. As RNN have the
characteristic of making the prediction based on the current
input as well as previous computation; hence, RNN is different
from the traditional neural network (TNN), i.e., feedforward
neural network. In the TNN, every input of the neural network
is independent of each other. In many cases, upcoming input
can be dependent on the previous one (for example, making
the prediction of the next word in the sentence).

The objective of the RNN is to give multi-step (n+S) ahead
prediction of the channel, represented by H̃(n+ S), which is
as precise as possible to the actual value, i.e., ĤQ(n + S).
The pictorial representation of a RNN is given in Fig. 1. In



the domain of ML, such an architecture is known as many-to-
many RNN as it is consisted of multiple-inputs and multiple-
outputs. As depicted in Fig. 1, RNN is consisted of an input
layer, which has L input neurons, a hidden layer consisted of
M hidden layer neurons, and an output layer, comprises of
O output neurons. Further, input neurons, L, are consisted of
external inputs and the internal feedback. On the other hand,
to train and test the RNN, ĤQ(n), which can be represented
as

ĤQ(n) =


ĥQ11(n) · · · ĥQ1NT

(n)

ĥQ21(n) · · · ĥQ2NT
(n)

...
. . .

...
ĥQNR1

(n) · · · ĥQNRNT
(n)

 (10)

where ĥQnrnt
(n) ∈ C1×1 denotes the compressed version of

estimated channel for transmit antenna nt and receive antenna
nr, is taken along with its d−step delayed channel realizations,
i.e., ĤQ(n− 1), ĤQ(n− 2), ..., ĤQ(n− d). However, as ML
cannot deal with matrices, therefore, the combined data, i.e.,
ĤQ = {ĤQ(n), ĤQ(n − 1), ĤQ(n − 2), ..., ĤQ(n − d)}, is
unrolled into a vector as

ĝQ = unroll(ĤQ) = [ĥQ11 ĥQ12 ... ĥQNRNT
] . (11)

Importantly, the training and prediction of a complex-valued
RNN is not well implemented in the current ML-based soft-
ware tools, therefore, in our work, we use real-valued based
RNN. Thus, to this end, we separate the complex-valued vector
ĝQ into real and imaginary parts, using a dedicated separator
function (as drawn in the left-most part of Fig. 1). Therein, the
resultant vector can be written as

g = [gR11(n) ... gRNRNT
(n−d), gI11(n) ... gINRNT

(n−d)]
(12)

where gRnr,nt
and gInr,nt

represent the real and imaginary parts
of a channel ĥQnrnt

∈ C1×1. In addition, the feedback from
the output, can be written in vector form as

g̃(n) = [g̃R11(n) ... g̃RNRNT
(n), g̃I11(n) ... g̃INRNT

(n)]
(13)

where g̃Rnrnt
(n) and g̃Inrnt

(n) depict the real and imaginary
parts of the predicted channel (h̃nrnt(n) ∈ C1×1) for the ntht
and nthr transmit and receive antenna, respectively. Finally,
together with the external input, the combined input, i.e.,

i(n) = [g, g̃(n)] (14)

is fed as an input to the neural network. Consequently, multi-
step ahead prediction of the real and imaginary parts of a
channel, which are denoted by g̃Rnrnt

(n+S) and g̃Inrnt
(n+S),

respectively, can be obtained. Afterwards, real and imaginary
parts of the channel are combined using a function, we call
it combiner, as portrayed on the right-most part of Fig. 1.
By doing some processing, S-step ahead predicted channel
can be written in the vectorized form as p̃(n + S), which
can be seen at the output of combiner. Thereby, multi-step
ahead predicted channel, for a MIMO configuration, can be

expressed (by converting the p̃(n + S)) into matrix form as
H̃(n+ S).

On the other side, prediction of any ML-based predictor is
totally dependent on the weights of input and hidden layers,
and the activation function. A weight value is assigned for a
connection between the output of a neuron in the predecessor
layer and input of a neuron in the successor layer. For instance,
we denote the weight of lth input and mth hidden neuron
as wml, and wom represents the weight for the connection
between oth output neuron and mth hidden layer neuron,
where 1 ≤ l ≤ L, 1 ≤ m ≤ M , and 1 ≤ o ≤ O. Also,
for the hidden layer neuron, we use rectified linear unit as an
activation function, which is written as

a(z) = max(0, z) (15)

where
z = wm · i(n) (16)

where wm = [wm1, ..., wmM ] is the weight vector for mth

hidden layer neuron. Thus, the output for the mth hidden
neuron, at nth time instant, can be obtained as follows

