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Computer assisted discharging procedure on planar graphs:

application to 2-distance coloring
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Abstract

Using computational techniques we provide a framework for proving results on subclasses of planar graphs

via discharging method. The aim of this paper is to apply these techniques to study the 2-distance coloring

of planar subcubic graphs. Applying these techniques we show that every subcubic planar graph G of girth

at least 8 has 2-distance chromatic number at most 6.

The discharging method is a very common tool used for proving coloring results on sparse graphs. At heart, it
is a counting argument that guarantees the existence of (easily) colorable structures in a given sparse graph. Such
structures are commonly named reducible configurations as they cannot appear in a minimal counterexample
to a desired theorem. A typical counting argument in the discharging method consists in translating the global
sparseness of the graph into local weights, called charges. For instance, a charge can be the degree of a vertex or
the size of a face (when the graph is planar). The goal then is to obtain, through a clever redistribution of these
charges, a contradiction by showing that there exists a reducible configuration in a minimal counterexample.
This redistribution is done via discharging rules. See the survey of Cranston and West [6] for more detailed
explanation.

The limit of this method is achieved when one needs to consider a large amount of case distinctions in a
proof. This happens essentially for two main reasons: the coloring of a configuration involves a complicated
case analysis, or the set of reducible configurations needed in the proof is (too) large. Hence, using computer
assistance seems to be the most natural way to overcome this hurdle. Showing that a configuration is reducible
is very dependent on the type of coloring. On the other hand, generating a set of unavoidable configurations is
more dependent on the class of graphs. The most famous example of computer assistance in discharging is the
proof of the Four Color Theorem [1,2, 9]. In this paper, we present an algorithm that, given a particular set of
discharging rules, generates all to-be-reduced configurations for planar graphs. We implemented this algorithm
and applied it to show the 2-distance colorability of a subclass of subcubic planar graphs. The source code can
be found at https://gite.lirmm.fr/discharging/planar-graphs.

Before going into the details of 2-distance coloring problems, we wish to highlight that, even though the
majority of the paper deals with the technicality of this particular problem, our algorithm is independent from
the coloring problem.

A 2-distance k-coloring of a graph G = (V,E) is a map φ : V → {1, 2, . . . , k} such that no pair of vertices
at distance at most 2 receives the same color c ∈ {1, 2, . . . , k}. Wegner [11] conjectured that subcubic planar
graphs are 7-colorable. This conjecture was proved by two independent group of authors, the first one using a
graph decomposition (Thomassen [10]), the second one using a computer-assisted discharging method (Hartke
et al. [7]). The authors in [7] used computer assistance to 2-distance color a given set of large configurations.
Our approach differs as we use the computer in order to generate the set of configurations needed to be reduced
(according to the discharging rules) instead. Moreover, for our specific problem, the reducible configurations
are not always colorable by computer with a naive exhaustive precoloring extension algorithm (see discussion
after Lemma 10).

The 2-distance colorability of planar graphs with high girth is extensively studied in the literature. See [8]
for a detailed state of art. We focus on the case of subcubic graphs. In 2008, Cranston and Kim proved the
following result:

Theorem 1 ([5]). Let G be a planar subcubic graph with girth g ≥ 9. Then χ2(G) ≤ 6.
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Note that their result also applies for the list version of the problem. We improve Theorem 1 by lowering
the bound on the girth. Our proof relies heavily on the assumption that the colors are taken from the same set
of six colors, thus it does not seem to be extendable to the list version of the problem.

Theorem 2. Let G be a planar subcubic graph with girth g ≥ 8. Then χ2(G) ≤ 6.

The proof is done by induction on the order of the graph using the discharging method. We will assume
a minimum counterexample and show a set of reducible configurations which it cannot contain (Section 2).
Then, using Euler’s formula, we define a distribution of charges on the vertices and faces of this hypothetical
counterexample such that the total amount of charges is negative. In order to obtain a non-negative total
amount of charges on the vertices, we use the same distribution of charges on the vertices as in the proof of
Theorem 1 (Section 3.1). With this distribution, the only faces with negative charge are of length 8. With the
assistance of a computer program, we list each possible close neighbourhoods around a face of length 8. For
each of these neighborhoods, our algorithm shows that either it contains a reducible configuration or it can get
enough charge from its incident vertices (Section 3.2). This leads to a contradiction.

In Section 4, we discuss the tightness of Theorem 2 and possible extensions. Finally, in Section 5, we explain
how to use our algorithm to solve problems on other subclasses of planar graphs.

Notations: In the following, we only consider plane graphs that is planar graphs together with their embedding
into the plane. For a plane graph G, we denote V , E, F the sets of vertices, edges and faces respectively. We
denote d(v) (resp. d(f)) the degree of vertex v ∈ V (resp. the size of face f ∈ F ).

Some more notations:

• A d-vertex is a vertex of degree d.

• A d-face is a face of size d.

• A k-path is a path of length k + 1 where the k internal vertices are 2-vertices.

• A (k1, k2, k3)-vertex is a 3-vertex incident to a k1-path, a k2-path and a k3-path.

Recall that in the whole paper we do a 2-distance 6-coloring. Thus, for a vertex v, we denote L(v) the set
of available colors from {a, b, c, d, e, f}. For convenience, in the figures a vertex v will be represented by a circle
labeled v. Additionally, when a lower bound on |L(v)| is known, it will be depicted on the figure. For example,
the graph depicted in Figure 1i is a path v1v2v3v4 with the following size of lists of available colors: |L(v1)| ≥ 2,
|L(v2)| ≥ 3, |L(v3)| ≥ 2, |L(v4)| ≥ 2.

We will also say that a vertex u sees another vertex v if v is at distance at most 2 from u.

1 Useful observations and lemmata

Here we show some colorable and non-colorable configurations, that is graphs together with lists of available
colors for each vertex. These observations will be extensively used in Section 2.

Lemma 1. The graphs depicted in Figures 1i to 1xv are 2-distance colorable.

Proof. In the proofs of this section, whenever the size of a list |L(v)| ≥ k we assume that |L(v)| = k by arbitrarily
removing the extra colors from the list. One can easily observe that these proofs will hold for the case when
|L(v)| > k.

We will give the proofs for each figure in order:
Proof of Figure 1i. If v1 and v4 can be colored with the same color, then finish by coloring v2, v3 in this order.
Otherwise, since L(v1) ∩ L(v4) = ∅ we have |L(v1) ∪ L(v4)| ≥ 4, so one can apply Hall’s Theorem. (

�
)

Proof of Figure 1ii. If L(v4) 6= L(v5), then color v5 with x /∈ L(v4) and get Figure 1i, so we are done.
Otherwise, color v3 with a color y /∈ L(v5) ∪ L(v4). Then color v1, v2, v4, v5, in this order. (

�
)

Proof of Figure 1iii. If L(v1) 6= L(v3), then we color v1 with x /∈ L(v3) and get Figure 1ii. Otherwise, color v2
with a color y /∈ L(v3) ∪ L(v1), then color v3, v4, v5, v6 using Figure 1i and finish by coloring vertex v1. (

�
)

Proof of Figure 1iv. Observe that L(v3) = L(v4) because if not we color v4 with x /∈ L(v3) and we get Figure 1i.
Thus color v′3 with y /∈ L(v3) and get Figure 1i again. (

�
)
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Proof of Figure 1v. If L(v2) 6= L(v4), then one could color v4 with x /∈ L(v2), then by Figure 1i we are done.
Otherwise, since |L(v′3)| ≥ 3, color v′3 with a color y /∈ L(v4) ∪ L(v2). Then again by Figure 1i we are done. (

�
)

Proof of Figure 1vi. Observe that there exists x ∈ L(v′3) \ L(v2). Thus x ∈ L(v4) as otherwise one could color
v′3 with x and get Figure 1ii. Hence x ∈ L(v5), as otherwise one could color v4 with x, color vertices v1, v2, v3, v′3
by Figure 1i and finish by coloring vertex v5. Therefore, we color v′3 and v5 with x and we get Figure 1i. (

�
)

Proof of Figure 1vii. First observe that L(v1) ⊂ L(v′2). Otherwise, by coloring v3 with x /∈ L(v1) and coloring
v4, v′3 and v2 in this order, one could finish with vertices v1 and v′2 which see the same colored vertices while
L(v1) 6⊂ L(v′2). Now, suppose L(v3) 6= L(v′2) and color vertex v3 with y /∈ L(v′2) ⊃ L(v1). Then color v4, v′3, v2,
v1, v′2 in this order. Therefore L(v3) = L(v′2) ⊃ L(v1) and we color v2 with z /∈ L(v3) and finish by coloring v4,
v′3, v3, v1, v

′
2 in this order. (

�
)

Proof of Figure 1viii. First note that L(v4) = L(v5) as otherwise by coloring v5 with x /∈ L(v4) we get
Figure 1vii. If L(v5) ⊂ L(v′3), then we color vertex v3 with y /∈ L(v′3) and v1, v′2, v2, v4, v5, v

′
3 in this order. We

conclude that |L(v′3) \L(v5)| ≥ 2. Thus by replacing L(v′3) with L(v′3) \L(v5) and L(v3) with L(v3) \L(v5), we
can color vertices v1, v2, v′2, v3, v

′
3 by Figure 1v and finish by coloring vertices v4 and v5. (

�
)

Proof of Figure 1ix. Suppose L(v2) 6= L(v′3). Then restrict the list of colors of v3 to L(v3) \ L(v1), color
vertices v3, v4, v′4, v5 and v6 by Figure 1v and finish by coloring v′3, v2 and v1 in this order. Therefore, we have
L(v2) = L(v′3). Now, if L(v5) 6= L(v6), then we color vertex v4 with x /∈ L(v′3), color v5 and v6 (because theirs
lists are different) and finish by coloring v′4, v3, v1, v2 and v′3 in this order. Thus we have L(v5) = L(v6). Color
vertex v3 with y /∈ L(v2) = L(v′3). If y ∈ L(v6), then color vertex v6 with y and finish by coloring v5, v′4, v4, v1,
v2, v′3 in this order. If y /∈ L(v6) = L(v5), then color v′4, v4, v5, v6 by Figure 1i and finish by coloring v1, v2, v′3
in this order. (

�
)

Proof of Figure 1x. If L(v1) 6⊂ L(v2), then by coloring v1 with y /∈ L(v2) we get Figure 1viii. Hence, we have
w.l.o.g. L(v1) = {a, b} and L(v2) = {a, b, c}.

If L(v2) 6⊂ L(v3), then we restrict L(v3) to L(v3) \L(v2). Observe that |L(v3) \L(v2)| ≥ 3. Now, we look at
the two following cases:

• When L(v′3) = L(v′′3 ), we color v3 with x /∈ L(v′3) and then v5, v′4, v4, v
′
3, v

′′
3 , v2, v1 in this order.

• When L(v′3) 6= L(v′′3 ), we color v′′3 with y /∈ L(v′3) and we obtain Figure 1v. We color v2 and v1 last.

So, L(v2) ⊂ L(v3). We can thus assume w.l.o.g. that L(v3) = {a, b, c, d, e}.
If d /∈ L(v′3) ∪ L(v′′3 ), then we color v3 with d, then v5, v′4, v4, v

′
3, v

′′
3 , v2, v1 in this order. The same holds

for e. So, we must have {d, e} ⊆ L(v′3) ∪ L(v′′3 ).
If L(v′3) = L(v′′3 ), then due to the previous observation, L(v′3) = L(v′′3 ) = {d, e}. In this case, we color v3

with c, then v5, v′4, v4, v
′
3, v

′′
3 , v2, v1 in this order. As a result, L(v′3) 6= L(v′′3 ).

If L(v′3) ⊂ L(v2), then we must have L(v′′3 ) = {d, e}. We then color v3 with d, then v′′3 , v5, v′4, v4, v
′
3, v2, v1

in this order.
If L(v′3) 6⊂ L(v3), then f ∈ L(v′3). We color v′3 with f , then v′′3 and v5. We can then finish coloring v1, v2,

v3, v4, v′4 by Figure 1ii. We can thus assume w.l.o.g that d ∈ L(v′3).
If c /∈ L(v′3), then we color v2 with c, v4 with x ∈ L(v4) \ L(v′3), and v5, v′4, v3, v1 in this order. We can

finish by coloring v′3 and v′′3 since L(v′3) 6= L(v′′3 ). So, c ∈ L(v′3).
To summarize the previous observations, we have L(v1) = {a, b}, L(v2) = {a, b, c}, L(v3) = {a, b, c, d, e},

L(v′3) = {c, d} and e ∈ L(v′′3 ). We color v′′3 with e. We restrict L(v3) to {c, d}. We color v′3, v3, v4, v
′
4, v5 by

Figure 1v. Finally, we finish by coloring v2 and v1 in this order. (

�
)

Proof of Figure 1xi. If L(v2) 6= L(v1), then color v2 with x /∈ L(v1), color vertices v′4, v4, v5, v6 by Figure 1i
and finish with v3 and v1. If L(v2) = L(v1), then by restricting the list of colors of v3 to L(v3) \L(v2), we color
vertices v3, v4, v′4, v5, v6 by Figure 1v and finish with v2 and v1. (

�
)

Proof of Figure 1xii. Observe that L(v1) = L(v2) since otherwise one could color v1 with x /∈ L(v2) and get
Figure 1vi. Therefore, we restrict the list of colors of v3 to L(v3) \ L(v2). We color then v3, v4, v′4, v5, v6 by
Figure 1v and finish with v2 and v1. (

�
)

Proof of Figure 1xiii. If L(v5) 6= L(v6), then by coloring v6 with x /∈ L(v5), one could finish by Figure 1ii. Thus
L(v5) = L(v6) and we restrict the list of colors of v4 to L(v4) \ L(v5), color vertices v1, v2, v3, v4 by Figure 1i
and finish with v5 and v6. (

�
)
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Proof of Figure 1xiv. Observe that L(v1) = L(v2) as otherwise by coloring v2 with x /∈ L(v1), one could
color v3, v4, v5, v6, v7 by Figure 1ii and finish by coloring v1. Therefore, color v3 with y /∈ L(v2) ∪ L(v1), color
v4, v5, v6, v7 by Figure 1i and finish by coloring v2, v1 in this order. (

�
)

Proof of Figure 1xv. Note that L(v6) = L(v7) as otherwise by coloring v7 with x /∈ L(v6) one could finish by
Figure 1xiii. Hence color v5 with y /∈ L(v7) ∪ L(v6), then color v1, v2, v3, v4 by Figure 1i and finish with v6, v7.
(

�
)

Proof of Figure 1xvi. If it is possible to color v1 and v5 with the same color, then after coloring v6, we get
Figure 1x. Hence L(v1) ∩ L(v5) = ∅. If it is possible to color v5 and v′2 with a common color, then after
coloring v6, we get again Figure 1x. Hence L(v′2) ∩ L(v5) = ∅. Symmetrically, we have L(v′′3 ) ∩ L(v5) = ∅ and
L(v′′′3 ) ∩ L(v5) = ∅.

