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Abstract 26 

Background: Many studies investigated the relationship between outdoor fine particulate 27 

matter (PM2.5) and cancer. While they generally indicated positive associations, results have 28 

not been fully consistent, possibly because of the diversity of methods used to assess exposure.  29 

Objectives: To investigate how using different PM2.5 exposure assessment methods influences 30 

risk estimates in the large French general population-based Gazel cohort (20,625 participants 31 

at enrollment) with a 26-year follow-up with complete residential histories. 32 

Methods: We focused on two cancer incidence outcomes: all-sites combined and lung. We used 33 

two distinct exposure assessment methods: a western European land use regression (LUR), 34 

and a chemistry-dispersion model (Gazel-Air) for France, each with a time series ≥20-years 35 

annual concentrations. Spearman correlation coefficient between the two estimates of PM2.5 36 

was 0.71 across all person-years; the LUR tended to provide higher exposures. We used 37 

extended Cox models with attained age as time-scale and time-dependent cumulative 38 

exposures, adjusting for a set of confounders including sex and smoking, to derive hazard 39 

ratios (HRs) and their 95% confidence interval, implementing a 10-year lag between exposure 40 

and incidence/censoring. 41 

Results: We obtained similar two-piece linear associations for all-sites cancer (3,711 cases), 42 

with a first slope of HRs of 1.53 (1.24-1.88) and 1.43 (1.19-1.73) for one IQR increase of 43 

cumulative PM2.5 exposure for the LUR and the Gazel-Air models respectively, followed by a 44 

plateau at around 1.5 for both exposure assessments. For lung cancer (349 cases), the HRs 45 

from the two exposure models were less similar, with largely overlapping confidence limits. 46 

Conclusion: Our findings using long-term exposure estimates from two distinct exposure 47 

assessment methods corroborate the association between air pollution and cancer risk. 48 

Keywords: air pollution; PM2.5; lung cancer; survival analysis; epidemiology  49 
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Introduction 50 

 51 

Outdoor air pollution including fine particulate matter (with a diameter <2.5µm or PM2.5) has 52 

been classified carcinogenic by the International Agency for Research on Cancer (Loomis et 53 

al., 2013). Indeed, a large body of studies found positive associations between exposure to 54 

different air pollutants, including PM2.5, and cancer risk of different sites (Pope et al., 2002; 55 

Raaschou-Nielsen et al., 2016, 2013; Turner et al., 2017). Most studies relied on a single 56 

exposure assessment method, which varied across the studies. Further, not all studies obtained 57 

decade-long time-series data that allow to generate long-term exposures. While early studies 58 

used ground-based measurement (such as Dockery et al. (1993)), the computation power and 59 

the available data enabled later studies to use advanced modeling of air pollutant exposure 60 

estimates, such as land use regression, kriging, satellite-based estimates, or chemistry-61 

dispersion models. These rely on different source data, assumptions and equations, and come 62 

with their own strengths and limitations in terms of: the granularity of the spatial resolution 63 

(from less than 100 meters to more than ten kilometers); spatial coverage (from regional to 64 

global scale); temporal coverage (from daily to annual time-step and covering up to more than 65 

10 years); and the ability to capture spatial or temporal variations at different scales. This 66 

methodological heterogeneity in exposure assessment among studies could partly explain the 67 

heterogeneity of the epidemiologic findings. There have been a few attempts to investigate 68 

whether the choice of exposure assessment method influences the results of risk analyses. Most 69 

studies focused on nitrogen oxides and coarse particulate matter (Cohen et al., 2019; Korek et 70 

al., 2017; Sellier et al., 2014), and only a few included PM2.5 (Jerrett et al., 2017, 2017; Jin et 71 

al., 2019; Klompmaker et al., 2021; Kulhánová et al., 2018; McGuinn et al., 2017), among which 72 

only one focused on risk of cancer (Cheng et al., 2019).  73 

To fill this gap, we aim to compare estimated exposures and the resulting risk estimates in a 74 

study of cancer using two distinct exposure assessment methods for PM2.5. In a large 75 

population-based French cohort with 26 years of follow-up, exposure was assigned using land 76 
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use regression and chemistry-dispersion modeling, subsequently used to estimate associations 77 

with two outcomes: all-type cancers and lung cancer. 78 

Material and methods 79 

Study population 80 

The Gazel cohort included at inception, in 1989, 20,625 participants, aged 35-50, from the 81 

French national gas and energy company Electricité-de-France (Goldberg et al., 2015). 82 

Participants completed a baseline detailed self-administered questionnaire in 1989, and a 83 

follow-up questionnaire every subsequent year– with a response rate over 80% during the first 84 

three years, and over 70% since. The addresses of participants were collected 1) between 1989 85 

and 2006, by residential calendars completed by the participants in 2006, and 2) from 2006 86 

onward, by registration of each participant’s precise residential address (Figure S1). All 87 

addresses were geocoded and precision quantified: from less precise (at postal code, 26%) to 88 

the most precise (address-level with the full address including street name and number, 36%). 89 

We did not observe any time trend in the percentage of precision of the geocodes.  90 

By implementing a 10-year latency between exposure and incidence/censoring (see exposure 91 

assessment and statistical analyses sections), we excluded participants with incident primary 92 

cancers (all-sites or lung) diagnosed before 1999, or who died or were lost on follow-up before 93 

