
HAL Id: hal-03576300
https://hal.science/hal-03576300v1

Submitted on 15 Feb 2022 (v1), last revised 18 Mar 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Don’t Lie to Me! Robust and Efficient Explainability
with Verified Perturbation Analysis

Thomas Fel, Mélanie Ducoffe, David Vigouroux, Rémi Cadène, Mikael
Capelle, Claire Nicodème, Thomas Serre

To cite this version:
Thomas Fel, Mélanie Ducoffe, David Vigouroux, Rémi Cadène, Mikael Capelle, et al.. Don’t Lie
to Me! Robust and Efficient Explainability with Verified Perturbation Analysis. Proceedings of the
IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR), 2023., 2023, Vancouver,
Canada. �hal-03576300v1�

https://hal.science/hal-03576300v1
https://hal.archives-ouvertes.fr


Don’t Lie to Me!
Robust and Efficient Explainability with Verified Perturbation Analysis
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Abstract
A variety of methods have been proposed to try
to explain how deep neural networks make their
decisions. Key to those approaches is the need
to sample the pixel space efficiently in order to
derive importance maps. However, it has been
shown that the sampling methods used to date
introduce biases and other artifacts, leading to in-
accurate estimates of the importance of individual
pixels and severely limit the reliability of current
explainability methods. Unfortunately, the alter-
native – to exhaustively sample the image space
is computationally prohibitive. In this paper, we
introduce EVA (Explaining using Verified pertur-
bation Analysis) – the first explainability method
guarantee to have an exhaustive exploration of
a perturbation space. Specifically, we leverage
the beneficial properties of verified perturbation
analysis – time efficiency, tractability and guar-
anteed complete coverage of a manifold – to effi-
ciently characterize the input variables that are
most likely to drive the model decision. We evalu-
ate the approach systematically and demonstrate
state-of-the-art results on multiple benchmarks.

1. Introduction
Deep neural networks are nowadays widely used in many
applications from medicine, transportation, security or fi-
nance, with broad societal implications (LeCun et al., 2015).
Yet, these networks have become almost impenetrable. Plus,
in most real-world applications, these systems are used to
make critical decisions, often without any explanation.

Recently, a multitude of explainability methods have been
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Figure 1. Manifold exploration of current attribution methods.
Current attribution methods provide a notion of pixel importance
using perturbations around an input x. Saliency (Simonyan et al.,
2013) uses infinitesimal perturbations around x, Occlusion (Zeiler
& Fergus, 2014a) simply varies each variables one by one towards
a baseline state. Finally, several methods (Ribeiro et al., 2016;
Lundberg & Lee, 2017; Petsiuk et al., 2018; Fel et al., 2021) use
(Quasi-) random sampling in specific perturbation spaces. How-
ever, the choice of the perturbation space undoubtedly biases the
results – potentially even introducing serious artifacts. We propose
to use verified perturbation analysis to efficiently and systemati-
cally explore a perturbation space around x to generate reliable
and faithful explanations.

advanced to provide insight into how models arrive at a
particular decision (Zeiler & Fergus, 2014a; Ribeiro et al.,
2016; Lundberg & Lee, 2017; Smilkov et al., 2017; Shriku-
mar et al., 2017; Sundararajan et al., 2017; Petsiuk et al.,
2018; Selvaraju et al., 2017; Fel et al., 2021). These meth-
ods also aim to improve or debug the predictors – such as
neural network – and, more importantly, to help instill some
trust in the users of these systems (Doshi-Velez & Kim,
2017). Unfortunately, some methods exhibit severe limita-
tions. In particular, they are subject to confirmation bias:
while some methods appear to offer useful explanations to a
human experimenter, they turn out not to reflect the actual
behavior of the predictor (Adebayo et al., 2018; Ghorbani
et al., 2017; Slack et al., 2021a). In addition, it has been
shown that some commonly used benchmarks are biased,
leading explainability methods to exploit these biases rather



Robust and Efficient Explainability with Verified Perturbation Analysis

than seeking to explain the predictions correctly (Sturmfels
et al., 2020; Hsieh et al., 2021). For example, some fidelity
metrics remove a variable – setting it to a baseline state –
and look at the difference in prediction once the variable is
removed to assess its importance It turns out that according
to those metrics, a pixel being already at a baseline state
does not change, neither does the prediction score. Thus,
the metric will never assign importance score to a pixel that
is already at a baseline state, while it is reasonable to think
that it can be determinant for a prediction. More generally,
for any baseline value, one obtains a metric biased towards
this value, and this bias can be exploited by explainability
methods. Hence, instead of providing confidence in the
decisions of a system, these explanations may themselves
be potentially flawed and unreliable.