Now, since we are considering a 6-coloring, we restrict the list of colors of v3 to L(v3) = L(v5) and color
vertices v3, v4, v′4, v5, v6 by Figure 1v. We finish by coloring the remaining vertices in the following order: v1,
v2, v′2, v

′
3, v

′′
3 , v′′′3 . (

�
)

v1 v2 v3 v4

2 3 2 2

(i)

v1 v2 v3 v4 v5

2 3 3 2 2

(ii)

v1 v2 v3 v4 v5 v6

2 3 2 3 3 2

(iii)

v1 v2 v3 v4

2 4 2

v′3

3

2

(iv)

v1 v2 v3 v4

2 2 4

v′3

3

2

(v)

v1 v2 v3 v4 v5

2 2 4

v′3

3

3 2

(vi)

v1 v2 v3 v4

2 4

v′2

3

3

v′3

3

2

(vii)

v1 v2 v3 v4 v5

2 4

v′2

3

4

v′3

3

2 2

(viii)

v1 v2 v3 v4 v5 v6

2 3 4

v′3

3

4

v′4

3

2 2

(ix)

v1 v2 v3 v4 v5

2 3 5

v′32

v′′3

2

4

v′4

3

2

(x)

v1 v2 v3 v4 v5 v6

2 2 5 4

v′4

2

2 2

(xi)

v1 v2 v3 v4 v5 v6

2 2 4 4

v′4

3

2 2

(xii)

v1 v2 v3 v4 v5 v6

2 2 3 4 2 2

(xiii)

v1 v2 v3 v4 v5 v6 v7

2 2 3 3 3 3 2

(xiv)

v1 v2 v3 v4 v5 v6 v7

2 2 4 3 3 2 2

(xv)

v1 v2 v3 v4 v5 v6

2 4 6 4 2 2

v′2
3

v′4
3

v′34

v′′32 v′′′33

(xvi)

Figure 1: Useful 2-distance colorable configurations (Lemma 1)
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In Figures 2 to 5 we provide several useful non-colorable configurations. The important fact is that the
non-colorable configurations can force the lists of colors on some vertices.

Lemma 2. The graphs depicted in Figures 2 to 5 are 2-distance colorable unless their lists of available colors

are exactly as indicated.

v1 v2 v3

1 2 2

v1 v2 v3

2 1 2

(i) Initial configurations

v1 v2 v3

L(v1) ⊆ {a, b} {a, b} {a, b}

v1 v2 v3

{a, b} L(v2) ⊆ {a, b} {a, b}

(ii) Forced lists of colors

Figure 2: A non-colorable path on 3 vertices

v2 v3 v4

v1

2

3 2 3

(i) Initial configuration

v2 v3 v4

v1

L(v1) ⊆ {a, b, c}

{a, b, c} L(v3) ⊆ {a, b, c} {a, b, c}

(ii) Forced lists of colors

Figure 3: A non-colorable graph

v2 v3 v4 v5

v1

2

3 3 2 2

(i) Initial configuration

v2 v3 v4 v5

v1

L(v1) ⊆ {a, b, c}

{a, b, c} {a, b, c} L(v4) ⊆ {a, b, c}

(ii) Forced lists of colors

Figure 4: A non-colorable graph

v1 v2 v3 v4 v5

2 2 4 2 2

(i) Initial configuration

v1 v2 v3 v4 v5

{a, b} {a, b} {a, b, c, d} {c, d} {c, d}

(ii) Forced lists of colors

Figure 5: A non-colorable graph

Proof of Figure 2. By Hall’s Theorem, if |L(v1) ∪ L(v2) ∪ L(v3)| ≥ 3, then the graph is 2-distance colorable.
Hence the forced lists in Figure 2ii follow. (

�
)

Proof of Figure 3. By Hall’s Theorem, if |L(v1) ∪ L(v2) ∪ L(v3) ∪ L(v4)| ≥ 4, then the graph is 2-distance
colorable. Hence the forced lists in Figure 3ii follow. (

�
)

Proof of Figure 4. First, observe that if |L(v1)| ≥ 4 or |L(v2)| ≥ 4, we can color the other vertices by Figure 1i
and finish with v1 or v2 respectively. If L(v4) ≥ 4, then we obtain Figure 1iv. Similarly, if |L(v3)| ≥ 4, then we
obtain Figure 1v.

Also note that if |L(v5)| ≥ 3, then either v1, v2, v3, v4 can be colored and we color v5 last. Or they cannot
be colored and by Figure 3ii, we have Figure 4ii.

We will show that if v1, v2, v3, v4 are colorable, then the whole configuration is colorable (v5 included).
Thus, they cannot be colored and by Figure 3 (since all four vertices see each other at distance two), we obtain
Figure 4ii.
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So, let us assume that v1, v2, v3, v4 are colorable, in which case, |L(v1) ∪ L(v2) ∪ L(v3) ∪ L(v4)| ≥ 4 and
|L(v5)| = 2.

If L(v5) ⊆ L(v4), then we restrict L(v3) to L(v3) \L(v5) and observe that |L(v1)∪L(v2)∪ (L(v3) \L(v5)) ∪

L(v4)| = |L(v1) ∪ L(v2) ∪ L(v3) ∪ L(v4)| ≥ 4 since L(v5) ⊆ L(v4). So, we can color v1, v2, v3, v4 and finish by
coloring v5.

If L(v5) 6⊆ L(v4), then we restrict L(v4) to L(v4) \ L(v5). If |L(v1) ∪ L(v2) ∪ L(v3) ∪ (L(v4) \ L(v5))| ≥ 4,
then we can color v1, v2, v3, v4 and finish with v5. Thus, |L(v1) ∪ L(v2) ∪ L(v3) ∪ (L(v4) \ L(v5))| = 3 and we
can assume w.l.o.g. that L(v1) ⊆ L(v2) = L(v3) = {a, b, c} and d ∈ L(v4) ∩ L(v5). Now, it suffices to color v4
with d, then color v5, v1, v3, v2 in this order. (

�
)

Proof of Figure 5. First, observe that if |L(v1)| ≥ 3, then we can color the other vertices by Figure 1i and
color v1 last. If |L(v2)| ≥ 3, then we obtain Figure 1ii. Symmetrically, the same holds for L(v4) and L(v5). If
|L(v3)| ≥ 5, we can color v1, v2, v4, v5, v3 in this order.

Now, let us try to color the configuration. If L(v1) 6= L(v2), then color v1 with a /∈ L(v2) and get Figure 1i.
Therefore we have L(v1) = L(v2) and symmetrically L(v4) = L(v5). Finally, if L(v1) ∪ L(v5) 6= L(v3), then
one could color v3 with b /∈ L(v1) ∪ L(v5) and finish by coloring v1, v2, v4, v5 in this order. Hence the lists in
Figure 5ii follow. (

�
)

Lemma 3. If there exists a coloring φ of the configuration from Figure 5i where φ(v1) 6= φ(v5), then there

exists a coloring φ′ such that φ(v1) 6= φ′(v1) or φ(v5) 6= φ′(v5).

Proof. Suppose that the configuration from Figure 5i is colorable with φ where φ(v1) = a, φ(v5) = b and a 6= b.
Suppose by contradiction that for every coloring φ′ of Figure 5i, φ′(v1) = a and φ′(v5) = b.

Let L(v1) = {a, x}. We color v1 with x. Since there exists no valid coloring φ′ where φ′(v1) = x, the
remaining configuration must not be colorable. So x ∈ L(v2), otherwise, we can color v2, v3, v4, v5 by Figure 1i.
Let L(v2) = {x, y}. Moreover, x, y ∈ L(v3). Otherwise, we color v1 with x, v2 with y and finish by coloring v4,
v5, v3 in this order.

Symmetrically, the same holds for v5. Let L(v5) = {b, x′}, then we must have L(v4) = {x′, y′} and x′, y′ ∈

L(v3).
Observe that when we color v1 with x and v2 with y, the remaining configuration is not colorable so by

Figure 2, we must have L(v3) = {x, y, b, x′}. Symmetrically, if instead we color v5 with x′ and v4 with y′, then
we must have L(v3) = {x′, y′, a, x}. We conclude that {x, x′, b, y} = {x, x′, a, y′}. In other words, a = y and
b = y′. Thus, we have L(v1) = L(v2) = {a, x}, L(v4) = L(v5) = {b, x′} and L(v3) = {a, x, b, x′}. By Figure 2,
we know that this configuration is not colorable, which is a contradiction as there exists a valid coloring φ.

2 Structural properties of a minimal counterexample

Let G be a counterexample to Theorem 2 with the minimum number of vertices. We show some properties of
G.

Lemma 4. Graph G is connected.

Proof. If G is not connected, then we consider one of its connected component that is not 2-distance colorable
(which exists since G is a counterexample to Theorem 2). This component is also a planar subcubic graph with
girth at least 8 that is a counterexample to Theorem 2, which contradicts G’s minimality.

Lemma 5. Graph G has minimum degree at least 2.

Proof. If G has a 0-vertex, since G is connected, it is a single vertex which is colorable. Assume by contradiction
that G has a 1-vertex v. We remove such vertex and 2-distance color the resulting graph which is possible due to
the minimality of G. Then, we add the vertex back then choose a color for v different from all of its 2-distance
neighbors’ as v has at most 3 neighbors at distance 2 and we have 6 colors.

By Lemma 4 and Lemma 5, the graph G has only 2-vertices and 3-vertices.

Lemma 6. Graph G has no k-path with k ≥ 2.

Proof. Assume by contradiction that G has a k-path with k ≥ 2. We remove the 2-vertices of this path and color
the resulting graph. One can easily see that such coloring is greedily extendable to the removed 2-vertices.
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In what follows we show a set of subgraphs of G that are reducible, that is none of these subgraphs can appear
in G as otherwise it would contradict the choice of G. All these configurations are depicted in Figure 6, Figure 8
and Figure 24. In order to simplify the reading of the paper, the captions of the corresponding configurations of
these figures will be explained later in Section 3.2 as they are not used in this section. In each of the sub-figures,
we define S as the set of all vertices labeled vi, v′i, v′′i or v′′′i , where i is a positive integer. The degree of
these vertices are given by their incident edges. In order to prove the reducibility of S we consider a 2-distance
coloring φ of G − S (by induction hypothesis) and show how to extend φ to G leading to a contradiction. In
each figure, the number drawn next to a vertex of S in the figure corresponds to the number of available colors
in the precoloring extension of G− S.

Since G has girth g ≥ 8, one can easily observe that G[S]2 = G2[S] for each configuration in Figure 6. In other
words, there are no extra conflicts between vertices in S than the conflicts in G[S]. Unlike the configurations of
Figure 6, in those of Figure 8, some pair of vertices may see each other in G while they are at distance at least
3 in the subgraph induced by S, that is sometimes G[S]2 6= G2[S].

Lemma 7. Graph G does not contain the configurations depicted in Figure 6.

Proof. We will give the proofs for each figure in order:
Proof of Figure 6i. Color arbitrarily vertex v′2 and then get Figure 1ii. (

�
)

Proof of Figure 6ii. Direct implication of Figure 1viii. (

�
)

Proof of Figure 6iii. Direct implication of Figure 1vii. (

�
)

Proof of Figure 6iv. To prove this configuration, we redefine the set S to be {v1, v2, v3}. Consider a 2-distance
coloring φ of G − S. If φ is extendable to G, then we are done. Thus the available colors of vertices in S

correspond to Figure 2. More precisely, L(v2) ⊆ L(v1) = L(v3) = {a, b}. Now, uncolor vertices v4, v5, v6 and
v′5 and observe that the numbers of available colors of the non-colored vertices of G are the ones depicted in
Figure 6iv.

Without loss of generality we may assume that φ(v4) = c and φ(v5) = d. Consequently, after the uncoloring
of vertices v4, v5, v6 and v′5, we have L(v3) = {a, b, c, d} and L(v1) = {a, b}. If we can choose a color x /∈ {c, d}

for v4 and color vertices v5, v6 and v′5, then due to Figure 2, we can finish the coloring of v1, v2 and v3. Thus,
|L(v5)| = 3 and the available colors for v5, v6 and v′5 are {x, y, z} ∈ {a, b, c, d, e, f} (again due to Figure 2).
Note that φ(v4) = c /∈ {x, y, z}, otherwise φ would not be a valid coloring of G−S. We can assume w.l.o.g that
x 6= d and we color v4, v5, v6, v′5 with c, x, y, z respectively. Finally, due to Figure 2 we can finish by coloring
v1, v2, v3 since the lists of available colors for v1 and v3 are not the same anymore. (

�
)

Proof of Figure 6v. Direct implication of Figure 1xi. (

�
)

Proof of Figure 6vi. Color v′3 with a color a /∈ L(v′′3 ), and color v4, v5 in order. Then color vertices v1, v2, v3,
v′2, v

′′
2 , v′′′2 by Figure 1vii and finish by coloring v′′′3 and v′′3 in this order. (

�
)

Proof of Figure 6vii and Figure 6viii. Direct implication of Figure 1xvi for Figure 6viii. As for Figure 6vii,
it suffices to see that by adding an imaginary vertex v6 adjacent to v5 with any list of colors that verifies
|L(v6)| ≥ 2, Figure 1xvi gives us a valid coloring for vertices of Figure 6vii. (

�
)
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v1 v2 v3 v4 v5

3 4 5 2 2

v′23

(i) 1c1a1, 1c1c

v1 v2 v3 v4 v5

3 4 4

v′33

2 2

v′23

(ii) 1c0c0a1, 1c0c0c, 1a0b1, 1b0c

v1 v2 v3 v4

3 4 4

v′33

3

v′23

(iii) 1c0c1, 1b1

v1 v2 v3 v4 v5 v6

2 2 4 3 3 3

v′53

(iv) 1a1a0c1, c1a0c1, 1a1b, c1b

v1 v2 v3 v4 v5 v6

2 2 5 4 2 2

v′43

(v) 1a1c0a1, c1c0a1, 1a1c0c, c1c0c

v1 v2 v3 v4 v5

3 5 5 2 2

v′2
4

v′′23

v′′′2
3

v′34

v′′33

v′′′3
3

(vi) 1b0b0a1, 1b0b0c, 1c0c0b0a1, 1c0c0b0c

v1 v2 v3 v4 v5

3 4 6 4 3

v′2
3

v′4
3

v′34

v′′33 v′′′33

(vii) 1c0b0c1

v1 v2 v3 v4 v5 v6

3 4 6 4 2 2

v′2
3

v′4
3

v′34

v′′33 v′′′33

(viii) 1c0b0c0a1, 1c0b0c0c

Figure 6: Reducible configurations (Lemma 7).

Lemma 8. Graph G does not contain the configurations depicted in Figure 7.

Proof. Proof of Figure 7i. Here, we redefine S = {v0, v1, v2, v3, v4}. By Figure 5, L(v0) = L(v1) = {a, b},
L(v3) = L(v4) = {c, d} and L(v2) = {a, b, c, d}. Therefore, we can assume w.l.o.g that v6 is colored e. Since
|L(v0)| = 2, all of the colored vertices that v0 sees must be colored differently. The same holds for v4. However,
it means that v2 does not see the color e, which is impossible since L(v2) = {a, b, c, d}. (

�
)

Proof of Figure 7ii. Note that G[S]2 = G2[S]. We first prove three important observations.

• L(v7) 6= L(v′6). Suppose the contrary and color v7, v6, v′6, v5, v
′
5, v4, v3 by Figure 1viii. Now if v0, v1 and v2

are colorable, then we are done. Thus according to Figure 2, we can assume that L(v1) ⊂ L(v0) = L(v2).
But then since by our assumption L(v7) = L(v′6), we permute the colors of v′6 and v7 so that L(v0) 6= L(v2)

and we are done.

• L(v3) ⊂ L(v2) ⊃ L(v4). If not, color v3 and v4 such that |L(v2)| ≥ 3. Recall that L(v7) 6= L(v′6). Hence
we color v′5, v5, v6, v

′
6, v7 by Figure 4. We finish by coloring v1, v0, v2 in this order.

• L(v1)∩L(v4) = ∅. By contradiction, suppose a ∈ L(v1)∩L(v4). We will show the following observations.

– a /∈ L(v′6). If a ∈ L(v′6), we color v1, v4 and v′6 with a. Then, we color v3. After that, we color v′5,
v5, v6, v7 by Figure 1i and we finish by coloring v0 and v2 in this order.