1999. In addition, for the analyses on lung cancer, we compared lung cancer cases to the 94 

participants who did not develop any cancer. Participants who were lost to follow-up or died 95 

during the follow-up after 1999, without a diagnosis of cancer, were censored at date of exit or 96 

at the date of death. We excluded participants with more than 20% of follow up due to missing 97 

addresses, being located outside mainland France, or located on Corsica Island (for which we 98 

could not attribute exposures with one of the models). In our study period (1999-2015), the 99 

study populations included 19,348 and 15,694 participants for the respective analyses on 100 

incident primary all-site and incident primary lung incident cancer (Figure S2). 101 
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The Gazel study protocol, including a written consent of the cohort participants, was approved 102 

by the French authority for data confidentiality (Commission Nationale Informatique et 103 

Liberté #105728) and by the Ethics Evaluation Committee of Inserm (IRB0000388, 104 

FWA00005831). 105 

 106 

Cancer incidence 107 

We identified any incident cancer in the study period (1999-2015), by means of several sources 108 

described below: the register of the gas and energy company’s (Electricité-de-France) medical 109 

department, a validated in-house procedure based on the questionnaires and medical records 110 

for retired participants (Goldberg et al., 2007), and the French national medico-administrative 111 

database of the national health insurance.  112 

The company registered all cancers (except non-melanoma skin cancers) occurring during the 113 

employment period of all Gazel participants. Each notified cancer case was documented with 114 

pathology reports and the date of diagnosis, and coded according to the International 115 

Classification of Diseases. The company did not register cancers occurring after retirement. To 116 

address this limitation, from 2008 we obtained dates of diagnosis and types of cancer (ICD-10 117 

and ICD-O-2) as follows: first by recording cancer diagnosis that Gazel participants self-118 

reported in the annual follow-up questionnaires, and then by contacting all of the Gazel 119 

participants who gave consent for collecting medical information for validation purposes. We 120 

also used data from the national health insurance database that records all data on the use of 121 

the French health system leading to reimbursement (from medical appointments to the 122 

purchase of prescribed drugs and medical examinations). We linked this database to all Gazel 123 

participants who gave consent. This database allowed identifying cancer from data on 124 

hospitalizations with dates and diagnoses, and from the “chronic diseases” register (an official 125 

health insurance’s list of 30 serious chronic diseases, including cancer) (Tuppin et al., 2017).  126 

In these cancer data sources, we used ICD-10 codes to identify primary incident cases of all-127 

site cancer (the whole neoplasms chapter except secondary malignant neoplasms C77-79) and 128 
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lung cancer (C34).  Right censoring was applied at incident primary cancers (all-sites or lung, 129 

depending on analysis), date of departure from the cohort or end of follow up, whichever 130 

occurred first. 131 

Exposure assessment 132 

We assessed PM2.5 exposure in the Gazel cohort with two conceptually different exposure 133 

assessment methods: a land use regression model developed for western Europe covering the 134 

1990-2015 period (de Hoogh et al., 2018), and a chemistry-transport model developed for 135 

France covering the 1989-2008 period (Bentayeb et al., 2014) – these time spans are fully 136 

compatible with our study period (1999-2015) since we implement a 10-year lag. 137 

Land use regression (LUR): annual mean PM2.5 concentrations for 2010 were estimated at a 138 

fine spatial resolution (100x100 m) using a supervised stepwise linear regression approach 139 

regressing measured PM2.5 concentrations (543 sites from the European AIRBASE network) 140 

against a range of predictor variables, including satellite derived and chemical transport 141 

modelled PM2.5 estimates, road density, land use variables and altitude. Residual variation at 142 

the monitoring sites was explained by ordinary kriging. The model explained 66% of the spatial 143 

variation in measured PM2.5 concentrations (de Hoogh et al., 2018). The estimated PM2.5 144 

concentrations for 2010 were rescaled for years 1990-2015, by European NUTS-1 region (eight 145 

NUTS-1 regions in mainland France), using back- and forward- extrapolation with the ratio 146 

method. Annual mean PM2.5 estimates (1990 – 2015) from the 26x26 km Danish Eulerian 147 

Hemispheric Model (DEHM) (Brandt et al., 2012) were used for this purpose. In addition, in 148 

this study, we further back-extrapolated PM2.5 exposure to 1989. 149 

Chemistry-dispersion model (Gazel-Air): the chemistry-dispersion model, already used in the 150 

previous Gazel-Air study (Bentayeb et al., 2014), assessed PM2.5 concentrations each year 151 

between 1989 and 2008 following these steps: (i) the Chimere chemistry-transport model was 152 

used to compute annual mean concentrations over Europe (on a 30x30 km grid) and France 153 

(on a 10x10 km grid). This model was fed by the European Monitoring and Evaluation Program 154 

emissions inventories, point sources, road emissions, and biogenic emissions. (ii) Mesh 155 
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refinement and data assimilation with geostatistical analyses were then applied to estimate 156 

concentrations on a 2x2 km grid.  157 

For each participant and each available year, we estimated PM2.5 exposure as the value at the 158 

residential address for both exposure assessment methods. 159 

Covariables 160 

Based on previous literature, we selected a priori the following variables as confounders or 161 

potential effect modifiers:  162 

Sociodemographic and occupational variables: sex, education (9-11 years, 12-13 years, 14-15 163 

years, other secondary education, other diploma), and socio-economic status (low: blue-collar 164 

workers or clerks; medium: first-line supervisors or sales representatives; high: management), 165 

all at baseline. We also used Gazel participants’ occupational histories linked to a French job 166 

exposure matrix (Imbernon, 1991) to include a synthetic summary of occupational exposure to 167 

nine known lung carcinogens (asbestos, cadmium, chlorinated solvents, chromium, coal 168 

gasification, coal-tar pitch, creosotes, crystalline silica, and hydrazine) over the whole 169 

employment period in the company and categorized into none, one, two, or at least three 170 

carcinogens . 171 

Lifestyle variables: time-varying variables for tobacco (cumulative smoking pack-years and 172 

smoking status), alcohol intake (abstinent, non-daily drinker, light drinker, moderate drinker, 173 

heavy drinker, unclear pattern), family status (single or not), body mass index (BMI in kg/m2). 174 