A growing literature is therefore beginning to focus on the
study of changes in model decisions based on adversarial
perturbations (Hsieh et al., 2021; Boopathy et al., 2020; Lin
et al., 2019; Ross et al., 2021). The explanation is then based
on the robustness of the model. Specifically, a pixel or a
region is considered important if it allows to easily generate
an adversarial example – and thus makes the decision model
change. In other words, it is an evaluation of the robustness
of the system to specific image regions. This led to the
design of several new robustness metrics to evaluate the
quality of explanations. In order to optimize these new
metrics, methods making intensive use of adversarial attacks
have been proposed. However, current methods can be
very computationally costly – sometimes more than 50000
tunable adversarial attacks per explanation – which makes
their adoption in real cases complicated.

To meet these new objectives, we propose to use verified
perturbation analysis, a rapidly growing field that develops
methods to obtain bounds on the outputs of neural networks
in the presence of input perturbations. Moreover, in contrast
to current attributions methods based on on gradient or sam-
pling, verified perturbation analysis allow to fully explore a
perturbation space, see Figure 1.

Specifically, in this work, we introduce EVA (Explaining
using Verified perturbation Analysis), a new explainability
method based on robustness analysis. The method uses
a tractable certified upper bound of robustness confidence
thanks to verified perturbation analysis to derive a new esti-
mator quantifying the importance of variables. Specifically,
we identify the input variables that matter the most. That is,
the variables most likely to change the predictor’s decision
(as opposed to simply changing the output units without
necessarily affecting the class prediction). Using a thor-
ough evaluation of several images datasets, we show that
our method obtain convincing results on a large range of
explainability metrics and that it is possible to use it on state-
of-the-art models. Finally, we demonstrate that we can use

the proposed method to generate class-specific explanations,
and we study the effects of several verified perturbation
analysis methods as an hyperparameter of the generated
explanations.

2. Related Work
Attribution Methods. Our work builds on prior work
aiming to develop attribution methods in order to explain
the prediction of a deep neural network by pointing out to
input variables that support the prediction (typically pixels
or image regions for images – which lead to importance
maps shown in Figure 1). The first method, Saliency, was
introduced in (Baehrens et al., 2010). It was later refined
in (Simonyan et al., 2014; Zeiler & Fergus, 2014b; Springen-
berg et al., 2014; Sundararajan et al., 2017; Smilkov et al.,
2017) in the context of deep convolutional networks for
classification. It consists in calculating a gradient derived
from a classification score with respect to the input pixels
using the backpropagation algorithm. However, the gradient
only reflects the model’s operation in an infinitesimal neigh-
borhood around an input and can therefore be misleading
(Ghalebikesabi et al., 2021). Other methods rely on pertur-
bations and measure the difference in classification with the
original image to produce an importance map Methods such
as “Occlusion” (Zeiler & Fergus, 2014b), LIME (Ribeiro
et al., 2016), RISE (Petsiuk et al., 2018), or Sobol (Fel et al.,
2021) that leverage different sampling strategies to explore
the space of perturbations around the image. For instance,
Occlusion uses binary masks to occlude individual image
regions, one at a time. RISE combines these discrete masks
to perturb multiple regions at a time. Sobol uses continuous
masks for a finer exploration of the space.

We argue that all these methods explore the space of per-
turbations in a sparse manner. They do not provide strong
guarantees on the stability of the model’s decision in the
neighborhood of the points in the space that they explore.
As a result, the explanations that they produce are not ro-
bust and might not be trustworthy. Instead, our method
provides strong guarantees derived from the verified per-
turbation analysis. It allows for an efficient and exhaustive
exploration of the space of perturbations.

Robustness based Explanation. In response to the many
problems cited, several works (Ignatiev et al., 2019a;b; Slack
et al., 2021b; Hsieh et al., 2021; Boopathy et al., 2020; Lin
et al., 2019; Fel & Vigouroux, 2022) have proposed a new
set of robustness-based evaluation criteria for trustworthy
explanations. These criteria are opposed to evaluations that
are based on the removal of features that inevitably intro-
duce biases and artifacts (Hsieh et al., 2021). These new
guidelines are mainly based on the following assumption:
when the important variables are in their nominal (fixed)
state, then perturbations on the complementary variables –
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deemed unimportant – should not affect the model’s deci-
sion to any great extent. The corollary that follows is that
perturbations limited to the variables considered as impor-
tant should easily influence the model’s decision (Lin et al.,
2019; Hsieh et al., 2021). Based on these assumptions, the
authors of (Hsieh et al., 2021) proposed the Robustness-Sr

metric that quantifies the ability of an explanation to find the
important variables. Moreover they argue that their method,
unlike current metrics such as Deletion, Insertion (Petsiuk
et al., 2018), is not affected by biases. They also propose
to take a baseline to alleviate the impact of biases on the
current metrics to improve them.