– a ∈ L(v7). If a /∈ L(v7), we color v1 and v4 with a. Then, we color v3. After that, we color v′5, v5,
v6, v′6, v7 by Figure 4 (recall that L(v′6) 6= L(v7)) and finish by coloring v0 and v2 in this order.
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v0

v1

v2

v3

v4

v5

v6

v7

2

4

2

22

(i) 1a1a1a0a0a

v0

v1

v2

v3

v4

v5

v6

v7

4

4

32

2

v′5

3

4

v′6 3

4

3

(ii) 1a1a0a0c0c0a

v0

v1

v2

v3

v4

v5

v6

v7

4

5 3

v′23

4

3

v′5

3

4

v′6 3

4

3

(iii) 1a0c1a0c0c0a

v0

v1

v2

v3

v4

v5

v6

v7

5

4

33

v′4

3

4

v′5

v′′5

v′′′5 4

3

3

5

3

v′7

3

4

(iv) 1a1a0c0b0a0c

v0

v1

v2

v3

v4

v5

v6

v7

5

4

32

2

v′5

3

4

v′6

v′′6v′′′6

4

33

6

v′7

3

5

(v) 1a1a0a0c0b0c

v0

v1

v2

v3

v4

v5

v6

v7

56

2

2

v′3

3

4

v′5

3

4

3

v′7

3

4

(vi) 1a0a0c1c0a0c

v0

v1

v2

v3

v4

v5

v6

v7

5

5

v′1
3

53

v′4

3

3

3

v′6 3

3

3

(vii) 1c1a0c0a0c0a

Figure 7: Reducible configuration in Lemma 8
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– a ∈ L(v′5). If a /∈ L(v′5), we color v4 and v7 with a. Then, we color v3. Finally, we finish by coloring
v1, v2, v0, v6, v5, v′6, v

′
5 in this order.

– |L(v3) \ {a}| = 1. Otherwise, we color v4 and v7 with a. Then, we color v5 in such a way that v3 has
at least 2 colors left. After that, we color v′5, v5, v6, v7 in this order. Finally, we finish by coloring
v3, v2, v1, v0 by Figure 1i.

Thus, we color v′5, v3 and v7 with a, then we color the remaining vertices in the following order: v4, v2,
v1, v0, v6, v5, v′6.

Since L(v1) ∩ L(v4) = ∅, we assume w.l.o.g. that L(v4) ⊆ {a, b, c} and L(v1) = {d, e, f}. As L(v3) ⊂

L(v2) ⊃ L(v4), there exists a color, say d, in L(v1) such that after coloring v1 with d, we have |L(v2)| ≥ 4 and
|L(v3)|, |L(v3)| ≥ 2. In conclusion, we color v1 with d, v7, v6, v′6, v5, v

′5, v4, v3 by Figure 1viii and finish by
coloring v0 and v2 in this order.

(

�
)

Proof of Figure 7iii. If v′2 sees v′6, then the are at distance exactly 2 and share a common neighbor, say v8.
Then vertices v′6, v8, v

′
2, v2, v3, v4, v5, v6 correspond to the reducible configuration of Figure 7i.

Therefore, we can assume that G[S]2 = G2[S]. Color v2 with x /∈ L(v′2) and color greedily v1. Then color
vertices v4, v5, v′5, v6, v

′
6, v7, v0 by Figure 1vii and finish by coloring v3 and v′2 in this order. (

�
)

Proof of Figure 7iv. If v′′5 sees v1 by sharing a common neighbor, say v8, then vertices v′′′5 , v′5, v
′′
5 , v8, v1, v2,

v0 form the reducible configuration of Figure 6iv. The case when v′′′5 sees v1 is symmetric.
Therefore, we can suppose that G[S]2 = G2[S]. First we show that L(v1)∩L(v7) = ∅. Suppose the contrary

and color v1 and v7 with a same color. Then restrict L(v5) to L(v5) \ L(v′′5 ) and color vertices v6, v5, v4, v′4, v3
by Figure 1v. Finish by coloring vertices v′5, v

′′′
5 , v′′5 , v7, v2, v0 in this order.

Observe that L(v1) ⊂ L(v0). Therefore, since L(v1) ∩ L(v7) = ∅ and since we are doing a 6-coloring, we
conclude that L(v′7) 6⊂ L(v0).

We color v′5 with x /∈ L(v′′5 ) and v6, v5, v4, v′4, v3 by Figure 1iv. Then we color v′′′5 and v′′5 in this order.
Observe the remaining uncolored vertices are v′7, v7, v0, v1 and v2. If the lists of available colors of these vertices,
do not correspond to Figure 5, then we are done. And it is indeed the case, since the only colored vertex seen
by both v0 and v′7 is v6, and since initially L(v′7) 6⊂ L(v0). (

�
)

Proof of Figure 7v. We have G[S]2 = G2[S]. Color vertices v0 and v4 with the same color by pigeonhole
principle and then v3, v1 and v2 in this order. The remaining vertices can be colored by Figure 1x.

(

�
)

Proof of Figure 7vi. If v′3 sees v′7, then they must be at distance exactly 2 since G has girth 8. Say v8 is their
common neighbor, then v0, v7, v′7, v8, v

′
3, v3, v2 and v1 form the reducible configuration from Figure 7i.

Thus, we have G[S]2 = G2[S]. First, observe that |L(v′7)| = |L(v′5)| = |L(v′6)| = 3 and we will prove the
following:

• L(v6) = L(v′7). Otherwise, color v6 differently from L(v′7), then color v1 and v2 in this order. Color v′5,
v5, v4, v3, and v′3 by Figure 1xiii. Finish by coloring v7, v0, and v′7 in this order.

• L(v6) = L(v′5). Otherwise, color v6 differently from L(v′5), then color v′7, v7, v0, v1, and v2 by Figure 1ii.
Finish by coloring v′3, v3, v5, v4, and v′5 in this order.

• L(v1) ∩ L(v′7) = ∅. Otherwise, color v1 and v′7 with x ∈ L(v1) ∩ L(v′7). Then, color v2 and v6. Color v′5,
v5, v4, v3, and v′3 by Figure 1xiii. Finish by coloring v7 and v0 in this order.

Using the equalities above, we have the following. Color v7 differently from L(v6) and L(v′7). Now, color v1 and v4
with the same color, which is possible since v4 has all six colors available. Observe that, since L(v1)∩L(v′7) = ∅

and L(v′7) = L(v6) = L(v′5), v6 and v5 still have the same amount of available colors remaining. Finish by
coloring v2, v′3, v3, v5, v6, v

′
5, v0, and v′7 in this order.

(

�
)

Proof of Figure 7vii. Note that G[S]2 = G2[S]. Here, we redefine S = {v0, v1, v′1, v2}. Consider φ a coloring of
G−S. Note that if φ is extendable to G, then we have a contradiction. Thus, L(v0) = L(v1) = L(v′1) = L(v2) =

{a, b, c} by Figure 3. Now, we uncolor v3, v4, v′4, v5, v6, v
′
6, v7 and note that the number of available colors

correspond to what is depicted in Figure 7vii. We assume w.l.o.g. that L(v0) = {a, b, c, d, e} where d = φ(v7)
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and e = φ(v6). Observe that L(v′6) 6= L(v7), otherwise, we can permute the colors of v′6 and v7 in φ and extend
φ to G as L(v0) would no longer be {a, b, c}. Symmetrically, L(v3) 6= L(v′4).

If d /∈ L(v′6), then we can color v7 with d, v6 with x 6= e, v5, then v3, v4, v′4 by Figure 2 since L(v3) 6= L(v′4),
and finish by coloring v′6. As L(v0) 6= {a, b, c}, φ is extendable to G.

Now, d ∈ L(v′6). In which case, there exists y ∈ L(v7) \L(v′6) so we color v7 with y, v6 with z 6= d, v5, then
v3, v4, v′4 and finish by coloring v′6. Finally, φ is extendable to G because L(v0) 6= {a, b, c}.

(

�
)

Lemma 9. Graph G does not contain the configurations depicted in Figure 8.

Proof. Proof of Figure 8i. If v1 does not see v7. Then the proof is a direct implication of Figure 1xv. If v1
sees v7, then they must be at distance exactly 2 since G has girth at least 8 and therefore |L(v1)| ≥ 3 and
|L(v7)| ≥ 3. We color v1 such that v2 has at least 2 colors left. We then obtain Figure 1xiii. (

�
)

Proof of Figure 8ii. If v1 sees v′6, then they must be at distance exactly 2 since G has girth at least 8. Say v0 is
their common neighbor, then v′6, v0, v1, . . . , v6 form the reducible configuration from Figure 7i. If v1 sees v7, then
they share a common neighbor v0 and v1, v2, v3, v4, v5, v′5, v6, v

′
6, v7, v8, v0 form the reducible configuration

from Figure 7ii. If v2 sees v8, then they share a common neighbor v′2 and v8, v′2, v2, v1, v3, v4, v5, v
′
5, v6, v

′
6, v7

form the reducible configuration from Figure 7iii.
If v1 sees v8, they must be at distance exactly 2 since both are 2-vertices and there are no 2-paths due to

Lemma 6. Thus, 3 ≤ |L(v1)|, |L(v8)| ≤ 4. If we can color v2 such that v1 has at least 3 colors left, then we
can color v4, v5, v′5, v6, v′6, v7, v8 by Figure 1viii and finish by coloring v3 and v1 in this order. Therefore,
|L(v1)| = 3 and L(v2) ⊆ L(v1). We color v3 with x /∈ L(v1). Then, we color v4, v5, v′5, v6, v

′
6, v7 by Figure 1vii

and finish by coloring v8, v2 and v1 in this order.
Now, G[S]2 = G2[S]. If we can color v2 such that v1 has at least 2 colors left, then we can color v4, v5,

v′5, v6, v
′
6, v7, v8 by Figure 1viii, and finish by coloring v3 and v1 in this order. Therefore, L(v1) = L(v2) and

|L(v1)| = 2. We restrict L(v3) to L(v3) \ L(v1). Then, we color v3, v4, v5, v′5, v6, v
′
6, v7, v8 by Figure 1ix and

finish by coloring v2 and v1 in this order.
Proof of Figure 8iii. If v′′3 sees v7, then they must be at distance exactly 2 since G has girth 8. Say v8 is their
common neighbor, then v′′3 , v′3, v

′′′
3 , v8, v7, v6, v′6 form the reducible configuration from Figure 8i. Note that

the cases when v′′′3 sees v7, or v′′3 sees v′6, or v′′3 sees v7 are symmetric.
Observe that since v1 cannot see both v′6 and v7, we can assume that v1 does not see v′6. Note that in this

case |L(v′6)| = 3. Thus we restrict L(v5) to L(v5) \ L(v′6) and L(v4) to L(v4) \ L(v′′4 ). We color vertices v5, v4,
v3, v2, v1, v′3, v

′′
3 , v′′′3 by Figure 1x. Then finish by coloring v′5, v

′
4, v

′′′
4 , v′′4 , v6, v7, v′6 in this order. (

�
)

v1 v2 v3 v4 v5 v6 v7

2 2 4 3 4 2 2

(i) 1a1a1c, 1a1a1a1, c1a1c

v1 v2 v3 v4 v5 v6 v7 v8

2 2 4 3 4 4 2 2

v′53 v′63

(ii) c1a0c0c0c

v1 v2 v3 v4 v5 v6 v7

2 2 5 6 5 4 3

v′3

4

v′′3

3

v′′′33

v′44

v′′43 v′′′43

v′53 v′6 3

(iii) 1a0b0b0c0c1, 1a0b0b0b1, c0b0b0b1, c0b0b0c0c1

Figure 8: Reducible configurations in Lemma 9.
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Lemma 10. Graph G does not contain the 8-faces depicted in Figure 24 in the Appendix.

The proof of Lemma 10 is also in the Appendix. It follows the same scheme as Lemma 8 and uses Section 1
as well as the previous lemma. There are a lot of configurations and their proofs are quite tedious and do not
contribute extra value to what we already know, even though they are necessary.

We have started out by coloring these configurations by computer (by testing all precoloring of the set of
vertices separating our configuration from the rest of the graph) but this proves to be very time consuming.
Moreover, there are tricks that can be done manually (restricting the considered set of vertices in the con-
figurations, uncoloring then recoloring part of the configuration) that can hardly be replicated by computer.
Concretely, it means that not all precoloring is a possible precoloring of a proper subgraph of G and we cannot
know which precoloring to test, which not to with our naive approach.

Lemma 11. Consider the configuration in Figure 9. If v3, v4, v5, v6, and v7 are colorable, but the configuration

as a whole is not, then L(v3) = L(v4) = L(v6) = L(v7) = L(v1) \ L(v
′
1) and |L(v3)| = 2.

v0

v1

v2

v3

v4

v5

v6

v7

5

5

4

v′1
3

52

2

2

2

Figure 9: 1c1a0a1a0a

Proof. First, observe that we have G[S]2 = G2[S]. We color v3, v4, v5, v6, and v7. Observe that |L(v0)| =

|L(v2)| = |L(v′1)| = 3 and |L(v1)| ≥ 3. So, the remaining vertices are not colorable if and only if L(v0) =

L(v1) = L(v′1) = L(v2) = {a, b, c} w.l.o.g. due to Figure 3.
Now, let {d, e} = L(v1) \L(v′1) and uncolor v3, v4, v5, v6, and v7. Due to our previous observations, we can

assume w.l.o.g. that v3 and v7 must have been colored d and e respectively. Moreover, due to Lemma 3, since
we know that v3, v4, v5, v6, and v7 are colorable, there exists another coloring of these vertices where v3 is not
colored d or v7 is not colored e. As v0, v1, v′1, and v2 must remain uncolorable, we know that v3 must have been
colored e and v7 colored d. So, we know that {d, e} ⊆ L(v3) and {d, e} ⊆ L(v7). In addition, when v3 was colored
d (e), d (e) must be in L(v2) or we would have had |L(v2)| ≥ 4 after the coloring of v3, v4, v5, v6, and v7. In
other words, L(v2) = {a, b, c, d, e}. Symmetrically, the same holds for L(v0). Knowing that L(v2) = {a, b, c, d, e},
when v3 was colored d (e), v4 must have been colored e (d). So we get {d, e} ⊆ L(v4). Similarly, the same holds
for L(v6). Finally, if any of v3, v4, v6, or v7 has another available color than d and e, we could have colored them
with one vertex not colored d, nor e, and finish coloring the rest of the configuration due to Figure 5 and Figure 3,
which is impossible. Consequently, we have L(v3) = L(v4) = L(v6) = L(v7) = L(v1) \ L(v′1) = {d, e}.

Lemma 12. The configurations in Figure 10 are colorable.
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v0

v1

v2

v3

v4

v5

v6

v7

5

5

6

v′1
3

53

4

4

3

v′4

3

v′′4u′′
4

3

4

v8

u8

3

5

v′′6

u′′
6 3

4 v′6
3

(i)

v0

v1

v2

v3

v4

v5

v6

v7

5

5

6

v′1
3

53

4

4

3

v′4

2

v′′4 2

v8

4

v′′6

2 v′6
2

(ii)

v0

v1

v2

v3

v4

v5

v6

v7

5

5

5

v′1
3

53

4

2

2

v′4

v′′4 2

2

(iii)

Figure 10: Reducible configurations in Lemma 12.

Proof. The outline of each proof uses the same conventions as before.
Proof of Figure 10i. If v′1 = u8, then |L(v′1)| = |L(v8)| = |L(v1)| = 6. Now, consider the two following cases:

• If there exists x ∈ L(v3) ∩ L(v7), then color v3 and v7 with x. Color v′′6 such that u′′
6 still has 3 colors

remaining, then v′6 and v6 in this order. Color v4, v′4, v
′′
4 , and u′′

4 by Figure 1i. Finish by coloring v8, u′′
6 ,

v′1 (= u8), v0, v2, and v1 in this order.