Two variables were included only at specific time points: passive smoking at home or at work 175 

(yes or no) in 1990 and 1996, and fruit-vegetable intake (never or less than once a week; once 176 

or twice a week; more than twice a week but not every day; every day or almost) in 1998, 2004, 177 

2009 and 2014. We computed these variables as time-varying, attributing the data collected in 178 

1990 and 1996 to each year of the periods 1989-1995 and 1996-2015 for passive smoking, and 179 

the data collected in 1998, 2004, 2009 and 2014 to each year of the periods 1989-1998, 1999-180 

2004, 2005-2010, 2011-2015 for fruit and vegetable consumption. 181 
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Contextual variables: For all participants, we calculated the distance to the nearest major road 182 

and assigned European NUTS-1 region (Nomenclature of Territorial Units for Statistics, which 183 

are areas defined by the European Union) every year. We built an “urban classification” 184 

variable based on the population density obtained from the French National Institute for 185 

Statistics, for every municipality, which was weighted according to the inhabited surface of 186 

each municipality and classified as high (urban), moderate (semi-urban), and low (rural). We 187 

further specified whether urban participants were living in the Paris region or not. We obtained 188 

such values for the years 1990, 2000, and 2010 and assessed a “long term urban classification” 189 

as solely urban in the Paris region, solely urban out of the Paris region, solely semi-urban, 190 

solely rural, or mixed during these three years. We also obtained the French deprivation index 191 

(Rey et al., 2009) calculated in 2009 for all participants having survived until then (categorized 192 

into three tertiles as low, middle, and high deprivation – with a missing value for participants 193 

who died before 2009, considered as a category so not to lose 650 participants when using this 194 

variable in the analyses). 195 

Imputations 196 

Our dataset included some missing values (from 21% for passive smoking to 29% for BMI). We 197 

imputed missing values longitudinally, considering we had several years of follow-up by 198 

participant. To do so, we chose a 2-level imputation model with participants as clusters using 199 

the packages MICE (van Buuren and Groothuis-Oudshoorn, 2011) and MICEADDS (Robitzsch 200 

et al., 2018). We imputed all variables except exposures to PM2.5, and contextual variables (but 201 

we still used them to impute all the other variables) using the functions “2l.pmm” and 202 

“2l.only.pmm” for time-varying and time-independent variables, respectively. We obtained a 203 

satisfactory convergence after 10 iterations for the 10 datasets (Figure S3).  204 

 205 
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Statistics 206 

Comparing estimates of exposure to PM2.5: 207 

Estimates from the two exposure assessment methods, applied to each participant for each 208 

year, were compared as follows. First, we calculated Spearman’s correlation coefficients a) for 209 

the complete dataset and b) on subsets according to the year and region to check for any 210 

differences. We plotted Bland-Altman graphs to check for any bias between the two methods, 211 

again using the complete dataset and subsets. Since the two exposure assessment methods 212 

considered the influence of traffic and roads differently, we also explored correlations in 213 

population subsets defined by distance to the nearest major road. We defined subsets as (i) the 214 

European NUTS-1 regions, and (ii) we divided the distance to the major road into quartiles, 215 

and further subdivided the first quartile at 150m to explore near-road exposures. 216 

To visualize the differences between the two exposure models over France in 1990 and 2008, 217 

we mapped the differences in exposures (LUR minus Gazel-Air) for participants available at 218 

the two time points.  To improve the maps’ readability, we averaged the results on a 5x5km 219 

grid. 220 

Associations between PM2.5 and cancer, using exposure derived from the two models: 221 

Since cancers are believed to develop over a lengthy period of time, it is customary to discount 222 

exposures that occurred recently as these are unlikely to have affected the disease risk 223 

(Rothman et al., 2008). In the main analysis, we thus implemented a 10-year lag period 224 

(Supplementary Methods). We thus considered only cases diagnosed between 1999 and 2015, 225 

with corresponding exposures 10 years before incidence/censoring. 226 

We used Cox regressions to analyze the associations between PM2.5 exposure and incident 227 

primary cancer (all-site and lung cancer cases). Specifically, we built extended Cox models with 228 

time-varying variables to satisfy the proportional hazards assumption (Supplementary 229 

material). We used attained age as underlying time scale and a time-varying cumulative 230 

exposure to PM2.5 as previously used (Lequy et al., 2021), adjusted for age at enrollment 231 



ACCEPTED MANUSCRIPT - CLEAN COPY

10 
 

(Pencina et al., 2007); we also adjusted for calendar time dichotomized with a cut-off in 2007 232 

(Supplementary Material). We used a spline function with three degrees of freedom to test for 233 

non-linearity. Due to non-linearity (Figure S4), we modelled the relationship with a two-piece 234 

linear model by including an interaction term between PM2.5 exposure and a Boolean variable 235 

at the specified percentile (Lequy et al., 2021), and provide resulting hazard ratios (HR) and 236 