ξm(n) = a(wm · i(n)) . (17)

Subsequently, passing the above activation function to the
oth output neuron, n + S time ahead predicted value can be
obtained as

Jo(n+ S) =

M∑
m=1

wom · ξm(n) . (18)

Lastly, by substituting (17) into (18), S-step ahead prediction
at an output neuron, representing the prediction for the real or
imaginary part of the channel, can be written as

g̃o(n+ S) =

M∑
m=1

wom · a(wm · i(n)) . (19)

The functionality of a RNN-based MIMO channel predictor
is composed of two stages, i.e., training and prediction. In the
beginning, once the hyperparameters of RNN, e.g., number
of hidden layers and neurons, have been selected, then the
training stage can begin. In the training stage, input data-
set, i.e., channel values, which are consisted of training and
validation (optional) set, are fed as an external input to RNN,
along with actual labels. As an outcome, RNN processes
each example (or a batch of examples, which depends on
the batch size), and compares the resulting predicted value
with the actual label. Next, the error between the prediction
and corresponding label is backpropagated (feedback) to the
network such that the weights of each connection can be
updated in an iterative manner. This process is repeated until
mean-squared-error (MSE) between the predicted and actual
label, is minimized. Lastly, once an RNN has been trained,
then it can be used as a predictor for test (or unknown) inputs.
The resultant RNN4 can give a multi-step ahead prediction of
the channel.

4To know more about training and prediction of an RNN, interested readers
can refer to, e.g., [17].



Having the trained channel predictor at the UAV and GT,
in the following, we first explain the compression of CSI at
the GT.

B. CSI Compression at GT

The twin trained RNN-based channel predictors on both
sides of the communication system, predict the next channel
realization, e.g., at time n. Clearly, since the channel predictors
are twin and they are using the same input for the prediction,
therefore, predicted channel on both sides would be same, i.e.,
H̃uav(n) = H̃GT (n), where H̃uav(n) and H̃GT (n) represent
the predicted channel at the UAV and GT, respectively, at time
n. In addition, at time n, UAV sends the dedicated RS to the
GT for CSI acquisition. Accordingly, GT estimates the channel
at time n using the dedicated channel estimator, i.e., KF. Later
on, an update function, at the GT, is computed as

Γ(n) = ζ
[
H̃GT (n), ĤGT (n)

]
(20)

where ζ[·] is a function, which represents the measure of
the distance between the two channel realizations, e.g., a
difference. Hence, (20) can be written as

∆C(n) = H̃GT (n)− ĤGT (n) . (21)

Then, the update, given in (21), is compressed at the GT as

Uc(n) = Qp(H̃GT (n)− ĤGT (n)) (22)

where Qp(·) represents the quantization function. The benefits
of using the above compression strategy as compared to (8) are
twofold. Firstly, quantization error, which will be introduced in
(22), can be lower than (8). This is because of the fact that in
(22), the amplitude of the entries can be very small; therefore,
less quantization error will occur. Secondly, having smaller
values in (22) will require fewer bits to quantize; thereby, the
overhead required for the CSI compression can be reduced
significantly. Moreover, if the prediction and estimation at the
GT are perfect, i.e., H̃GT (n) = ĤGT (n), then there is no
need to feedback anything; therein, feedback-related overhead
can be eliminated. This scenario, in particular, can happen in
the network, where GTs are static. For instance, as presented
in [3], [5]–[7], where ground SCBSs are static, and UAVs
are used as communication hubs to route the uplink/downlink
traffic of cellular users between the ground core-network and
the SCBSs. Or, alternatively, when GTs are static cellular users
(e.g., cellular users watching a football match in the stadium,
attending a seminar, or cellular users sitting at home due to
the lockdown of global coronavirus pandemic). This is due to
the reason that for static GTs, variation in the channel can be
very small; therefore, prediction can be more accurate. Thus,
overhead can be reduced tremendously. Below, we present the
recovery of quantized updates (i.e., (22)) at the UAV.

C. CSI Recovery at UAV

The recovery of the quantized update, i.e., (22), at the UAV,
is divided into two cases: when the UAV receives the feedback
from GT and when it does not.