• If L(v3)∩L(v7) = ∅, then it suffices to show that we can color v3, v4, v5, v6, v7, v′4, v
′′
4 , u′′

4 , v8, v′6, v
′′
6 , and

u′′
6 .

Indeed, say they are colorable with φ, then after coloring v′4, v
′′
4 , u′′

4 , v8, v′6, v
′′
6 , and u′′

6 with φ, we obtain
the configuration from Figure 7vii where v3, v4, v5, v6, and v7 are colorable (with φ) but L(v3)∩L(v7) = ∅,
so the whole configuration can be colored.

It remains to show that there exists such a coloring φ. Start by coloring v′′4 such that u′′
4 still has 3 colors

remaining. Similarly, color v6 such that v7 still has 3 colors remaining. Finish by coloring v′4, v4, v3, v5,
v′6, v7, v

′′
6 , u′′

6 , v8, and u′′
4 in this order.

Now, observe that v′1 might see u′′
4 and if it does, then they must be at distance exactly 2 since G has no

2+-paths due to Lemma 6. Symmetrically, the same holds if v′1 sees u′′
6 . The following colorings will still work

when v′1 sees u′′
4 or u′′

6 .
Consider the two following cases:

• If |L(v3)∩L(v7)| ≥ 2, say {d, e} ⊂ L(v3)∩L(v7), then let x ∈ L(v3)\{d, e}. We restrict L(v′4) to L(v′4)\{x}

and we color v′6 differently from {d, e}. Color v′4, v
′′
4 , u′′

4 , v8, u8, v′′6 , and u′′
6 by Figure 1viii.

Observe that we obtain the configuration from Figure 7vii where v3, v4, v5, v6, and v7 are colorable by
Figure 5 since L(v3) and L(v7) will have at least one color in common. Moreover, we will have either
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L(v7) = {d, e} and x ∈ L(v3)\{d, e}, or |L(v7)| ≥ 3, both of which means that the remaining configuration
is colorable by Lemma 11.

• If |L(v3) ∩ L(v7)| ≤ 1, then it suffices to show that we can color v3, v4, v5, v6, v7, v′4, v
′′
4 , u′′

4 , v8, u8, v′6,
v′′6 , and u′′

6 .

Indeed, say they are colorable with φ, then after coloring v′4, v′′4 , u′′
4 , v8, u8, v′6, v′′6 , and u′′

6 with φ,
we obtain the configuration from Figure 7vii where v3, v4, v5, v6, and v7 are colorable (with φ) but
|L(v3) ∩ L(v7)| ≤ 1, so the whole configuration can be colored.

It remains to show that there exists such a coloring φ. Start by coloring v′′4 such that u′′
4 still has 3 colors

remaining. Similarly, color v6 such that v7 still has 3 colors remaining. Then, color v′6. Color u′′
6 , v′′6 , v8,

and u8 by Figure 1i. Finish by coloring v′4, u
′′
4 , v4, v3, v5, and v7 in this order.

(

�
)

Proof of Figure 10ii. If v′1 sees v′′4 , then they must be at distance exactly 2 since G has girth 8. Say v8 is
their common neighbor, then v′1, v1, v0, v2, v3, v4, v5, v′4, v′′4 , and v8 form the reducible configuration from
Figure 7vii. Symmetrically, the same holds if v′1 sees v′′6 .

So we have G[S]2 = G2[S].
We redefine S = {v0, v1, v′1, v2} and let φ be the coloring of the rest of the graph. Now we uncolor the rest

of the configuration and we have the corresponding list of colors as in Figure 10ii.
After coloring v′4, v

′′
4 , v8, v′′6 , and v′6 with φ, the remaining colors for v3, v4, v6, v7 must be the same two

colors, say {d, e} (determined by L(v1) \ L(v′1)), or the whole configuration would be colorable by Lemma 11.
We can also deduce that L(v3) = {d, e, φ(v′4)}. Similarly, L(v7) = {d, e, φ(v′6)}. Now, thanks to Lemma 3, we
know there exists another coloring φ′ of v′4, v

′′
4 , v8, v′′6 , and v′6 such that φ′(v′4) 6= φ(v′4) or φ′(v′6) 6= φ(v′6). Say

w.l.o.g. that φ′(v′4) 6= φ(v′4). As a result, v3, v4, v5, v6, and v7 is colorable by Figure 5 and L(v3) 6= {d, e} so
the configuration is colorable by Lemma 11. (

�
)

Proof of Figure 10iii. If v′1 sees v′′4 , then they must be at distance exactly 2 since G has girth 8. Say v8 is their
common neighbor, then v′′4 , v8, v′1, v1, v2, v3, v4, and v′4 form the reducible configuration from Figure 7i.

Now, we have G[S]2 = G2[S].
We redefine S = {v0, v1, v′1, v2} and let φ be the coloring of the rest of the graph. Now we uncolor v3, v4,

v′4, v
′′
4 , v5, v6, and v7 and we have the corresponding list of colors as in Figure 10iii.

Let {d, e} ⊆ L(v6).
If {d, e} ⊆ L(v3), then we color v′4 differently from L(v3) \ {d, e} and color v′′4 . As a result, v3, v4, v5, v6,

and v7 are colorable by Figure 5 and L(v3) 6= {d, e} ⊆ L(v6) so the configuration is colorable by Lemma 11.
If {d, e} 6⊆ L(v3), then since v3, v4, v′4, v

′′
4 , v5, v6, and v7 was colorable with φ, we recolor v′4 and v′′4 with

φ(v′4) and φ(v′′4 ) respectively. Now, observe that v3, v4, v5, v6, and v7 are colorable but L(v3) 6= L(v6) so the
configuration is colorable by Lemma 11. (

�
)

3 Discharging procedure

Charge distribution: For a plane graph G = (V,E, F ), Euler formula |V | − |E|+ |F | = 2 can be rewritten
as

(1)
∑

v∈V (G)

(

7

2
d(v) − 9

)

+
∑

f∈F (G)

(d(f)− 9) = −18.

We assign to each vertex v the charge µ(v) = 7
2d(v) − 9 and to each face f the charge µ(f) = d(f)− 9. To

prove the non-existence of G, we will redistribute the charges preserving their sum and obtaining a non-negative
total charge, which will contradict Equation (1).

To do so, we will divide the discharging procedure into two rounds. In the first round, we will redistribute
the charges only between the vertices of G, resulting in a non-negative amount of charge on each vertex using
the properties proved in Lemmas 7 and 9. For the second round, first observe that µ(f) = d(f) − 9 ≥ 0 for
every face of size at least 9. Therefore, since g(G) ≥ 8 and µ(f) = −1 for every 8-face, we will redistribute the
remaining charges on each vertex over the non-reducible 8-faces (every reducible cycle is shown inLemma 10)
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to obtain a non-negative amount of charge on faces. Thus, we will get a non-negative total of charge, which
is a contradiction to Equation (1). In our proof, we have to consider a large number of non-reducible 8-faces.
To handle this, we will provide a computer procedure that checks the remaining charge on each non-reducible
8-face. In order to define this procedure, we will present an encoding of the 8-faces, the reducible configurations,
and the discharging rules.

3.1 First round: vertices to vertices

We define the following discharging rules on the vertices of G :

R0 A 3-vertex gives 1 to a 2-neighbor.

R1 A 3-vertex gives 1
2 to a (1,1,0)-neighbor.

R2 A 3-vertex gives 1
2 to a (1,1,1)-vertex at distance 2.

We will now calculate the exact amount µ∗(v) of charges that v ends up with after applying R0, R1 and
R2.

If d(v) = 2: Recall that the initial charge for v is µ(v) = 7
2d(v) − 9 = −2. By Lemma 6, v can only have

3-neighbors. According to the discharging rules, v receives 1 from each of its neighbor by R0 and does not give
any charge away. Thus, v ends up with

µ∗(v) = −2 + 2 · 1 = 0.

If d(v) = 3: Recall that the initial charge is µ(v) = 7
2d(v)− 9 = 3

2 .

• If v is a (1, 1, 1)-vertex.
Every neighbor of v is a 2-vertex so only R0 and R2 may apply. However, due to Figure 6i, there is no
(1, 1, 0+)-vertex at distance 2 from v. So, v does not give away any charge to 3-vertices but only receive
instead. Thus, by R0 and R2, we have

µ∗(v) =
3

2
− 3 · 1 + 3 ·

1

2
= 0.

• If v is a (1, 1, 0)-vertex.
Due to Figure 6i, there is no (1, 1, 1)-vertex at distance 2 from v so R2 does not apply. Due to Figure 6iii,
v cannot have a (1, 1, 0)-neighbor. So, v does not give away any charge to 3-vertices but only receive by
R1 instead. Thus, by R0 and R1, we have

µ∗(v) =
3

2
− 2 · 1 +

1

2
= 0.

• If v is a (1, 0, 0)-vertex.

– If v has a (1, 1, 0)-neighbor, v cannot have another (1, 0+, 0)-neighbor due to Figure 6ii. By Figure 6iv,
v cannot share a common 2-neighbor with a (1, 1, 0+)-vertex at distance 2 so R2 does not apply.
Hence, by R0 and R1, we have

µ∗(v) =
3

2
− 1−

1

2
= 0.

– If v see a (1, 1, 1)-vertex at distance 2, v can only see exactly one such vertex. By Figure 6iv, v

cannot have (1, 1, 0)-neighbor so R1 does not apply. Thus, by R0 and R2, we have

µ∗(v) =
3

2
− 1−

1

2
= 0.

– If v does not have a (1, 1, 0)-neighbor and does not see a (1, 1, 1)-vertex at distance 2, then only R0

applies and we have

µ∗(v) =
3

2
− 1 =

1

2
.
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• If v is a (0, 0, 0)-vertex.
Observe that R0 and R2 cannot apply since v does not have any 2-neighbor and cannot see a (1, 1, 1)-
vertex at distance 2. So, only R1 can apply and by Figure 6vii, v cannot have three (1, 1, 0)-neighbors.
Consequently,

– if v has exactly two (1, 1, 0)-neighbors, then we have

µ∗(v) =
3

2
− 2 ·

1

2
=

1

2
.

– if v has exactly one (1, 1, 0)-neighbor, then we have

µ∗(v) =
3

2
−

1

2
= 1.

– if v has no (1, 1, 0)-neighbor, then we have

µ∗(v) =
3

2
.

Below, we recapitulate the remaining charges of each type of 3-vertex v (as 2-vertices are at 0) after applying
R0, R1, and R2. In Figures 11 to 17, the 2-vertices will be filled while the 3-vertices will not be.

w1 v

w2

w3

Figure 11: (1,1,1).
w1, w2, w3 6= (1, 1, 0+).

µ∗(v) = 0.

u1 v

w2

w3

Figure 12: (1,1,0).
u1 6= (1, 1, 0) and w2, w3 6= (1, 1, 1).

µ∗(v) = 0.

w1 v

u2

u3

Figure 13: (1,0,0).
w1 6= (1, 1, 1) and u2, u3 6= (1, 1, 0).

µ∗(v) = 1
2 .

w1 v

u2 w′′
2

u3

w′
2

(i) w1 6= (1, 1, 0+) and

u3 6= (1, 0+, 0).

w1 v

u2

u3

w′
1

w′′
1

(ii) u2, u3 6= (1, 1, 0).

Figure 14: (1,0,0).
µ∗(v) = 0.

u1 v

u2

u3

Figure 15: (0,0,0).
u1, u2, u3 6= (1, 1, 0).

µ∗(v) = 3
2 .

u1 v

u2 w′′
2

u3

w′
2

Figure 16: (0,0,0).
u1, u3 6= (1, 1, 0).

µ∗(v) = 1.

u1 v

u2 w′′
2

u3

w′
2

w′′
3

w′
2

Figure 17: (0,0,0).
u1 6= (1, 1, 0).
µ∗(v) = 1

2 .

3.2 Second round: vertices to faces

Recall that µ∗(v) is the remaining charges of v after applying rules R0-R2. We define the following discharging
rules between the vertices and 8-faces of G:
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v

µ∗(v) 3
2 1

1
2 0

(1,1,1) fig. 11
(1,1,0) fig. 12
(1,0,0) fig. 13 fig. 14
(0,0,0) fig. 15 fig. 16 fig. 17

Table 1: Available amount of charges for each type of 3-vertex after applying R0-R2

R3 If a 3-vertex v is not a (1, 0, 0)-vertex, then it gives µ∗(v)
n1

to each incident 8-face, where n1 is the number
of incident 8-faces.

R4 For a (1, 0, 0)-vertex v, let n2 be the number of 8-faces incident to v and to its 2-neighbor. Vertex v gives
µ∗(v)
n2

to each of these n2 8-faces.

Recall that, given a face f , the initial amount of charge µ(f) = d(f) − 9 so all k-faces with k ≥ 9 have
a positive charge. Moreover, after applying R3-R4, every 3-vertex v will have a remaining charge of at least
µ∗(v)− ni ·

µ∗(v)
ni

= 0 for 1 ≤ i ≤ 2.
As a result, it remains to verify that every 8-face f will receive at least charge 1 so that its final charge will

be µ∗(f) ≥ µ(f)− 9 + 1 = 8− 8 = 0.
To generate every possible 8-face efficiently, we introduce the following encoding of a configuration around

an 8-face.
Encoding a face f :

• For every pair of consecutive 3-vertices in clockwise order, count the number of 2-vertices in between. We
obtain a circular sequence of integers in clockwise order of length equal to the number of 3-vertices of
f . Since G has no 2+-paths by Lemma 6, each integer is in {0, 1}. Observe that there are at most as
many ways to write this sequence of integers as the number of 3-vertices of f . Indeed, we can choose any
3-vertex v as a starting point and start counting the number of 2-vertices between v and the next 3-vertex
in clockwise order. We choose as representative the first one in the lexicographic order where 1 precedes
0 and call it the number-word of f .

v0

v1

v2

v3

v4

v5

v6

v7

1

1

0

0

0 0

(i) 110000

v0

v1

v2

v3

v4

v5

v6

v7

1

00

1

0 0

(ii) 100100

Figure 18: Examples of number-words on 8-faces.

Examples:

– Take the 8-face in Figure 18i as an example. We consider the 3-vertices in clockwise order starting at
any 3-vertex, say v1. We get v1, v3, v4, v5, v6, v7. Now, we count the number of 2-vertices between
two consecutives vertices in that sequence. More precisely, there is one 2-vertex (v2) in between v1
and v3, then none between v3 and v4, and so on. This gives us the sequence of numbers 100001. Had
we chosen another starting 3-vertex (say v3) we would have obtained another sequence (000011).
Among all of these different sequences, we choose the one that comes first in the lexicographic order
where 1 comes before 0. And that sequence is 110000, the number-word of f , which corresponds to
the starting 3-vertex v7.

17



– We can do the same with the 8-face in Figure 18ii. The number-word for f is 100100. Observe that
this sequence can be obtained by taking, in clockwise order, either v7 or v3 as a starting point.

• Due to our discharging rules, we are interested in configurations around 3-vertices. So, given a 3-vertex v

on f , we choose the following letters to encode the neighborhood outside f of v:

– c means that v has a 2-neighbor outside f .

– b means that v has a (1, 1, 0)-neighbor outside f .

– a represents the rest of the possible neighbors of v. In other words, the neighbor of v outside f is a
3-vertex that is not a (1, 1, 0)-vertex.

Observe that there may be multiple starting 3-vertices that give the same number-word for f . Given one
possible starting 3-vertex of the number-word nw, we insert between each pair of consecutive integers
of nw the letter encoding of the neighborhood outside f of the corresponding 3-vertex. We obtain an
alternating sequence fw of integers and letters for each starting 3-vertex.