95% confidence intervals accordingly (Supplementary Material). As an alternative analysis to 237 

address non-linearity and check for the robustness of the results, we  natural log-transformed 238 

the cumulative annual PM2.5 time-dependent exposure (Lequy et al., 2021).  239 

For both the two-piece linear and the log-transformation approach, we adjusted for the 240 

following a priori variables: sex, tobacco smoking (cumulative pack-years), passive smoking, 241 

alcohol consumption, socioeconomic status, education, marital status, BMI, occupational 242 

exposure to lung carcinogens, and fruit and vegetable consumption, each with a 10-year lag 243 

(except passive smoking and fruit-vegetable consumption, because of the way they were 244 

imputed, see “Imputations” section). We assumed a linear relationship between continuous 245 

variables and each outcome. Sex was included as a strata variable as it did not meet the 246 

proportional hazards assumption.  247 

For all-site cancer incidence, we conducted sensitivity analyses by (i) further adjusting for the 248 

area-level French deprivation index in addition to individual SES (Temam et al., 2017), (ii) 249 

restricting the study population to the participants with only the most precise geocodes 250 

throughout their follow-up (i.e. addresses-level geocodes, see “Study population”), and 251 

implementing several alternative ways to handle missing data by (iii) considering missing data 252 

as a category, (iv) imputing missing data as median/mode, or (v) conducting complete-case 253 

analyses. To detect any effect modification by sex, smoking status, distance to the nearest 254 

major road, and population density, we restricted our analyses to the following groups: female 255 

or male, ever or never smokers, nearest major road within or beyond the median distance of 256 

500m over the follow-up, and following the urban classification at municipality-level (see 257 
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covariables): solely urban (separately in the Paris region vs out of the Paris region) or solely 258 

semi-urban or solely rural.  259 

For lung cancer incidence, due to the small number of cases, we did not perform any sensitivity 260 

or stratified analyses. 261 

We conducted all analyses with the R software version 3.5.1 (R Core Team, 2018) and the 262 

‘survival’ package (Therneau, 2015; Therneau and Grambsch, 2000). Unless specified 263 

otherwise, we used multiple imputations by chained equations to conduct all the analyses and 264 

pooled estimates using Rubin’s rules. 265 

Results 266 

Characteristics of Gazel’s participants 267 

Of the eligible 19,348 participants, we identified 3,711 incident primary cancers (all-sites) and 268 

349 incident primary lung cancer cases diagnosed between 1999 and 2015. Our study sample 269 

included more than 70% males and the median age of participants was 43.5 years at enrollment 270 

(Table 1). At enrollment, most had never smoked or had quit smoking, and the cumulative 271 

pack-years for ever-smokers was 15. More than 40% were light alcohol drinkers. Around 60% 272 

were not exposed to any of the nine occupational lung carcinogens. The high number of study 273 

participants leads to statistically significant differences between participants diagnosed with 274 

cancer (all-sites) and participants without cancer during the observation period. However, 275 

these differences were rather small, except for sex and pack-years of tobacco smoking: cancer 276 

cases were more likely to be men and reported more cumulative pack-years.  277 

Comparing the LUR and Gazel-Air exposure models 278 

The common period in which the two models provided exposures spanned from 1989 to 2008. 279 

The median exposure to PM2.5 in 1989 was 33.3 µg.m-3 [interquartile range: 30.1-37.8] and 280 

17.0 µg.m-3 [14.5-20.5] for the LUR and the Gazel-Air model, respectively. We observed a 281 
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decreasing trend over time for both models, although more pronounced for the LUR model 282 

(Figure 1).  283 

Temporal comparison: the raw annual estimates from the two exposure assessment methods 284 

correlated highest in 2008 (Spearman’s correlation coefficient of 0.68) the year closest to 2010 285 

for which the LUR was originally developed and for which we have Gazel-Air estimates. 286 

Correlations ranged from 0.62 to 0.79 across years (0.71 combining all available years). 287 

Exposure estimates diverged when going back in time, with almost systematically higher LUR 288 

estimates. Further, the Bland-Altman graphs indicated an overestimation of the LUR model 289 

compared to the Gazel-Air model already noticeable in 2008 and increasing when going back 290 

in time (Figure S5).  291 

Spatial comparison: when stratifying by European NUTS-1 region, we observed correlations 292 

ranging from 0.59 to 0.75 (Table 2). Furthermore, within each European NUTS-1 region and 293 

for the specific years 1990, 2000, and 2008, we observed quite stable correlations (although 294 

slightly weaker) in these regions over time (Table 2). 295 

Spatio-temporal comparison: the maps revealed differences between the two models that 296 

evolved differentially according to the region (Figure 2). For example, the LUR model 297 

estimated both higher and lower levels of PM2.5 in 2008, but estimated almost only higher 298 

PM2.5 concentrations across France in 1990. Therefore, the spatial differences did not increase 299 

similarly all over France when going back in time. 300 

We did not detect any substantial effect of the distance to the nearest major road on the 301 

correlations, with a magnitude of 0.7 for all years combined (Table 2). We also checked 302 

specifically in 1990, 2000, and 2008 and observed no substantial effect of the distance to the 303 

nearest major road. 304 

Associations between PM2.5 exposure and cancer using two exposure 305 

assessment methods 306 

All-sites combined cancer incidence: 307 
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Using the two-piece linear approach with one interquartile range (IQR – 216 µg/m3 for the 308 