Some works then propose to optimize these crite-
ria and propose new methods using a generative
model (O’Shaughnessy et al., 2020) or adversarial at-
tacks (Hsieh et al., 2021). This last approach requires check-
ing the existence or not of an adversarial example for a
multitude of ℓp balls around the input of interest. Therefore
the induced computational cost is particularly high, as evi-
denced by the experiments which require more than 50000
computations of adversarial examples to generate a single
explanation. More importantly, not finding an adversarial
perturbation for a given radius does not guarantee that none
exists. Moreover, it is not uncommon for adversarial attacks
to fail to converge – to fail to find any adversarial example
– thus not yielding any importance score. Our method ad-
dresses these issues while keeping the same objectives, by
taking advantage of the certificates generated using verified
perturbation analysis.

Verified Perturbation Analysis. Orthogonally, the grow-
ing field of Verified Perturbation Analysis aims to find meth-
ods that outer-approximate neural network outputs under
input perturbations. Simply put, for a given input x and a
bounded perturbation δ, the verification methods allow us
to obtain a minimum f(x) and a maximum f(x) bound on
the output of a model, Formally ∀ δ s.t ||δ||p ≤ ε:

f ≤ f(x+ δ) ≤ f

Thus allowing us to explore the whole perturbation set with-
out having to explicitly sample all the points.

Early works in the domain focused on computing reach-
able lower and upper bounds based on satisfiability modulo
theory (Katz et al., 2017; Ehlers, 2017), and mixed-integer
linear programming problems (Tjeng & Tedrake, 2019). De-
spite this, they struggled to adapt to a small network, even
on the smallest image dataset. Recently, many other re-
searches have independently discovered how to compute
looser certified lower and upper bounds more efficiently
thanks to convex linear relaxations either in the primal or
dual space (Salman et al., 2019). If looser, those bounds
remain tight enough to prove non ubiquitous robustness
properties on medium size neural networks. Among those

methods, CROWN hereafter called Backward (Zhang et al.,
2018; Singh et al., 2019; Wang et al., 2021) stands for the
state-of-the-art method for Linear Relaxation based Pertur-
bation Analysis (LiRPA), achieving the tightest bound for
efficient single neuron linear relaxation. While CROWN is
the most efficient, its polynomial complexity compared to
the computational cost of inference limits its application to
networks of the size of AlexNet (Krizhevsky et al., 2012).
However, linear relaxation offers a wide range of possibili-
ties with a vast trade-off between scalability and efficiency.
These methods are declined in two forms. Firstly, those
which propagate constant bounds, more generally affine re-
laxations from the input to the output of the network (IBP,
Forward, IBP+Forward). Conversely, the so-called ’back-
ward’ methods will bound the output of the network by
affine relaxations given the internal layers of the network,
starting from the output to the input. Note that these meth-
ods can be combined, e.g. (CROWN + IBP + Forward).
For a thorough description of the underlying specificities of
LiRPA’s framework and a theoretical analysis of the worst
case complexities of each methods, see (Xu et al., 2020).
In this work, we take the approach of being agnostic to the
verification method and opt for the most accurate LiRPA
method applicable on the predictor. Our approach is based
on the formal verification framework DecoMon, based on
Keras (Ducoffe, Melanie, 2021).

3. Explainability with Verified Pertubation
Analysis

3.1. Notation

We consider a standard supervised machine learning clas-
sification setting with input space X ⊆ Rd an output
space Y ⊆ Rc and a predictor function f : X →
Y that map an input vector x = (x1, . . . , xd) to
an output f(x) = (f1(x), . . . , fc(x)). We denote
B = {δ : ||δ||p ≤ ε} the perturbation ball with radius
ε > 0, with p ∈ {1, 2,∞}. For any subset of indices u ⊆
{1, . . . , d}, we denote Bu the ball without perturbation on
the variables in u: Bu = {δ : δ ∈ B, δu = 0} and B(x)
the perturbation ball centered on x. We denote the lower
(resp. upper) bounds obtained with verification perturbation
analysis as f(x,B) =

(
f
1
(x,B), . . . , f

c
(x,B)

)
, and

f(x,B) =
(
f1(x,B), . . . , f c(x,B)

)
. Intuitively, these

bounds delimit the output prediction for any perturbed sam-
ple in B(x).