Among the possible alternating sequences fws, we choose the one where the subsequence of letters is the
smallest in alphabetical order. We call this alternating sequence the full-word of f and the corresponding
subsequence of letters the letter-word of f .

v0

v1

v2

v3

v4

v5

v6

v7

v′4

v′′4

v′′′4

v′5 v′7

1

1

0

0

0 0

aa

b

c

a

c

(i) 1a1a0b0c0a0c

v0

v1

v2

v3

v4

v5

v6

v7

v′3

v′5 v′7

1

a

0a0

c

1

c

0
a

0

a

(ii) 1a0a0c1c0a0a

Figure 19: Examples of full-words on 8-faces.

Examples:

– Take the 8-face f in Figure 19i as an example. It is the same face as in Figure 18i, this time with
more information about the neighborhood of the 3-vertices outside of f . Observe that when we do
not have extra information about the neighborhood of a 3-vertex outside of f (it could be a, b, or c),
we will denote it a for now and explain it later on. We consider the neighborhood of each 3-vertex,
starting with the one that comes right after the first number, which is the 3-vertex v1. In order, they
corresponds to the letters a, a, b, c, a, c, which give us the letter-word aabcac. Finally, we combine
these the number-word and the letter-word into the full-word 1a1a0b0c0a0c.

– We can do the same with the 8-face in Figure 19ii, which is the face in Figure 18ii with extra
information. When we choose the letter-word for f , we need to consider two encodings, one that
starts with the 3-vertex that comes right after v7 in clockwise order, namely v1, or the one after v3,
namely v5. These give us two sequence of letters aaccaa and caaaac respectively. For our letter-
word, we choose the first one in alphabetical order, which is aaccaa. Finally, we get the full-word
1a0a0c1c0a0a.

Observation 1. Each face has a unique encoding full-word and each full-word uniquely defines a face.

Under each 8-cycle of Figures 7, 9 and 24, you have the corresponding encoding of the reducible configuration
if it were an 8-face.
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In what follows we explain the generation of all possible 8-faces, how to check which ones are reducible and
which ones will obtain enough charge from its incident 3-vertices by R3 and R4. The corresponding pseucode
is summarized in Algorithm 1.

Algorithm 1: Filtering forbidden and dischargeable full-words corresponding to faces with a given
size.
Data: forbidden_subwords, dictionary_of_charges, number_words, alphabet, target_charge.
Result: The list of full-words that are not forbidden nor dischargeable.

1 foreach number_word ∈ number_words do

2 n = length of number_word;
3 letter_words = set of words of size n in alphabet;
4 foreach letter_word ∈ letter_words do

5 build full_word from number_word and letter_word;
6 if full_word does not contain a subword in forbidden_subwords then

7 Compute the charge of full_word using dictionary_of_charges;
8 if charge < target_charge then

9 Write full_word to output;
10 end

11 end

12 end

13 end

Since G has no 2+-paths and f has length 8, there can be at most four 2-vertices on f . On the other hand,
given a number-word nw of f , the number of 2-vertices of f is given by the number of 1s in nw. Therefore, one
can easily check the following observation:

Observation 2. The only possible number-words for 8-faces in G are 1111, 11100, 11010, 110000, 101000,

100100, 1000000, and 00000000.

Since the process of generating these number-words is done naively and it is not the main fo-
cus of the algorithm, we will not go into technical details. However, the script is available at
https://gite.lirmm.fr/discharging/planar-graphs. For this case, the set of number-words is small enough
that it can even be checked manually.

Now, for each number-word nw, we can generate all possible sequences of letters in {a, b, c} with the same
length as nw that we will then interlace with nw to create an alternating sequence corresponding to a full-word
(line 5 of Algorithm 1). Observe that during this process of generation, we may obtain several words representing
the same face and only one of them is the unique full-word encoding f . This has no influence on the correctness
of our algorithm, only the time complexity, as some faces might be checked multiple times. Here, it is possible
to identify the symmetries in the generated words in order to keep the unique full-words. However, in practice,
at least for our case, this subroutine adds complications with minimal time gain.

The list of full-words described above corresponds to all possible neighborhoods at distance at most 2 of an
8-face. We filter out every neighborhood that either contains a reducible configuration of Lemmas 7 to 10 (line
6 of Algorithm 1), or has enough charge available for its 8-face by R3 and R4 (line 8 of Algorithm 1).

In order to check that the corresponding subgraph of a full-word contains a reducible configuration, we
encode the latter using similar conventions as for the neighborhood of the 8-faces. Indeed, the considered
configuration is encoded as seen from an incident face. Thus, one configuration may have multiple different
encodings (depending on the incident faces) and we call these encodings forbidden subwords. A full-word
that contains a forbidden subword is forbidden .

Since we always consider the worst case scenario, if a forbidden subword contains a letter a, then one can
always build two other (“weaker”) forbidden subwords by replacing this a by b or c. Therefore, whenever
we consider a forbidden subword containing a, we also implicitly consider the other “weaker” subwords. See
Figures 6 to 8 and 24 where the captions contain all possible forbidden (“strong”) subwords of each reducible
configuration. In a general case, one can define a different symbol (another letter, say d for example) that can
be rewritten as multiple different letters (here a, b, and c). Our choice was a for simplicity.

In the code implementation of Algorithm 1, we define a forbidden subword as a regular expression and
rewriting rule (formal grammar) in which a can be rewritten as b or c.
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Observation 3. In a forbidden subword, a can mean a, b, or c in a real encoding.

Now, recall that a full-word is actually circular and is read in clockwise order. Thus, in order to check
whether it is forbidden, one has to check if it contains a forbidden subword or its mirror. Once we removed the
forbidden subword, we are ready to move to the next step of the algorithm.

The next step (lines 7-8 of Algorithm 1) is to check, for every full-word fw, whether the 3-vertices of the
corresponding subgraph give enough charge to f according to R3 and R4 (at least a total charge 1). If it is
the case, we say that fw is dischargeable. Similar to the encoding of the reducible configurations, we can
also encode into a dictionary the configurations from Figures 11 to 17. The encoding of each entry of the
dictionary corresponds to a possible neighborhood of a 3-vertex, along with µ∗(v)

3 for the worst case scenario in
R3 (Figures 11, 12 and 15 to 17) and µ∗(v)

2 for R4 (Figures 13 and 14). To work with integers, we multiply by 12
the charge of each vertex and each face of G. In Table 2, we detail the dictionary entries for each configuration.

fig. 11 fig. 12 fig. 13 fig. 14i fig. 14ii fig. 15 fig. 16 fig. 17
1c1 : 0 1a1 : 0 1a0 : 3 1b0 : 0 0a1c1 : 0 0a0 : 6 0b0 : 4 0b0c1 : 2

1c0 : 0 0c0 : 0 1a0c1 : 0 0a0c1 : 4 1c0a0c1 : 2

Table 2: The dictionary of charges. Each entry is written as “<encoding> : <charge>”.
Every value was multiplied by 12 to get an integer.

Observe that, in our case, every encoding in a dictionary entry starts and ends with a number. Thus, we
have the following observation.

Observation 4. The encoding in a dictionary entry always has odd length.

As a consequence, the 3-vertex v that holds the charge in the encoding of a dictionary entry corresponds to
either

• the letter in the middle when it has length 3 or 7,

• or the letter in second position when it has length 5.

Once again, each encoding can be read from left to right or right to left. Note that one has to be mindful
of the position of v when reading an encoding of length 5 from right to left.

In order to count the total amount of charge that an 8-face will receive from its 3-vertices, the algorithm
consists of sliding a window of odd length across the circular full-word. We start with the window of the largest
possible length (7 according to our dictionary) in order to have the most information about the neighborhood
of v. At each step, it searches for the corresponding encoding (or its mirror) in the dictionary and if it exists,
it marks the position as “discharged” and adds the corresponding amount of charge to its total amount. For a
given window size, if the corresponding subword is not in the dictionary, then it means that the dictionary entry
corresponding to v must have an encoding of smaller length (recall that the dictionary entries are exhaustive).
Then, it suffices to verify that the total amount is at least 12 (target_charge) since we multiplied every charge
by 12. In such a case, we know that our 8-face will end up with a non-negative amount of charge.

3.3 Third round: faces to faces

We ran Algorithm 1 to compute the outcome of the second round of discharging. The only remaining type of
face which was output by the algorithm (full-word: 1c1a0a1a0a) corresponds to the face f in Figure 20. We
define another discharging rule R5 to take care of this last case.

R5 Let f and f ′ be as depicted in Figure 20. If f ′ is an 8-face, then f ′ gives 1
2 to f .
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Figure 20: v′3, v
′
4, v

′
6, v

′
7 6= (1, 1, 0).

We show that after applying R5, we get µ∗(f) ≥ 0 and µ∗(f ′) ≥ 0. Recall that 8-faces have starting charge
−1.

First of all, by Figure 13 and R4, if f ′ is not an 8-face, then v4 and v6 each give 1
2 to f . So,

µ∗(f) ≥ −1 + 2 ·
1

2
= 0.

If f ′ is an 8-face, then v4 and v6 each give 1
4 to f by Figure 13 and R4, and f ′ gives f 1

2 by R5. Thus,

µ∗(f) ≥ −1 + 2 ·
1

4
+

1

2
= 0.

Now, let us show that µ∗(f ′) ≥ 0. We know that f ′ is an 8-face so µ(f ′) = −1 and f ′ gives 1
2 to f by R5.

Let f ′ = v′4v4v5v6v
′
6v

′′
6 v8v

′′
4 . By Figure 10iii, v′′4 cannot be a 2-vertex so it must be a 3-vertex. Symmetrically,

v′′6 must also be a 3-vertex. By Figure 10ii, v8 must also be a 3-vertex. Observe that R5 can thus only apply
once to f ′. Let u′′

4 , u′′
6 , and u8 be the neighbors that do not lie on f ′ of v′′4 , v′′6 , and v8 respectively.

Observe that v4 and v6 each give 1
4 to f ′ by Figure 13 and R4. Moreover, since v′4 cannot have a 2-neighbor

by Figure 10iii, v′4 gives at least 1
3 to f ′ by Figures 15 and 16 and R3. Symmetrically, the same holds for v′6.

We conclude with the following cases:

• If u′′
4 (or u′′

6) is a 3-vertex, then v′′4 (or v′′6 ) gives at least 1
3 to f ′ by Figures 15 and 16 and R3. To sum

up,

µ∗(f ′) ≥ −1−
1

2
+ 2 ·

1

4
+ 3 ·

1

3
= 0.

• If u′′
4 and u′′

6 are 2-vertices, then u8 must be a 3-vertex by Figure 10i. In that case, v8 gives at least 1
3 to

f ′ by Figures 15 and 16 and R3. To sum up,

µ∗(f ′) ≥ −1−
1

2
+ 2 ·

1

4
+ 3 ·

1

3
= 0.

To conclude, we started with a negative total amount of charge on the vertices and faces of G by Equation (1)
and after our discharging procedures, which preserve the total amount of charge, we ended up with a non-negative
amount of charge on each vertex and face of G. This is a contradiction, so G does not exists and this ends the
proof of Theorem 2.

4 Discussion on Theorem 2

The discharging method is commonly used on planar graphs, very often because of their sparseness. Sometimes,
the planarity of the graph is not needed, in which case the proofs hold for more general classes of sparse graphs
(for example, graphs with bounded maximum average degree mad(G) = maxH⊆G

2|E(H)|
|V (H)| ). This was the case

for the proof of Theorem 1 for example. However, when we increase the density of the graph by decreasing the
girth of the planar graph or by increasing the maximum average degree, the result might hold for one case but
not the other. In particular, the smallest class of graphs of bounded mad that contains planar graphs with girth
at least g has mad < 2g

g−2 . The clearest example showing that planarity is needed is the Petersen graph with
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one edge removed: it has mad = 14
5 and it needs 8 colors, while all subcubic planar graphs are 7-colorable [7,10].

Observe that the class of graphs with mad ≤ 14
5 does not even contain all planar graphs with girth 6.

For girth 8, the corresponding graphs with bounded mad verify mad < 8
3 . If Theorem 2 is generalizable to

graphs with mad < 8
3 , then it would be optimal in terms of mad as the Petersen graph with one vertex removed

has mad = 8
3 and it needs 7 colors. On the other hand, it is unclear whether there exists a planar graph with

girth 7 needing 7 colors.
A 5-cycle with a subdivided chord, which has mad = 7

3 , shows that a generalization of Theorem 2 to graphs
with mad < 8

3 would also be optimal in terms of number of colors. Once again, it does not mean that there
exists a planar graph with girth 8 that needs 6 colors.

In what follows, we provide a planar subcubic construction, with relatively high girth that needs 6 colors.
Precisely, we provide a construction of a planar subcubic graph having girth 6 and χ2 ≥ 6.

We call our 5 colors a, b, c, d, and e.

Lemma 13. The graph G′(u1, u2, v1, v2) in Figure 21i has the following properties:

• G′(u1, u2, v1, v2) is planar and subcubic.

• G′(u1, u2, v1, v2) has girth 6.

• The distance in G′(u1, u2, v1, v2) between u1 and v1 is 5.

• For every 5-coloring φ of G′(u1, u2, v1, v2), if φ(u1) = φ(v1), then φ(u2) = φ(v2).

u1 u2

u3

u4

w1

w2

x1

x2

y1

y2

v1v2

v3

v4

(i) The gadget G′(u1, u2, v1, v2) in Lemma 13.

u1 u2 G′ v2 v1

(ii) Simplified drawing of

G′(u1, u2, v1, v2).

Figure 21

Proof. One can verify that G′(u1, u2, v1, v2) is planar, subcubic, has girth 6, and that the distance between
u1 and v1 is 5 thanks to Figure 21i. It remains to prove that if φ(u1) = φ(v1), then φ(u2) = φ(v2) for every
5-coloring φ of G′(u1, u2, v1, v2).

Suppose by contradiction that there exists a 5-coloring φ of G′(u1, u2, v1, v2) such that φ(u1) = φ(v1) = a,
but b = φ(u2) 6= φ(v2) = c. We can assume w.l.o.g. that φ(u3) = d and φ(u4) = e. As a result, we have φ(v3) = e

and φ(v4) = d. Since w1 sees u2, u3, and v3, φ(w1) ∈ {a, c}. Since x2 sees u2, u4, and v4, φ(x2) ∈ {a, c}. Since
y2 sees v2, v3, and u3, φ(y2) ∈ {a, b}. Since w2 sees v2, v4, and u4, φ(w2) ∈ {a, b}.

• If φ(x2) = c, then φ(w1) = a, φ(w2) = b, and φ(y2) = a. However, x1 sees u3, w1, w2, x2, and u4 which
are colored d, a, b, c, and e respectively. So, x1 is not colorable.

• If φ(x2) = a, then φ(w1) = c.

– If φ(w2) = b, then x1 is not colorable since it sees u3, w1, w2, x2, and u4 which are colored d, c, b,
a, and e respectively.

– If φ(w2) = a, then φ(y2) = b and y1 is not colorable since it sees w1, w2, v4, y2, and v3 which are
colored c, a, d, b, and e respectively.

Lemma 14. The graph G6=(u1, u2, v1, v2) in Figure 22i has the following properties:

• G6=(u1, u2, v1, v2) is planar and subcubic.

• G6=(u1, u2, v1, v2) has girth 6.
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• The distance in G6=(u1, u2, v1, v2) between u1 and v1 is 5.

• Every 5-coloring φ of G6=(u1, u2, v1, v2) satisfies φ(u1) 6= φ(v1) and φ(u2) = φ(v2).

u1 u2

u3

u4

w1 w2 x1x2

y1 y2 z1z2

s1 t1 v1v2

v3

v4

G′

G′

(i) The gadget G 6=(u1, u2, v1, v2) in Lemma 14.

u1 u2 G6= v2 v1

(ii) Simplified drawing of

G 6=(u1, u2, v1, v2).