LUR, 127 µg/m3 for Gazel-Air) as the unit of exposure, we estimated associations for each 309 

exposure assessment method separately. PM2.5 response approximately followed nonlinear 310 

curve with a positive slope until roughly the 65th percentile of the exposure distribution before 311 

a plateau (Figure S4). The exposure estimates derived from the LUR model led to an HR of 312 

1.53 (95% Confidence interval: 1.24-1.88) and those from the Gazel-Air model led to an HR of 313 

1.43 (1.19-1.73) below the 65th percentile of exposure (Table 3), then a plateau at HR around 314 

1.5 for both exposure assessments (Figure 3, Table 3). Using the natural log-transformed 315 

approach, we estimated HR of 1.21 (1.07-1.37) per 1-unit increase of natural log-transformed 316 

cumulative PM2.5 for the LUR approach and 1.19 (1.07-1.33) for the Gazel-Air approach (Table 317 

S1). 318 

The sensitivity analyses yielded mostly positive and similar point-estimates using the two 319 

exposure assessment methods (Table 4, Table S1, Figure S6). Across population subsets, we 320 

estimated similar associations between incident cancer and exposure to PM2.5, whether using 321 

the LUR or the Gazel-Air exposures (Table S1, Table S2, Figure S6). 322 

The estimated associations between important risk factors such as smoking and alcohol intake 323 

and all-site combined cancer incidence showed expected directions and magnitude (Table S3). 324 

Lung cancer incidence:  325 

PM2.5 response approximately followed nonlinear curve with a positive slope until roughly the 326 

73rd percentile of the exposure distribution before a plateau (Figure S4).  Our main analysis 327 

provided discrepant HRs between the two exposure models, but statistically non-significant 328 

and with largely overlapping confidence intervals (Figure S4, Table 3). The exposure estimates 329 

derived from the LUR model led to an HR of 1.15 (0.58-2.29) and those from the Gazel-Air 330 

model led to an HR of 1.79 (0.94-3.40) below the 73th percentile of exposure, then a plateau at 331 

around 1.1 and 2.0 for the LUR and the Gazel-Air exposure assessment respectively. Using the 332 

log-transformation approach, we estimated, per 1-unit increase of log-transformed cumulative 333 
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PM2.5, an HR of 1.00 (0.65-1.56) for the LUR estimates and 1.14 (0.77-1.69) for the Gazel-Air 334 

estimates per 1-unit increase of natural log-transformed cumulative PM2.5.  335 

Discussion 336 

This study aimed at comparing the associations between long-term exposure to PM2.5 and 337 

incident cancer risk using two conceptually different exposure assessment methods. Our 338 

findings confirmed the known association between long-term exposure to PM2.5 and all-site 339 

cancer risk. Furthermore, we found very similar associations between long-term cumulative 340 

PM2.5 exposure and incident cancer using a land-use regression and a chemistry-dispersion 341 

model. For lung cancer, our results were less consistent and statistically non-significant. 342 

Regarding the exposure assessment, we observed higher exposure estimates for the LUR in 343 

2008 and these differences between the LUR and Gazel-Air models increased back in time 344 

from 2008 to 1989. These differences did not depend on a major PM2.5 determinant such as 345 

the distance to the nearest major road and could be at least partly explained by the differences 346 

between Gazel-Air and the DEHM model used to extrapolate the LUR estimates between 1990-347 

2015, such as the underlying equations, the covered area (France or Europe), and the emission 348 

data. Yet the exposure estimates from both methods were highly correlated. 349 

When comparing the associations obtained using separately these two exposure assessment 350 

methods, we noticed generally similar associations in the case of all-site cancer for which the 351 

analyses had a great statistical power. For all-site cancer, the only striking discrepancy in our 352 

findings pertains to the population subset “urban out of Paris region” for which using the LUR 353 

model provided a positive but statistically non-significant HR, while using the Gazel-Air model 354 

provided a null association. While this difference could be due to chance, this could also be due 355 

to the exposure assessment methodology: as already mentioned, Gazel-Air had a resolution of 356 

2x2 km (larger than the LUR) and did not model PM2.5 in urban areas as thoroughly in other 357 

cities as in Paris, which may lead to misclassification for participants living in such urban areas. 358 

On the contrary, the LUR estimates were derived from a single European model: the advantage 359 
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is that these estimates are harmonized all over France, even though these estimates may be 360 

less specific of French PM2.5 measurements than the Gazel-Air estimates. The associations on 361 

lung cancer were very different but the wide confidence intervals largely overlapped. Still, 362 

despite statistically non-significant, the point estimates were positive, in agreement with the 363 

current literature. With only 349 lung cancer cases, these analyses clearly lacked statistical 364 

power and interpreting these findings requires great caution. There are many methods of PM2.5 365 

exposure assessment, and for large study areas and populations models based on 366 

measurements are needed. There is, however, no gold-standard; in this study, for outcomes 367 

with sufficient statistical power, the two validated methods led to similar risk estimates. More 368 

research is warrantied on the influence of different exposure assessment methods on risk 369 

estimates, in particular using long time-series. Such time-series should also try including 370 

trends in PM2.5 composition to further refine the association between PM2.5 exposure and risk 371 

of cancer, and evaluate the effects of composition changes. 372 

This study relies on very detailed epidemiological and environmental characterization, from a 373 

large population-based cohort with a 26-year follow-up. We could assess exposure for each 374 

available address and year and take into account all moves over the follow-up period. This 375 

ensured the most accurate exposure assignment considering our data (home addresses and 376 