1) Case-1: In the first case, when the UAV receives the
feedback from the GT, the estimated channel at the UAV, at
time n, can be obtained through the following equation

Ĥp
uav(n) = H̃uav(n)−Uc(n) . (23)

By substituting (22) into (23), the estimated channel at the
UAV, can be expressed as

Ĥp
uav(n) = H̃uav(n)−Qp(H̃GT (n)− ĤGT (n)) . (24)

Based on the above equation, we make two remarks. Firstly,
the better the prediction at the GT less would be the error in the
update. Therefore, fewer bits will be required to quantize the
update. Secondly, if the quantizer is using an infinite amount
of bits for the quantization, then (22) would not give any
advantage. In simple words, quantization in the benchmark
scheme and the proposed scheme would be the same, i.e.,
Qb(x) = Qp(x) = x, where x is the data to be quantized.

2) Case-2: In the second case, when UAV does not receive
any feedback from the GT, which can be in the scenario when
H̃GT (n) = ĤGT (n); thus, in such case, estimated channel at
the UAV would be simply

Ĥp
uav(n) = H̃uav(n) . (25)

Therefore, in the second case, feedback-related overhead has
been eliminated. As the UAVs provide strong LoS communica-
tion paths, also, in static GTs (e.g., when UAVs serve SCBSs),
there can be negligible variance in the channel; thereby, it is
possible that the predicted channel could be much closer to the
estimated channel. Thus, UAV can save energy; consequently,
UAV can stay aloft for a prolonged time.

V. RESULTS AND ANALYSIS

In this section, the performance of the proposed approach
is compared with the benchmark scheme. We assume a static
UAV hovering at 150 meters, a GT randomly moving in square
of length 500 meters, and H

LoS
equivalent to identity matrix.

The rest of the simulation parameters are given in Table I.
Importantly, for the sake of observing compression errors, we
consider perfect channel estimation. Moreover, to analyze the
results, we consider MSE (ξmse) as evaluation parameter. The
MSE can be obtained by using the formula given below

ξmse =
1

N

N∑
n=1

∥∥∥H(n)− Ĥ
′

uav(n)
∥∥∥2 (26)

where, in the case of benchmark scheme, Ĥ
′

uav(n) = Ĥuav(n),
while for the proposed approach, Ĥ

′

uav(n) = Ĥp
uav(n). Besides,

in our experiments, we observed a prediction error of 2.3 ×
10−3 in RNN. Nevertheless, designing an accurate channel
predictor is not the goal of this study. Therefore, below, we
evaluate the performance by using ξmse.

Fig. 2 shows ξmse when quantization bits, denoted by Q, are
increased. The decreasing trend in the ξmse can be observed
when Q is increasing. Nonetheless, the proposed approach is
outperforming the benchmark. For instance, when Q = 1 then
the benchmark scheme has ξmse ≈ 0.11 while the proposed



TABLE I
SIMULATION PARAMETERS.

Parameter Value Description
d, {xuav, yuav}, DSize 1, {230, 340}, 5000 Tapped delay, position of UAV, and size of data-set

{NT , NR, φ, c, huav} {2, 2, π/4, 3× 108 m/s, 150m} Description given in Section II
{fc, α, β, ηLoS, ηNLoS} {2GHz, 9.61, 0.16, 1 dB, 20 dB} [15] Description given in Section II

RNN architecture 3-layer RNN’s input, hidden, and output layer
Optimization algorithm, Ne Adaptive moment estimation (Adam) [18], 15 Algorithm to update weights of RNN, and number of epochs

L,M,&O 24, 24, 8 Number of neurons in input, hidden and output layer, respectively
Dtrain, Dvalid, Dtest 80%, 10%, 10% Distribution of data-set: training, validation, and test, respectively
B, ML Platform 12, TensorFlow with Python Batch size, and implementation platform for RNN algorithm
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0.06

0.08

0.1

0.12

Proposed

Benchmark

2 3 4 5
0

0.5

1

1.5
10

-3

0.08

Fig. 2. Performance evaluation of benchmark versus proposed approach using
ξmse (given in (26)) when quantization bits Q are varied.

approach has ξmse ≈ 0.03, and this reduces further when
Q increases. Thus, it can be concluded that the benchmark
scheme demands more overhead. In summary, the proposed
approach has not only saved the overhead bits, Q, but also
recovered the actual channel 100% by using only 2 bits; thus,
reaping benefit of precoding gain.

VI. CONCLUSION

Seeing the growing interest in UAV communication and
the predominant importance of CSI acquisition, this work
addressed the CSI compression and its recovery with the
aid of ML-based twin channel predictors. Simulation-based
results validated (100% recovery of the compressed channel
is observed by using fewer overhead bits) the use of the
proposed approach, which can bring potential benefits in the
UAV scenarios where GTs are static or even moving at a
predictable speed.
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