Figure 22

Proof. One can verify that G6=(u1, u2, v1, v2) is planar, subcubic, has girth 6, and that the distance between u1

and v1 is 5 thanks to Figure 21i. Now, let φ be a 2-distance 5-coloring of G6=(u1, u2, v1, v2).
First, observe the following:

Claim 1. We have {φ(w1), φ(s1), φ(t1), φ(u3), φ(v3)} 6= {a, b, c, d, e} and {φ(y1), φ(s1), φ(t1), φ(u4), φ(v4)} 6=

{a, b, c, d, e}.

Proof. By symmetry, we can suppose by contradiction that {φ(w1), φ(s1), φ(t1), φ(u3), φ(v3)} = {a, b, c, d, e}.
Since φ(x1) /∈ {φ(s1), φ(t1), φ(u3), φ(v3)}, we get φ(w1) = φ(x1), in which case φ(w2) = φ(x2) by Lemma 13
due to G′(w1, w2, x1, x2). However, φ(w2) /∈ {φ(w1), φ(s1), φ(u3)} and φ(x2) /∈ {φ(x1), φ(t1), φ(v3)}, which is
impossible since {φ(w1), φ(s1), φ(t1), φ(u3), φ(v3)} = {a, b, c, d, e}.

We can assume w.l.o.g. that φ(u1) = a, φ(u2) = b, φ(u3) = c, and φ(u4) = d. We claim the following.

Claim 2. We must have {φ(v3), φ(v4)} 6= {c, d}.

Proof. If {φ(v3), φ(v4)} = {c, d}, then φ(v3) = d and φ(v4) = c. Observe that φ(w1), φ(s1), and φ(t1) must
all be distinct and they are also different from {c, d}. As a result, we get {φ(w1), φ(s1), φ(t1), φ(u3), φ(v3)} =

{a, b, c, d, e}, which is impossible by Claim 1.

Claim 3. If φ(v4) = c, then d /∈ {φ(w1), φ(x1), φ(x2)}. Symmetrically, if φ(v3) = d, then c /∈

{φ(y1), φ(z1), φ(z2)}.

Proof. If φ(v4) = c, then suppose by contradiction that d ∈ {φ(w1), φ(x1), φ(x2)}. Observe that φ(y1),
φ(s1), and φ(t1) must all be distinct and they are also different from {c, d}. As a result, we get
{φ(y1), φ(s1), φ(t1), φ(u4), φ(v4)} = {a, b, c, d, e}, which is impossible by Claim 1.

By symmetry, the same arguments hold for c /∈ {φ(y1), φ(z1), φ(z2)} when φ(v3) = d.

Now, suppose by contradiction that we have the following cases.
Case 1: φ(u1) = φ(v1).

In this case, φ(v1) = φ(u1) = a. Note that φ(v2) /∈ {φ(v1), φ(u3), φ(u4)} = {a, c, d}. Moreover, if φ(v2) = e,
then we necessarily have φ(v3) = d and φ(v4) = c which is impossible due to Claim 2. As a result, φ(v2) = b.

By Claim 2 and by symmetry, we can assume that φ(v3) = e and as a consequence, φ(v4) = c. By
Claim 3, d /∈ {φ(w1), φ(x1), φ(x2)}. Consequently, φ(w1) = a and φ(x1) = a, which in turn implies that
φ(w2) = φ(x2) = b by Lemma 13 and G′(w1, w2, x1, x2). Hence, φ(s1) = e and we get a contradiction since
φ(y1) /∈ {φ(w1), φ(s1), φ(u2), φ(u4), φ(v4)} = {a, e, b, d, c}.
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Case 2: φ(u2) 6= φ(v2).
Since φ(v2) /∈ {φ(u2), φ(u3), φ(u4)} = {b, c, d}, we have φ(v2) ∈ {a, e}. By Claim 2 and by symmetry, we
can assume that φ(v3) ∈ {a, e}. As a consequence, {φ(v2), φ(v3)} = {a, e} and φ(v4) = c. By Claim 3,
d /∈ {φ(w1), φ(x1), φ(x2)}. Consequently, φ(w1) = φ(v2) and φ(x1) = b. Hence, φ(s1) = φ(v3) and we get a
contradiction since φ(y1) /∈ {φ(w1), φ(s1), φ(u2), φ(u4), φ(v4)} = {a, e, b, d, c}.

Lemma 15. The graph in Figure 23 is a planar subcubic graph of girth 6 with 2-distance chromatic number at

least 6.

w1 u1 u2 G6= v2 v1 x1

w2 G6= x2

w′
2 G6= x′

2

Figure 23: A non-5-colorable planar subcubic graph of girth 6.

Proof. One can easily verify that the graph G in Figure 23 is planar, subcubic, and has girth 6. Suppose by
contradiction that there exists a 2-distance 5-coloring φ of G. Suppose w.l.o.g. that φ(w1) = a, φ(u1) = b,
φ(u2) = c, and φ(v1) = d. By Lemma 14, φ(v2) = φ(u2) = c due to G6=(u1, u2, v1, v2) and φ(x1) 6= φ(w1) due
to G6=(w1, w2, x1, x2). Moreover, since φ(x1) /∈ {φ(v1), φ(v2), φ(u1)} = {d, c, b}. We must have φ(x1) = e. By
Lemma 14, we also have φ(w2) = φ(x2) due to G6=(w1, w2, x1, x2). Since φ(w2) /∈ {φ(w1), φ(u1)} = {a, b} and
φ(x2) /∈ {φ(v1), φ(x1)} = {d, e}, we get φ(w2) = φ(x2) = c. By symmetry, we also get φ(w′

2) = φ(x′
2) = c, which

is impossible since w2 sees w′
2.

5 Generalization of the vertices-to-faces discharging verification al-

gorithm

In Section 3.2, we presented an algorithm (Algorithm 1) that automates the discharging procedure with a
given set of reducible configurations. This becomes extremely helpful for proofs where the discharging pro-
cedure involve a large case analysis. For the input we efficiently encode a face, the set of reducible config-
urations, as well as the amount of charge of a vertex depending on its neighborhood. The corresponding
computer program was written in Python. The source code and its documentation is publically available on
https://gite.lirmm.fr/discharging/planar-graphs. In the case of Theorem 2, the execution time takes
few seconds on a standard machine.

On the public repository, we also provide another example where we proved the 2-distance 8-choosability
of planar graphs with maximum degree 4 and girth at least 7, a result by Cranston et al. in [4], using a small
amount configurations that can be easily reduced (by hand or by computer) and very naive discharging rules.
The idea is to move towards a computer automation of proofs using the discharging method.

Our approach can be applied to other problems on planar graphs by concentrating charges on the vertices
of the graph when the distribution of charges is made (according to the Euler formula). First, one has to
obtain a non-negative sum of charges on the vertices (by realizing an easy discharging procedure for example).
This concentrates the difficulty of the problem on the second round of discharging. In this round, one has
to redistribute the remaining charge of the vertices to the faces with negative charge and that is where our
algorithm can come in handy. Note that the way our algorithm is designed, a vertex can also take charge from
a face by giving it a negative charge.

The encoding of a face with a number-word and a letter-word can be done in the same way. In our case,
since G has no 2+-paths, the number-word of a face is composed of integers in {0, 1}. But this alphabet can
be extended to {0, 1, . . . , k − 1} if G has no k+-paths. Observe that one can partition a face into i-paths
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(0 ≤ i ≤ k) and consider that each path contains only one endvertex. Therefore, in order to obtain the starting
number-words for a face of size d(f), it suffices to decompose d(f) into sums where each term corresponds to
the number of vertices in an i-path.

As for the letter-words, it suffices to choose a letter for each different neighborhood of interest outside the
considered face. In our case, three letters are sufficient but one can always work with a larger alphabet to suit
the considered problems. Once the convention for the encoding of a face is fixed, the reducible configurations
and entries of the dictionary of charges can be done in the same way.

There are a few details to note about the entries of the dictionary. First, the position of the vertex v holding
the charge must be in the center of the entry (or just left of the center). Second, the encoding has to start
and end with a number. These properties can be guaranteed by extending the encoding with every possible
sequence up to a certain length. Finally, one has to be mindful that v is in the center when the length of the
encoding is congruent to 3 modulo 4, and left of the center when it is congruent to 1 modulo 4.

Moreover, we would like to note that, when a discharging procedure along with the given reducible config-
urations does not prove the desired result, Algorithm 1 returns a sufficient set of missing configurations (to be
reduced). This helps to pinpoint the possible difficulty of the proof using discharging. In practice, we started
out with a simple discharging procedure. Then, we proceed by reducing the missing configurations returned
by Algorithm 1. When there are non-reducible configurations, we further refine our discharging procedure and
repeat the process until we reach a sufficient set of discharging rules and reducible configurations. This is how
we obtained the configurations in Lemmas 7 to 10. In that sense, Algorithm 1 is not only a tool to verify a
proof but also a tool to assist the research process.

We also wanted to prove that subcubic planar graphs with girth at least 11 are 2-distance 5-colorable (which
would have improved the non-list version of the result in [3] by Borodin and Ivanova). The computer program
returned the problematic configurations which made us realize the difficulty of finding the right discharging
rules and reducible configurations.
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Appendix A Reducible cycles
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Figure 24: Reducible cycles.

Proof of Lemma 10.

Proof. The outline of the following proofs uses the same conventions as in the proof Lemma 9.
Proof of Figure 24i. We have G[S]2 = G2[S]. Now, we redefine S = {v′7, v7, v0, v1, v2} and consider a coloring
φ of G − S. The list of remaining colors for v′7, v7, v0, v1, and v2 are at least 2, 2, 4, 2, and 2 respectively
and we can assume w.l.o.g. that they are respectively {a, b}, {a, b}, {a, b, c, d}, {c, d}, and {c, d} by Figure 5.
Now, we uncolor v3, v4, v′4, v5, v6, v

′
6, v

′′
6 , and v′′′6 . The lower bounds on the lists of available colors for every

vertex now corresponds to the ones indicated on the figure. Let φ(v3) = x, φ(v4) = y, and φ(v6) = z. We
deduce that L(v′7) = {a, b, z}, {a, b, z} ⊂ L(v7), L(v0) = {a, b, c, d, z}, L(v1) = {c, d, x}, and L(v2) = {c, d, x, y}.
Moreover, we claim that L(v′4) 6= L(v3). Otherwise, we can simply switch the colors of v3 and v′4 in φ and we
can extend this coloring to S by Figure 5 as the remaining colors for v1 and v2 would no longer be {c, d} while
the remaining colors for v′7, v7, and v0 stay the same.

Thanks to the observations above, we can color these vertices as follow. First, we restrict L(v5) to L(v5) \

{a, b}. Since |L(v4)| ≥ 3, we color v4 with a color different from x and y. Now, we color v5, v6, v′6, v
′′
6 , and v′′6

by Figure 1v. Vertices v3 and v′4 are colorable since L(v′4) 6= L(v3).
If v3 is not colored c, d, or x, then the number of colors remaining for v′7, v7, v0, v1, and v2 are at least 2,

2, 4, 3, and 2 respectively since L(v1) = {c, d, x}. So, S is colorable thanks to Figure 5.
If v3 is colored c, d, or x, then neither v3 nor v4 is colored y. In other words, v2 has y as an available color

while v1 does not. Thus, v′7, v7, v0, v1, and v2 can be colored by Figure 5 as they have at least 2, 2, 4, 2, and 2
remaining colors respectively.
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(

�
)

Proof of Figure 24ii. If v′′4 sees v′′6 or v′′′6 , then they must be at distance exactly 2 since G has girth 8. Say v8 is
the common neighbor between v′′4 and v′′6 , then v′′′4 , v′4, v

′′
4 , v8, v′′6 , v′6, and v′′′6 form the reducible configuration

from Figure 8i.
If v′′4 sees v′7, then they must be at distance exactly 2 since G has girth 8. Say v8 is their common neighbor,

then v′′′4 , v′4, v
′′
4 , v8, v′7, v7, and v0 form the reducible configuration from Figure 8i. The same holds if v′′4 sees

v′1, or if v′′6 sees v′1.
If v′′6 sees v′3, then they must be at distance exactly 2 since G has girth 8. Say v8 is their common neighbor,

then v′′6 , v8, v′3, v3, v4, v
′
4, v

′′
4 , v′′′4 , v5, v′5, v6, v

′
6, and v′′′6 form the reducible configuration from Figure 24ix.

Symmetrically, these observations also hold for v′′′4 and v′′′6 .
If v′3 sees v′7, then they must be at distance exactly 2 since G has girth 8. Say v8 is their common neighbor,

then v′3, v8, v
′
7, v7, v0, v1, and v′1 form the reducible configuration from Figure 8i. The same holds if v′5 sees v′1.

Therefore, we have G[S]2 = G2[S]. We color v′6 such that v′′6 has 3 colors left and v′4 such that v′′4 has 3
colors left. Then, we color v7 such that v′7 has 3 colors left. Now, we color v2, v3, v′3, v5, v4, v

′′′
4 , v′′4 , v′5, v

′
1, v1,

v0, v6, v′7, v
′′′
6 , and v′′6 in this order.

(

�
)

Proof of Figure 24iii. If v′′6 sees v′3, then they must be at distance exactly 2 since G has girth 8. Say v8 is their
common neighbor, then v′′6 , v8, v′3, v3, v4, v

′
4, v5, v

′
5, v

′′
5 , v′′′5 , v6, v′6, and v′′′6 form the reducible configuration

from Figure 7iv.
If v′′6 sees v′1, then they must be at distance exactly 2 since G has girth 8. Say v8 is their common neighbor,

then v′′6 , v8, v′1, v1, v0, v7, and v′7 form the reducible configuration from Figure 8i.
The same observations hold for v′′′6 by symmetry.
If v′3 sees v′7, then they must be at distance exactly 2 since G has girth 8. Say v8 is their common neighbor,

then v′3, v8, v
′
7, v7, v0, v1, and v′1 form the reducible configuration from Figure 8i.

Now, observe that at least one vertex among v′′5 and v′′′5 do not see v′1, say v′′′5 . Also note that, if v′′5 sees v′1,
then |L(v′′5 )| ≥ 4 and |L(v′1)| ≥ 4. We color v′5 such that v′′′5 has 3 colors left, v′6 such that v′′′6 has 3 colors left,
and v3 such that v′3 has 3 colors left. Then, we color v7 such that v′7 has 3 colors left. We finish by coloring v′4,
v5, v4, v2, v′3, v

′′
5 , v′′′5 , v′1, v1, v0, v6, v

′
7, v

′′
6 , and v′′′6 in this order.

(

�
)

Proof of Figure 24iv. If v′7 sees v′3, then they must be at distance exactly 2 since G has girth 8. Say v8 is their
common neighbor, then v′1, v1, v0, v7, v

′
7, v8, and v′3 form the reducible configuration from Figure 8i. Similarly,

the same holds when v′7 sees v′′2 or v′′′2 .
If v′1 sees v′5, then they must be at distance exactly 2 since G has girth 8. Say v8 is their common neighbor,

then v′5, v8, v
′
1, v1, v0, v7, and v′7 form the reducible configuration from Figure 8i. Similarly, the same holds

when v′1 sees v′′6 or v′′′6 .
If v′3 sees v′′′6 , then they must be at distance exactly 2 since G has girth 8. Say v8 is their common neighbor,

then v′′′6 , v8, v′3, v3, v4, v5, v′5, v6, v7, v′7, v0, v′6, and v′′6 form the reducible configuration from Figure 7v.
Similarly, the same holds when v′3 sees v′′6 , or when v′5 sees v′′2 or v′′′2 .

If v′′2 = v′′6 , then v′′2 , v′2, v2, v1, v
′
1, v0, v7, v

′
7, v6, v

′
6, and v′′′6 form the reducible configuration from Figure 7vi.