annual concentrations of PM2.5), a quite rare feature in the literature especially when studying 377 

the influence of the exposure assessment method on risk estimates. Both exposure models 378 

provided spatial exposure contrasts. We used a time-dependent Cox model which controls for 379 

as many time-dependent covariables as possible, and took into account the possible bias linked 380 

to an aging cohort and the corresponding increasing cancer risk. These models estimated 381 

expected associations with all covariables (e.g. positive associations with smoking, negative 382 

with increasing fruit-vegetable intake). Like all similar studies so far, we have only obtained 383 

residential addresses, so we could not consider commuting or pollution at the workplace or in 384 

leisure activities. We also had no data on indoor air pollution. We obtained exposure data at 385 

an annual time-step, which should minimize misclassification since we focused on long-term 386 

exposure and took into account participants’ moves. The MATEX job-exposure matrix did not 387 
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allow for distinguishing exposure to specific compounds such as polycyclic aromatic 388 

hydrocarbon; yet adding these exposures would probably not affect the point estimates of the 389 

association between PM2.5 and cancer incidence, as the estimated associations between cancer 390 

incidence and occupational exposure to carcinogens in this study were not statistically 391 

significant (Table S3). Finally, we had to proceed to multiple imputations due to the missing 392 

data in the follow-up – since we adjusted for several covariables, the percentage of incomplete 393 

data was rather high in the final Cox model. But we used 10 sets of imputed data with good 394 

convergence across these 10 datasets, therefore we are confident in our results using the 395 

imputed data. 396 

To conduct our analyses, and to meet the proportional hazard assumption, we had to specify a 397 

time-dependent Cox model using cumulative exposure as main variable. This unusual method 398 

allowed considering the fact PM2.5 exposure levels decreased over a 26-year period during 399 

which the study population aged and was more at risk to develop a cancer; we can expect that 400 

studies on the long-term health effects of air pollution exposure are going to face this issue 401 

more and more often, at least in countries in which air pollution has decreased. Besides, 402 

current levels of developed countries decreased to low levels, whose effects might be difficult 403 

to detect. To consider these two issues, it is necessary to develop suitable methods. In our 404 

study, both of the evaluated exposure variables (i) led to violating the proportional hazard 405 

assumption in a non-time-dependent Cox model, (ii) followed a similar non-linear relationship 406 

with cancer risk, and (iii) provided similar associations with all-site cancer risk. For all these 407 

advantages, this methodology yielded associations that can be difficult to directly compare with 408 

the literature.  409 

Many different exposure assessment methods have been used in air pollution epidemiology. 410 

Only a few studies have used multiple methods to derive estimates of PM2.5 exposure with a 411 

view to comparing the results generated by the different methods. Jerrett et al. (2017) and Jin 412 

et al. (2019) studied mortality risk and burden, respectively, and used PM2.5 exposures from 413 

different modeling techniques (based on remote sensing and ground-level data, at different 414 
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resolutions from 0.01° to 12x12km). Both studies found high correlations between the exposure 415 

assessment methods, ranging from 0.54 to 0.99 and from 0.65 to 0.90, and associations with 416 

a similar magnitude. Klompmaker et al. (2021) also studied mortality risk using three types of 417 

modelled PM2.5 exposure (at baseline) – including the same LUR as that used in this study – 418 

with correlations between 0.61-0.72, and generally positive associations with mortality 419 

especially for respiratory outcomes (respiratory diseases and lung cancer mortality), with 420 

weaker associations using the LUR exposures. Jin and colleagues (2019) had observed a larger 421 

uncertainty due to the epidemiological data larger than the one due to the exposure assessment 422 

method. McGuinn et al. (2017) studied cardiovascular pathologies and exposures from five 423 

approaches providing correlated variables (coefficient between 0.60 and 0.88). They also 424 

found similar odds. Cheng et al. (2019) studied breast cancer incidence and used exposures to 425 

PM2.5 from ordinary kriging and dispersion models: they did not find similar associations with 426 

breast cancer risk but pointed out different spatial and temporal resolutions for the two 427 

exposure models. In particular, their kriging model relied on regional rather than local sources, 428 

while the dispersion model focused on local sources. This was not the case for our two exposure 429 

models. In general, our findings are consistent with those of previous studies, both in terms of 430 

the exposure correlation coefficient (0.71 in our study) and in the sense that we found similar 431 

magnitude of the associations from the two exposure models. This indicates a reassuring 432 

robustness of the findings reported so far, especially for main analyses, but stresses the need 433 

for giving due consideration to the selection of exposure models more often. 434 

Conclusions  435 

This study compared two distinct and often used exposure assessment methods in 436 

epidemiological analyses on air pollution exposure and cancer risk. We found similar 437 

associations between PM2.5 exposure and all-site cancer using both exposure assessment 438 

methods. Although the associations with lung cancer were less similar, results from both 439 

exposure assessment methods were positive. While both methods are considered fit for 440 

purpose, without a gold-standard exposure assessment method, we cannot say which point 441 
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estimate is more accurate; however, our findings suggest that the epidemiological findings 442 

related to PM2.5 and the investigated cancers are robust.  443 
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 601 

 602 

Figure 1: distribution of PM2.5 concentrations for Gazel participants (19,348) 603 

from 1989 to 2008 (without any time lag) according to the LUR (white) or the 604 

Gazel-Air (grey) exposure assessment (the boxes depict the 1st and 3rd quartiles with the 605 

median as the internal dash, the lines stretch to the median±1.5 interquartile range and the 606 

points represent values beyond these cutoffs). 607 
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 609 