Similarly, the same holds when v′′2 = v′′′6 , or when v′′′2 = v′′6 or v′′′6 .
Now, if v′′2 sees v′′6 , then they must be at distance exactly 2 since G has no 2+−path by Lemma 6. The same

holds when v′′2 sees v′′′6 , or when v′′′2 sees v′′6 or v′′′6 . So, there is a vertex among v′′2 and v′′′2 that does not see v′′6 nor
v′′′6 , say v′′2 . The same holds for v′′6 and v′′′6 , so say v′′6 does not see v′′2 nor v′′′2 . Observe that |L(v′′6 )| = |L(v′′2 )| = 3,
so we can color v′6 differently from L(v′′6 ), and v′2 differently from L(v′′2 ). By the pigeonhole principle, we can
color v1 and v′7 with the same color since we have six colors in total. We finish by coloring v3, v4, v5, v′3, v

′
5, v2,

v′1, v6, v7, v0, v
′′′
6 , v′′6 , v′′′2 , and v′′2 in this order. (

�
)

Proof of Figure 24v. If v′3 sees v′′6 , then they must be at distance exactly 2 since G has girth 8. Say v8 is their
common neighbor, then v′′6 , v8, v′3, v3, v4, v5, v6, and v′6 form the reducible configuration from Figure 7i. By
symmetry the same holds when v′3 sees v′′′6 . Thus, we have G[S]2 = G2[S]. Color vertex v′6 with x /∈ L(v′′6 ), and
afterwards color v5 with y /∈ L(v′5). We finish by coloring the remaining vertices in the following order: v7, v1,
v2, v0, v6, v′′′6 , v′′6 , v3, v′3, v4, and v′5.

(

�
)

Proof of Figure 24vi. Note that G[S]2 = G2[S]. Color v4 with a /∈ L(v′4), then color v2 and v1 greedily. Color
v0, v7, v′7, v6, v

′
6, v5 by Figure 1vii and finish by coloring v3 and v′4 in this order. (

�
)
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Proof of Figure 24vii. Note that G[S]2 = G2[S]. Here, we redefine S = {v4, v5, v′5}. Consider φ a coloring of
G−S. We uncolor v0, v1, v2, v′2, v3, v6, v7, v

′
7. By Figure 2, we must have L(v′5) = {a, b, c}, L(v4) = {a, b, c, d, e},

φ(v6) = c, φ(v3) = d and φ(v2) = e, as otherwise φ would be extendable to G. Note that L(v3) 6= L(v′2) or
we could have switched their colors in φ and d would be an available color for v4 and we could extend φ to G.
Now, we color v2 and v6 with colors not in {d, e}. Then, we color v′7, v7, v0, v1 by Figure 1i. Color v′2 and v3
greedily, which is possible since L(v′2) 6= L(v3). Finally, since at least d or e is available for v4 and d, e /∈ L(v′5),
by Figure 2, we can color v4, v5, v′5.

(

�
)

Proof of Figure 24viii. Note that G[S]2 = G2[S]. Observe that it is always possible to color v1, v2 and v7
such that afterwards v0 has at least two available colors. Indeed, either v2 and v7 can be colored with the same
color, or |L(v2) ∪ L(v7)| ≥ 5.

Then color vertices v′6, v6, v5, v
′
5, v4, v

′
4, v3, v

′
3 by Figure 1ix and finish by coloring v0. (

�
)

Proof of Figure 24ix. If v′′4 sees v′7 by sharing a common neighbor, say v8, then vertices v0, v7, v′7, v8, v
′′
4 , v′4,

v′′′4 form the reducible configuration of Figure 8i. The case when v′′′4 sees v′7 is symmetric.
Therefore, we can suppose that G[S]2 = G2[S]. We color v′4 with a color x /∈ L(v′′4 ) and v7 with a color

y ∈ L(v′7). Now color v3, v4, v5, v′5, v6 by Figure 1iv. Finish by coloring v′′′4 , v′′4 , v1, v2, v0, v′7 in this order. (

�
)

Proof of Figure 24x. If v′′5 sees v1 by sharing a common neighbor, say v8, then vertices v′′′5 , v′5, v
′′
5 , v8, v1, v2,

v0 form the reducible configuration of Figure 6iv. The case when v′′′5 sees v1 is symmetric.
Therefore, know that G[S]2 = G2[S]. We prove first the following observations.

• L(v3) = {a, b, c} and L(v7) = {d, e, f}. Suppose to the contrary that we can color v3 and v7 with the
same color. Then color v0 with x such that |L(v1) \ {x}| ≥ 2. Color vertices v′4, v4, v5, v6, v

′
6, v

′
5, v

′′
5 , v′′′5

by Figure 1x and finish by coloring v2, v1 in this order.

• Observe that vertices v3 and v7 are symmetric and thus by pigeonhole principle w.l.o.g. we have {a, b} ⊂

L(v1).

• L(v1) = L(v3) = {a, b, c}. If not, that is c /∈ L(v1), then color v3 with c and v7 with x /∈ L(v1). Color
vertices v′4, v4, v5, v6, v

′
6, v

′
5, v

′′
5 , v′′′5 by Figure 1x and finish by coloring v0, v2, v1 in this order.

• {a, b, c} ⊂ L(v0). Otherwise, color v1 with x /∈ L(v0). Then color v3, v4, v′4, v5, v
′
5, v

′′
5 , v′′′5 , v6, v′6, v7 by

Figure 1xvi. Finish by coloring v2, v0 in this order.

By the last item, w.l.o.g. we can assume that |L(v0) \ {d, e}| ≥ 4. Thus we restrict L(v7) to {d, e}. Then
color v3, v4, v′4, v5, v

′
5, v

′′
5 , v′′′5 , v6, v′6, v7 by Figure 1xvi. Finish by coloring v1, v2, v0 in this order. (

�
)

Proof of Figure 24xi. If v′1 sees v′5, then the are at distance exactly 2 and share a common neighbor, say v8.
Then vertices v0, v1, v′1, v8, v

′
5, v5, v6, v7 correspond to the reducible configuration of Figure 7i. The case when

v′7 sees v′3 is symmetric.
Therefore, we can assume that G[S]2 = G2[S]. Color v1 with x /∈ L(v′1) and v5 with y /∈ L(v′5). Then color

vertices v′4, v4, v3, v
′
3, v2 by Figure 1iv. Finish by coloring v6, v′5, v7, v

′
7, v0, v

′
1 in this order. (

�
)

Proof of Figure 24xii. If v′2 sees v′6, then they must be at distance exactly 2 since G has girth 8. Say v8 is
their common neighbor, then v′6, v8, v

′
2, v2, v3, v

′
3, v4, v

′
4, v5, v

′
5 and v6 form the reducible configuration from

Figure 7ii. The same holds when v′3 sees v′7.
Now, G[S]2 = G2[S]. We restrict L(v3) to L(v3) \ L(v′4). We color v0, v1, v2, v′2, v3 by Figure 1v, then we

color v′3. After that, we color v4, v5, v′5, v6, v
′
6, v7, v

′
7 by Figure 1viii and finish by coloring v′4.

(

�
)

Proof of Figure 24xiii. If v′1 sees v′5, then they must be at distance exactly 2 since G has girth 8. Say v8 is
their common neighbor, then v2, v1, v′1, v8, v

′
5, v5, v4, v3 form the reducible configuration from Figure 7i.

If v′1 sees v′′6 , then they must be at distance exactly 2 since G has girth 8 and say v8 is their common
neighbor. Then v0, v1, v′1, v8, v

′′
6 , v′6, v6, v7 form the reducible configuration from Figure 7i.

So we have G[S]2 = G2[S]. Take a coloring φ where v3 and v4 are colored greedily, then v′′6 , v′6, v
′′′
6 , v6, v7,

v5, v′5 are colored by Figure 1viii. Then the remaining non-colored vertices are v0, v1, v′1 and v2. By Figure 3
we conclude that initially L(v′1) = {a, b, c}, L(v0) = {a, b, c, φ(v6), φ(v7)}, L(v1) = {a, b, c, φ(v3), φ(v7)} and
L(v2) = {a, b, c, φ(v3), φ(v4)}. Without loss of generality φ(v3) = d and φ(v7) = e. Now observe that the color
of v3 was chosen arbitrarily, thus there exists a similar coloring φ′ where φ′(v3) 6= d. Moreover, using again
Figure 3, φ′(v3) = e. Thus we deduce that L(v0) = L(v1) = L(v2) = {a, b, c, d, e} and L(v4) ⊃ {d, e} ⊂ L(v3).
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With all the remarks of the previous paragraphs, we give a coloring of the configuration: restrict L(v6) to
L(v6) \ {d, e} and restrict L(v5) to L(v5) \ {d, e}. Then color v′′6 , v′6, v

′′′
6 , v7, v5 by Figure 1vii and color v′5, v4,

v3 in this order. Recall that v6 was colored x /∈ {d, e}. Thus the list of remaining available colors for v0 is not
{a, b, c} = L(v′1) and hence by Figure 3 we are done. (

�
)

Proof of Figure 24xiv. If v′′4 sees v′1, then they must be at distance exactly 2 since G has girth 8. Say v8 is
their common neighbor, then v2, v1, v′1, v8, v

′′
4 , v′4, v4, v3 form the reducible configuration from Figure 7i.

So we have G[S]2 = G2[S]. We redefine S = {v0, v1, v′1, v2} and take a coloring φ of G− S. By Figure 3 we
know that L(v′1) = L(v1) = L(v0) = L(v2) = {a, b, c} and the colors of v′6 and v7 cannot be interchanged. Having
that said, we uncolor vertices v3, v4, v′4, v

′′
4 , v′′′4 , v5, v6, v′6 and v7 and the number of available colors for each

vertex correspond to the numbers depicted on Figure 24xiv. We know now that L(v0) = {a, b, c, φ(v6), φ(v7)}

and furthermore L(v′6) 6= L(v7).
We color v6 with x /∈ {phi(v6), φ(v7)} and v′′4 , v′4, v

′′′
4 , v4, v3, v5 by Figure 1v. Then we color v′6 and v7 since

L(v′6) 6= L(v7). Now observe that L(v0) 6= {a, b, c} = L(v′1) and thus by Figure 3 we are done. (

�
)

Proof of Figure 24xv. Suppose v′′5 sees v′1. By Lemma 6 they are at distance exactly two and therefore
|L(v′′5 )| = |L(v′1)| = 4. By pigeonhole principle we color vertices v0 and v4 with the same color x and show the
following:

• x /∈ L(v′6). If not then we color v′6 with x as well and finish by coloring v3, v7, v5, v6, v′5, v
′′′
5 , v′′5 , v′1, v1,

v2 in order.

• x ∈ L(v6). If not then we color v′6 arbitrarily and finish by coloring v3, v7, v5, v6, v′5, v
′′′
5 , v′′5 , v′1, v1, v2 in

order.

• x ∈ L(v3). If not then we color v′6 arbitrarily and finish by coloring v7, v6, v5, v3, v′5, v
′′′
5 , v′′5 , v′1, v1, v2 in

order.

We recolor the whole configuration as follows. Color v3 and v6 with x, then color v4. Color v5 such that
vertex v7 has at least two available colors left. Color v′5, v′′′5 , v′′5 , v′1 in this order. Color v7, v0, v1, v2 by
Figure 1i.

The case when v′′′5 sees v′1 is symmetric.
So we have G[S]2 = G2[S]. Redefine S = {v0, v1, v′1, v2}. Take a coloring φ of G − S. If vertices of S are

colorable, then we are done. Hence by using Figure 3 we uncolor vertices v3, v4, v5, v′5, v
′′
5 , v′′′5 , v6, v′6, v7 and

conclude that after uncoloring L(v′1) = {a, b, c}, L(v0) = {a, b, c, φ(v6), φ(v7)}, L(v1) = {a, b, c, φ(v3), φ(v7)} and
L(v2) = {a, b, c, φ(v3), φ(v4)}. Observe that L(v′6) 6= L(v7) as their color could be permuted and φ could be
extended to S.

Without loss of generality φ(v6) = d and φ(v7) = e. Now one could restrict L(v6) to L(v6) \ {d}, and give
another coloring φ′ of G−S where first vertices v′′5 , v′5, v

′′′
5 , v5, v6, v3, v4 are colored using Figure 1viii and then

since L(v′6) 6= L(v7), vertices v′6 and v7 are colored greedily. Note that since φ′(v6) 6= d, using again Figure 3, we
necessarily have φ′(v6) = e. Thus we deduce L(v0) = L(v1) = L(v2) = {a, b, c, d, e} and L(v4) ⊃ {d, e} ⊂ L(v3).

With all the remarks of the previous paragraphs, we give a coloring of the configuration: restrict L(v6) to
L(v6) = {x, y}∩ {d, e} = ∅. Since |L(v5)| = 5, we color v5 with z /∈ {x, y, d, e}. Then we color v′′5 , v′′′5 , v′5, v4, v3
in this order. Now recall that initially L(v′6) 6= L(v7) and that v5 and v4 were colored with colors other than x

and y. Therefore we color vertices v6, v′6, v7 in this order. Recall that v6 was colored say x /∈ {d, e}. Thus the
list of remaining available colors for v0 is not {a, b, c} = L(v′1) and hence by Figure 3 we are done. (

�
)

Proof of Figure 24xvi. Restrict L(v3) to L(v3) \ L(v′′3 ). Then color vertices v0, v1, v2, v′2, v3 by Figure 1v.
Color vertices v′4, v4, v5, v

′
5, v6, v

′
6, v7, v

′
7 by Figure 1ix. Finish by coloring v′3, v

′′′
3 , v′′3 in this order. Note that

this coloring procedure works even when v′′3 (resp. v′′′3 ) sees v′6 or v′7 and when v′2 sees v′6.
(

�
)

Proof of Figure 24xvii. If v′1 sees v′5, then they must be at distance exactly 2 since G has girth 8. Say v8 is their
common neighbor, then v′5, v8, v

′
1, v1, v0, v7, v

′
7, v6, v

′
6, v5 form the reducible configuration from Figure 7ii.

Symmetrically, the same holds when v′3 sees v′7.
If v′2 sees v′6, then they must be at distance exactly 2 since G has girth 8. Say v8 is their common neighbor,

then v′6, v8, v
′
2, v2, v3, v

′
3, v4, v

′
4, v

′′
4 , v′′′4 , v5, v′5, v6 form the reducible configuration from Figure 24x.

Color v7 with a color that is not in L(v′7) and color v6 such that v′6 has at least two colors left. Color v0
greedily. Color v′4 such that v′′4 has at least three colors left. Now, 2 = |L(v′5)| ≤ |L(v5)| ≤ 3. If there exists
x ∈ L(v′5) \ L(v5), then we can color v′5 with x, then color v5, v4, v3, v′3, v2, v

′
2, v1, v

′
1 by Figure 1ix. We can

finish by coloring v′′′4 , v′′4 , v′6, v
′
7 in this order. As a result, L(v′5) ⊆ L(v5), in which case, we restrict L(v4) to
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L(v4) \L(v′5) and color v4, v3, v′3, v2, v
′
2, v1, v

′
1 by Figure 1viii. Finally, we finish by coloring v5, v′5, v

′′′
4 , v′′4 , v′6,

v′7 in this order. Note that this coloring procedure works even when v0 sees v′′4 or v′′′4 . (

�
)

Proof of Figure 24xviii. If v′3 sees v′7, then they must be at distance exactly 2 since G has girth 8. Say v8 is
their common neighbor, then v0, v7, v′7, v8, v

′
3, v2, v1 form the reducible configuration from Figure 7i.

Restrict L(v0) to L(v0) \ L(v′7). Color v4, v3, v′3, v2, v
′
2, v1, v0 by Figure 1viii. Color v′′6 , v′6, v

′′′
6 , v6, v7, v5,

v′5 by Figure 1viii and finish by coloring v′7. Note that this coloring procedure works even when v′2 (resp. v′3)
sees v′′6 or v′′′6 . (

�
)

Proof of Figure 24xviii. If v′3 sees v′7, then they must be at distance exactly 2 since G has girth 8. Say v8 is
their common neighbor, then v0, v7, v′7, v8, v

′
3, v3, v2, v1 form the reducible configuration from Figure 7i.

Restrict L(v0) to L(v0) \ L(v′7). Color v4, v3, v′3, v2, v
′
2, v1, v0 by Figure 1viii. Color v′′6 , v′6, v

′′′
6 , v6, v7, v5,

v′5 by Figure 1viii and finish by coloring v′7. Note that this coloring procedure works even when v′2 (resp. v′3)
sees v′′6 or v′′′6 at distance 2 since there are no 2-paths due to Lemma 6 (resp. since G has girth at least 8). (

�
)

Proof of Figure 24xix. If v′′2 sees v′7, then they must be at distance exactly 2 since G has girth 8. Say v8
is their common neighbor, then v0, v7, v′7, v8, v

′′
2 , v′2, v2, v1 form the reducible configuration from Figure 7i.

Symmetrically, the same holds when v′′′2 sees v′7.
If v′′2 sees v′5, then they must be at distance exactly 2 since G has girth 8. Say v8 is their common neighbor,

then v′5, v8, v
′′
2 , v′2, v2, v3, v

′
3, v4, v

′
4, v5 form the reducible configuration from Figure 7ii. Symmetrically, the

same holds when v′′′2 sees v′5.
Between v′′2 and v′′′2 , there always exists one vertex that does not see v6, say v′′2 . Color v′2 with a color that

is not in L(v′′2 ). By pigeonhole principle, since we have 6 colors, color v2 and v6 with the same color. Color v1
greedily. Color v′3, v3, v4, v

′
4, v5, v

′
5 by Figure 1vi. Finish by coloring v7, v′7, v0, v

′′′
6 , v′′6 in this order. Note that

this coloring procedure works even when v′3 sees v′7.
(

�
)

Proof of Figure 24xx. Between v′′3 and v′′′3 , there always exists one vertex that does not see v′7, say v′′3 .
If L(v1) = L(v′2), then color v2 with x /∈ L(v′2). Restrict L(v3) to L(v3) \ L(v′′3 ). Color v3, v4, v′4, v5, v

′
5, v6

by Figure 1vii. Color v′3, v
′′′
3 , v′′3 in this order. Then, color v′7, v7, v0, v1 by Figure 1i and finish by coloring v′2.

If L(v1) 6= L(v′2), then, by pigeonhole principle, color v2 and v6 with the same color. Restrict L(v3) to
L(v3)\L(v′′3 ). Color v′5, v5, v4, v

′
4, v3 by Figure 1v. Color v′3, v

′′′
3 , v′′3 in this order. Then, color v1 and v2, which

is possible since L(v1) 6= L(v′2). Finish by coloring v7, v′7 and v0 in this order.
Note that this coloring procedure works even when v′′′3 sees v′7 (at distance 2 since there are no 2-paths by

Lemma 6).
(

�
)

Proof of Figure 24xxi. Between v′′7 and v′′′7 , there always exists on vertex that does not see v′3, say v′′7 . Color
v′7 with a color not in v′′7 . Color v2 with a color such that v′3 still retains three available colors. Color v0 such
that v6 still retain two available colors. Color v1 and v′2 greedily. Color v3, v4, v′4, v5, v

′
5, v6, v7 by Figure 1viii.

Finish by coloring v′3, v
′′′
7 and v′′7 in this order. Note that this coloring procedure works even when v′′7 (resp.

v′′′7 ) sees v′2 or v′4.
(

�
)

Proof of Figure 24xxii. Between v′′4 and v′′′4 , there always exists one vertex that does not see v′7, say v′′4 . Color
v′4 with a color x /∈ L(v′′4 ). Color v7 such that v′7 has at least three colors left. Color v6, v5, v′5 in this order.
Color v1, v2, v′2, v3, v

′
3, v4 by Figure 1vii. Finish by coloring v′′′4 , v′′4 , v0 and v′7 in this order. Note that this

coloring procedure works even when v′′′4 sees v′7 (at distance 2 since G has girth at least 8). (

�
)

Proof of Figure 24xxiii. Restrict L(v3) to L(v3) \ L(v′′3 ). Color v2 such that v′2 has at least three colors left.
Color v3 then v1 greedily. Color v′4, v4, v5, v

′
5, v6, v

′
6, v7, v0 by Figure 1ix. Finish by coloring v′2, v

′
3, v

′′′
3 and v′′3

in this order. Note that this coloring procedure works even when v′′3 (resp. v′′′3 ) sees v′6 or v7, and when v′2 sees
v′6.

(

�
)

Proof of Figure 24xxiv. Note that there always exists x ∈ L(v′′4 ) ∩ L(v′4). We start by showing the following
observations:

• x ∈ L(v3) = L(v5). Now suppose w.l.o.g. that x /∈ L(v3) or L(v3) 6= L(v5). Color v′4 with x. Color v5
such that v3 has at least four colors left. Color v′6, v7, v6, v

′
5 in this order. Color v4, v3, v′3, v2, v

′
2, v1, v0

by Figure 1viii. Finish by coloring v′′′4 and v′′4 in this order.

• x /∈ L(v2). Suppose that x ∈ L(v2). We color v′4 and v2 with x. Color v1 and v′2.
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– If we can color v′3 such that v3 has at least two colors left, then we can color v3, v4, v5, v′5, v6, v
′
6,

v7, v0 by Figure 1ix, and finish by coloring v′′′4 and v′′4 in this order.

– Otherwise, we must have |L(v′3)| = |L(v3)| = 2, in which case, we restrict L(v4) to L(v4) \ L(v3).
Now, we can color v4, v5, v′5, v6, v

′
6, v7, v0 by Figure 1viii, and finish by coloring v3, v′3, v

′′′
4 and v′′4

in this order.

With the observations above, we color v4 with x (since L(v4) contains all available colors). Color v′5, v5, v6, v
′
6,

v7 by Figure 1v. Color v0, v1, v2, v′2, v3, v
′
3 by Figure 1vi. Finish by coloring v′4, v

′′′
4 and v′′4 in this order.

Note that in all of the above-mentioned coloring procedure, there is no problem even when v′2 sees v′6.
(

�
)

Proof of Figure 24xxv. Between v′′5 and v′′′5 (resp. v′′6 and v′′′6 ), there always exists one vertex that does not see
v1 (resp. v2), say v′′5 (resp. v′′6 ). Restrict L(v5) to L(v5) \ L(v′′5 ). Color v′6 with a color not in L(v′′6 ). Color v7
with a color not in L(v′7). Finish by coloring v1, v2, v5, v3, v′4, v4, v6, v0, v

′
7, v

′′′
6 , v′′6 , v′5, v

′′′
5 , v′′5 in this order. (

�
)

Proof of Figure 24xxvi. If v′′7 sees v′2, then they must be at distance exactly 2 since G has girth 8. Say
v8 is their common neighbor, then v′′′7 , v′7, v

′′
7 , v8, v′2, v2, v3 form the reducible configuration from Figure 8i.

Symmetrically, the same holds when v′′′7 sees v′2.
So, we have G[S]2 = G2[S]. Here, we redefine S = {v0, v7, v

′
7, v

′′
7 , v

′′′
7 } and consider φ a coloring of G − S.

Note that the lists of available colors of vertices of S correspond to Figure 4 or φ would be extendable to G. We
uncolor v1, v2, v′2, v3, v4, v5, v

′
5, v6. By Figure 4, we must have L(v′′7 ) = L(v′′′7 ) = {a, b, c}, L(v′7) = {a, b, c, d},

φ(v6) = d, e ∈ L(v7) and φ(v5) = e or φ(v1) = e. Note that L(v6) 6= L(v′5), otherwise, it suffices to switch their
colors in φ to extend it to G by Figure 4. Restrict L(v5) to L(v5) \ {e} and L(v1) to L(v1) \ {e}. Color v1, then
v′2, v2, v3, v4, v5 by Figure 1ii. Color v′5 and v6 greedily (which is possible since L(v6) 6= L(v5)). Now, observe
that v6 must still be colored d or by Figure 4, we can extend this coloring. However, we know that v1 and v5
are not colored e, thus e is still an available color for v7. By Figure 4, S is colorable. (

�
)

Proof of Figure 24xxvii. If v′′5 sees v′2, then they must be at distance exactly 2 since G has girth 8. Say v8 is
their common neighbor, then v′′5 , v8, v′2, v2, v

′
2, v2, v3, v4, v5, v

′
5 form the reducible configuration from Figure 7i.

Symmetrically, the same holds when v′′′5 sees v′2.
Between v′′5 and v′′′5 , there always exists one vertex that does not see v1, say v′′5 . We restrict L(v5) to

L(v5) \ L(v
′′
5 ). There exists a color x ∈ L(v2) \ L(v

′
2), we restrict L(v4) to L(v4) \ {x}. We color v4, v5, v6, v′6,

v7 by Figure 1v. Then, we color v′5, v
′′′
5 , v′′5 in this order. Now, observe that by Figure 4, we can color v0, v1,

v2, v′2, v3 since x is an available color for v2 but not v′2. Note that this coloring procedure works even when v′′′5
sees v1. (

�
)

Proof of Figure 24xxviii. If v′′6 sees v′2, then they must be at distance exactly two since there are no 2-path by
Lemma 6. We restrict L(v6) to L(v6) \ L(v′′′6 ), then we color v6, v4, v′5, v5, v7, v0, v1, v2, v3, v

′
2, v

′
6, v

′′
6 , v′′′6 in

this order. Symmetrically, the same holds when v′′′6 sees v′2.
There exists a color x ∈ L(v2) \ L(v′2), we restrict L(v4) to L(v4) \ {x}. We restrict L(v6) to L(v6) \ L(v′′6 ).

We color v7, v6, v5, v′5, v4 by Figure 1v. Then, we color v′6, v
′′′
6 , v′′6 in this order. Now, observe that by Figure 4,

we can color v0, v1, v2, v′2, v3 since x is an available color for v2 but not v′2.
(

�
)

Proof of Figure 24xxix. Between v′′7 and v′′′7 , there always exists one vertex that does not see v′3, say v′′7 . Color
v′7 with a color not in L(v′′7 ). Color v5 with a color not in L(v′5). Color v6 greedily. Color v7, v0, v1, v2 by
Figure 1i. Finish by coloring v3, v′3, v4, v

′
5, v

′′′
7 , v′′7 in this order. Note that this coloring procedure works even

when v′′′7 sees v′3.
(

�
)

Proof of Figure 24xxx. If v′′5 sees v1, then they must be at distance exactly 2 since G has girth 8. Say v8 is their
common neighbor, then v′′5 , v8, v1, v0, v7, v′7, v6, 5, v′5, v

′′′
5 form the reducible configuration from Figure 24vi.

Symmetrically, the same holds when v′′′5 sees v1.
If v′′5 sees v′2, then we restrict L(v5) to L(v5) \ L(v′′′5 ). We color v3 with a color not in L(v5). Color v2, v1,

v0, v7, v′7, v6, v5 by Figure 1xi. Finish by coloring v′2, v4, v
′
5, v

′′
5 , v′′′5 in this order. Symmetrically, the same

holds when v′′′5 sees v′2.
Now, suppose that G[S]2 = G2[S]. We redefine S = {v4, v5, v′5, v

′′
5 , v

′′′
5 } and consider φ a coloring of G − S.

Note that the lists of available colors of vertices of S correspond to Figure 4 as otherwise φ would be extendable
to G. We uncolor v0 v1, v2, v′2, v3, v6, v7, v′7. By Figure 4, we must have L(v′′5 ) = L(v′′′5 ) = {a, b, c},
L(v′5) = {a, b, c, d} and φ(v6) = d. Restrict L(v6) to L(v6) \ {d}. Color v7 with a color not in L(v1). Color v6
and v′7 greedily. Observe that |L(v1) ∪ L(v2) ∪ L(v′2) ∪ L(v3)| > 3 since they were colorable with φ, and also

34



note that these vertices do not see v6, v7, v′7. Therefore, by Figure 4, we color v0, v1, v2, v′2, v3. What remains
is S and since v6 is not colored d, we have d ∈ L(v′5) ∩ L(v′′5 ) so S is colorable by Figure 4.

(

�
)

Proof of Figure 24xxxi. If v′′2 sees v′6, then they must be at distance exactly 2, since there are no 2-path
(Lemma 6). Restrict L(v2) to L(v2) \ L(v′6). Color v3 with a color not in v′3. Color v2 and v1 greedily. Color
v5, v6, v7, v1 by Figure 1i. Finish by coloring v′6, v4, v

′
3, v

′
2, v

′′
2 , v′′′2 in this order.

Now, suppose that G[S]2 = G2[S]. We redefine S = {v0, v1, v2, v′2, v
′′
2 , v

′′′
2 , v3, v

′
3, v4} and consider φ a coloring

of G−S. If there exists x ∈ L(v4) /∈ L(v3), then color v4 with x. Color v′′′2 , v′2, v
′′
2 , v2, v3, v1, v0 by Figure 1viii.

Finish by coloring v′3. Thus, we uncolor v5, v6, v7 and conclude that L(v′3) = {a, b, c} ⊂ L(v4) = {a, b, c, d, e},
φ(v5) = d and φ(v6) = e. Also note that L(v5) 6= L(v′6) or we can simply switch v5’s and v6’s colors and d would
still be available for v4.

Now, we color v6 with a color different from d and e. We color v7 greedily. We color v5 and v′6 (which is
possible since L(v5) 6= L(v′6). Note that either d or e must still be available for v4 and d, e /∈ L(v′3) so we refer
to the above-mentioned coloring.

(

�
)

Proof of Figure 24xxxii. If v′3 sees v′7, then they must be at distance exactly 2 since G has girth 8. Say v8 is
their common neighbor, then v0, v7, v′7, v8, v

′
3, v3, v2, v1 form the reducible configuration from Figure 7i. If v′3

sees v′′6 , then they share a common neighbor v8 and v′′6 , v8, v′3, v3, v4, v5, v6, v
′
6 form the reducible configuration

from Figure 7i. Symmetrically, the same holds when v′3 sees v′′′6 .
If v2 sees v′′6 , then they must be at distance exactly 2. Note that, in this case, |L(v2)| ≥ 3 so we can color

v2 then v3 such that v1 retains at least 2 available colors. We color v′6 with x /∈ L(v′′6 ). Then, we color v′3, v5,
v4 in this order. Afterwards, we color v1, v0, v7, v′7 and v6 by Figure 1iv. Finish by coloring v′′′6 then v′′6 in this
order. Symmetrically, the same holds when v2 sees v′′′6 .

So we have G[S]2 = G2[S]. Observe that in the previous case, it suffices to color v2 such that v1 still retain
at least 2 available colors to be able to extend the coloring to G. Thus, L(v2) = L(v1) = {a, b}.

Now, if a ∈ L(v′3), then we color v′3 and v1 with a. Restrict L(v6) to L = L(v6)\L(v′′6 ). Color v′7 with v /∈ L.
Then, we color v0, v7, v6, v5, v4, v3 with Figure 1iii. and finish by coloring v′6, v

′′′
6 and v′′6 in this order.

If a /∈ L(v′3), color v2 with a. By pigeonhole principle, we color v′6 and v′7 with the same color. Then, we
color v′′6 and v′′′6 greedily. Afterwards, we color v5, v6, v7, v0 by Figure 1i. We finish by coloring v3, v4, v′3 in
this order. (

�
)
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