Figure 2: Differences between the LUR and the Gazel-Air exposure assessment 610 

(with LUR estimates as the reference) for all available Gazel participants in 611 

1990 (left) and 2008 (right). For example, the red values that the LUR estimates were up 612 

to 32µg.m-3 higher than the Gazel-Air estimates (e.g. in 1990 in the Southeastern region), and 613 

the dark blue values indicate that the LUR estimates were up to 15µg.m-3 lower than the 614 

Gazel-Air estimates (e.g. in small areas of the Northeastern region in 2008). 615 

  616 
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 617 

 618 

Slope
HRLUR: 1.53 (1.24-1.88)
HRGazel-Air: 1.43 (1.19-1.73) 

Plateau
HRLUR: 1.59 (1.29-1.97)
HRGazel-Air: 1.47 (1.24-1.74) 

 619 

Figure 3: Associations between cumulative PM2.5 estimated by the LUR or the 620 

Gazel-Air exposure assessments and all-site incident cancer in the Gazel cohort, 621 

with 293,188 person-years and 3,711 incident cancer cases. The y-axis represents the 622 

Hazard ratios (HR) and confidence intervals with the lowest exposure as the reference for each 623 

exposure assessment method using Cox models with a spline function for the exposure, and 624 

with attained age as underlying time-scale and time-dependent variables, adjusted for sex, 625 

cumulative smoking pack-years, passive smoking, alcohol use, BMI, education, socioeconomic 626 

status, family status, fruit and vegetable consumption, occupational exposure to nine lung 627 

carcinogens, age at inclusion and calendar time. The “Slope” HRs on the left represent the slope 628 

of the curve below the 65th percentile exposure (vertical dashed line, 315 µg/m3 for the LUR, 629 

185 µg/m3 for Gazel-Air) and are expressed per one IQR increase in cumulative exposure to 630 

PM2.5. The “Plateau” HRs on the right represent the plateau above the 65th percentile of 631 

exposure, calculated for the 80th percentile of each exposure assessment method (380 μg/m3 for 632 

the LUR, 215 μg/m3 for Gazel-Air). IQR= 216 µg/m3 for the LUR, 127 µg/m3 for Gazel-Air. The x-633 
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axis represents the cumulative exposure for both exposure assessment methods, the LUR at 634 

the top of the axis and Gazel-Air at the bottom. 635 

 636 

List of tables 637 

Table 1: Sociodemographic characteristics of the 19,348 Gazel participants included in this 638 

study, stratified by their diagnosis of incident primary cancer (all-sites). Number 639 

(percentage) of participants or median [interquartile range]. 640 

 Incident cancer during follow-up period  

 
No  Yes  

 15637 3711 

Follow-up time (years) 27.0 [27.0, 27.0] 20.3 [17.0, 23.7] 

Age at enrollment (years) 43.5 [41.0, 46.5] 44.5 [42.0, 47.0] 

Sex (male) 11147 (71.3) 2956 (79.7) 

Smoking status   

Nonsmoker 6859 (44.2) 1425 (38.8) 

Former smoker 4442 (28.6) 1075 (29.2) 

Current smoker 4210 (27.1) 1177 (32.0) 

Smoking - cumulative pack-years* 15.0 [7.5, 25.7] 17.7 [8.5, 29.6] 

Passive smoking (yes) 10623 (78.1) 2507 (78.0) 

Alcohol use   

Abstinent 391 (2.5) 104 (2.8) 

Light drinker 11170 (71.4) 2421 (65.3) 

Moderate drinker 2386 (15.3) 654 (17.6) 

Heavy drinker 1370 (8.8) 448 (12.1) 

Unclear pattern 317 (2.0) 83 (2.2) 
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Occupational exposure**   

None 9443 (60.4) 2100 (56.6) 

One 1319 (8.4) 328 (8.8) 

Two 1697 (10.9) 448 (12.1) 

Three or more 3178 (20.3) 835 (22.5) 

Education   

9-11 years 11238 (73.5) 2720 (74.8) 

12-13 years 1144 (7.5) 227 (6.2) 

14-15 years 887 (5.8) 207 (5.7) 

Other secondary education 1668 (10.9) 398 (10.9) 

Other diploma 357 (2.3) 83 (2.3) 

Socioeconomic status   

Low 2762 (17.7) 621 (16.7) 

Intermediate 9179 (58.8) 2130 (57.4) 

High 3677 (23.5) 958 (25.8) 

Family status (not single) 13722 (89.0) 3288 (90.0) 

Body mass index 25.0 [23.2, 27.0] 26.3 [22.6, 30.0] 

Vegetable & fruit consumption   

Never or less than once a week 81 (0.7) 27 (1.0) 

Once or twice a week 794 (7.0) 211 (7.7) 

More than twice a week, not everyday 2562 (22.6) 641 (23.5) 

Every day or almost 7912 (69.7) 1851 (67.8) 

*: pack-years for ever-smokers only; **: to nine selected lung carcinogens 

  641 
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Table 2: Spearman’s correlation coefficients between the LUR and the Gazel-Air exposure 642 

estimates assessed for the 19,348 eligible Gazel participants across years, then stratified by 643 

European NUTS-1 region or by distance to the nearest major road, over the full follow-up or 644 

during specific years. 645 

Variable Category  All years 1990 2000 2008 

All combined  0.71 0.70 0.70 0.68 

NUTS-1 

region 

  

FR1 - Région parisienne  0.71 0.78 0.54 0.58 

FR2 - Bassin parisien  0.75 0.51 0.36 0.48 

FR3 - Nord  0.73 0.75 0.77 0.71 

FR4 - Est  0.59 0.23 0.36 0.23 

FR5 - Ouest  0.71 0.63 0.58 0.53 

FR6 - Sud-Ouest  0.63 0.76 0.61 0.62 

FR7 - Centre-Est  0.73 0.80 0.77 0.73 

FR8 - Méditerranée  0.59 0.72 0.67 0.73 

Distance to 

the nearest 

major road 

  

<150m  0.73 0.77 0.70 0.73 

150-365m  0.70 0.69 0.67 0.69 

365-830m  0.70 0.69 0.70 0.66 

830-1730m  0.71 0.70 0.68 0.66 

>1730m  0.70 0.61 0.65 0.62 

European NUTS-1 regions refer to areas defined by the European Union. 

The number of participants slightly decreased from 1990 onwards as some of them have been censored, 

and participants moved to other NUTS-1 regions during the follow-up. 
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Table 3: main associations between cumulative long-term exposure to PM2.5 and first-648 

occurring all-site and lung incident cancer in the Gazel cohort using two exposure models.  649 

Hazard Ratios (HR) and their 95% Confidence Interval (CI) correspond to the increased risk 650 

of cancer below the 65th percentile of cumulative exposure for all-site cancer and 73rd for lung 651 

cancer (“slope”) per one IQR increase of cumulative exposure, and above these percentiles 652 

(“plateau”). 653 

 654 

  
LUR Gazel-Air 

Cancer Cumulative exposure HR CI HR  CI 

All-site <p65* (slope) 1.53 1.24-1.88 1.43 1.19-1.73 

  >p65 **(plateau) 1.59 1.29-1.97 1.47 1.24-1.74 

Lung <p73* (slope) 1.25 0.58-2.29 1.79 0.94-3.40 

 >p73 **(plateau) 1.04 0.07-16.1 1.94 0.25-15.29 

Extended Cox model with attained age as time axis, and with time-varying exposure to cumulative exposure to 

PM2.5, adjusted for sex (included with a strata function), age at enrollment, calendar time (time-varying, 

dichotomized at year 2007), cumulative pack-years (time-varying), passive smoking, alcohol intake (time-varying), 

socioeconomic status, marital status (time-varying), body mass index (time-varying), occupational exposure to lung 

carcinogens, and consumption of fruit and vegetable (time-varying). All-site cancer: results obtained with 3,711 

cases of all-site cancer and 293,188 person-years. Lung cancer: results obtained with 349 cases of all-site cancer 

and 293,188 person-years. *p65 is the 65th percentile of cumulative exposure and corresponds to 315 µg/m3 and to 

185 µg/m3 for the LUR and the Gazel-Air exposure assessments, respectively; p73 is the 73th percentile of 

cumulative exposure and corresponds to 355 µg/m3 and to 200 µg/m3 for the LUR and the Gazel-Air exposure 

assessments, respectively. IQR= 216 µg/m3 for the LUR, 127 µg/m3 for Gazel-Air.**: the HR and CI were 

calculated for the 80th percentile (380 μg/m3 for the LUR, 215 μg/m3 for Gazel-Air). 
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Table 4: Sensitivity analyses for associations between long-term exposure to PM2.5 and first-657 

occurring all-site incident cancer in the Gazel cohort using two exposure models. Hazard 658 

Ratios (HR) and their 95% Confidence Interval (CI) correspond to the increased risk of cancer 659 

below the 65th percentile of exposure  (“slope”) per one IQR increase of cumulative exposure) 660 

and above this 65th percentile (“plateau”).  661 

Exposure   LUR     Gazel-Air   

  <p65* (slope) >p65 (plateau) **  <p65 (slope)* >p65 (plateau)** 

Sensitivity analyses Cases HR 95% CI HR 95%CI 
 

HR 95% CI HR 95%CI 

Further adjusted for area-

level deprivation 

3,711 1.59 1.29-1.95 1.67 1.35-2.06  1.47 1.22-1.77 1.50 1.27-1.78 

Using address-level 

geocodes 

1,014 1.59 1.03-2.46 1.43 0.59-3.51  1.37 0.93-2.01 1.32 0.67-2.62 

Complete-case analysis 1,881 1.40 1.03-1.90 1.33 0.84-2.10  1.48 1.13-1.93 1.44 1.03-2.05 

Missing data as category 3,711 1.53 1.23-1.89 1.61 1.28-2.01  1.41 1.17-1.71 1.45 1.22-1.73 

Extended Cox model with attained age as time axis, and with time-varying exposure to cumulative exposure to PM2.5, adjusted 

for sex (included with a strata function), age at enrollment, calendar time (time-varying, dichotomized at year 2007), cumulative 

pack-years (time-varying), passive smoking, alcohol intake (time-varying), socioeconomic status, marital status (time-varying), 

body mass index (time-varying), occupational exposure to lung carcinogens, and consumption of fruit and vegetable (time-

varying). *p65 is the 65th percentile of cumulative exposure and corresponds to 315 µg/m3 and to 185 µg/m3 for the LUR and the 

Gazel-Air exposure assessments, respectively. IQR= 216 µg/m3 for the LUR, 127 µg/m3 for Gazel-Air.**: the HR and CI were 

calculated for the 80th percentile (380 μg/m3 for the LUR, 215 μg/m3 for Gazel-Air). 
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