3.2. The importance of setting the importance

The goal of an attribution method being to assign an im-
portance score to each variable, we can deduce a definition
of importance for each existing method. For example, this
definition can be based on game theory (Lundberg & Lee,
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Figure 2. EVA attribution method. In order to compute the importance for a group of variables u – for instance the dog’s head – the
first step (1) consists in forming the perturbation ball Bu(x). This ball is centered in x and contain all the possible images perturbed by
δ s.t ||δ||p ≤ ε, ||δu||p = 0 which do not perturb the variables u. Using verified perturbation analysis, we then compute the adversarial
overlap F (x,Bu) which corresponds to the overlapping between the class c – here dog – and c′, the maximum among the other classes.
Finally, the importance score for the variable u corresponds to the drop in adversarial overlap when u cannot be perturbed, thus the
difference between F (x,B) and F (x,Bu). Specifically, this measures how important the variables u are for changing the model’s
decision.

2017), on the conditional expectation of score logits (Pet-
siuk et al., 2018), or on its variance (Fel et al., 2021). In this
work, we consider – like (Hsieh et al., 2021) – that a vari-
able is important if, when modified, it can change the model
decision. Conversely, a variable is said unimportant if its
modification does not modify the decision. From this, we
go one step further than the previous work and propose to
couple the ability to change decision with other information,
notably confidence in the prediction, to evaluate importance.
Based on those considerations, we derive a score to quantify
classes’ overlap – how much the maximum attainable of an
adverse class can concur with the minimum of the initial
class – that we call the adversarial overlap. We then use
this criterion to build our importance estimator.

3.3. Adversarial overlap

In order to determine the importance score from the pre-
vious motivation, we rely on the capacity of a variable to
change the decision of the model. Indeed, if the manipula-
tion of a variable allows to generate a new input that alters
the decision, this variable is of interest. Conversely, if the
decision does not change whatever its state, the variable can
be left at its nominal value. Among the set of possible vari-
able perturbations δ around a point x, we therefore look for
points that can modify the decision with most confidence.

Hence our scoring criterion can be formulated as follows

Fc(x,B) = max
δ∈B
c′ ̸=c

fc′(x+ δ)− fc(x+ δ). (1)

Intuitively, this score represents the confidence of the “best”
adversarial perturbation that can be found in the perturbation
ball B around x. In order to estimate this criterion, a first
method could be to use adversarial attacks to search within
B. However, such methods only explore certain points of the
considered space, thus giving no guarantee on the optimality
of the solution. Moreover, adversarial methods have no
guarantee of success and therefore cannot ensure a valid
score under all circumstances. Finally, the large dimensions
of the current datasets prevents the possibility of exhaustive
searches.

To overcome these issues, we take advantage of verified
perturbation analysis to obtain a guaranteed upper bound on
the criterion introduced in Equation 1. We can upper bound
the adversarial overlap criterion as the following:

Fc(x,B) ≤ F̄c(x,B) = max
c′ ̸=c

f c′(x,B)− f
c
(x,B)

which then becomes tractable by any verified perturbation
analysis method.

For example, in Figure 3, F̄ (x,B) ≤ 0 guarantees that
no adversarial perturbation is possible in the perturbation
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Figure 3. Illustration of verified perturbation analysis for bounding
adversarial overlap. The blue points correspond respectively from
left to right to fc′(x+δ),fc(x+δ) such that Fc(x,B) = fc′(x+
δ)− fc(x+ δ). Verified perturbation analysis bounds the output
prediction for any perturbed points with upper and lower bounds.
From these bounds, we can deduce an over-approximation of the
adversarial overlap score F̄c(x,B).

space. Note that with adversarial attacks, failure to find an
adversarial example does not guarantee that it does not exist.
Our upper bound F̄c(x,B) corresponds to the difference
between the verified lower bound of the class of interest c
and the maximum over the verified upper bounds among the
other classes. Thus, when important variables are modified
(e.g the head of the dog in Figure 2, using B), the lower
bound of the class of interest will get smaller than the upper
bound of an adversary class. On the other hand, this overlap
is not possible when important variables are fixed (e.g in
Figure 2 when the head of the dog is fixed, using Bu). We
now demonstrate how to leverage this score to derive an
efficient estimator of variable importance.

3.4. EVA – Explaining using Verified perturbation
Analysis

We are willing to assign a higher importance score for a
variable allowing (1) a change in a decision, (2) a greater
adversarial – thus a solid change of decision. Modifying all
variables gives us an idea of the robustness of the model.
In the same way, the modification of all variables without
the subset u allows to quantify the change of the strongest
adversarial perturbation and thus to quantify the importance
of the variables u. Intuitively, if an important variable u is
discarded, then it will be more difficult, if not impossible, to
succeed in finding any adversarial perturbation. Specifically,
removing the possibility to modify xu allows us to reveal its
importance by taking into account its possible interactions.

The complexity of current models means that the variables
are not only treated individually in neural network models
but collectively. In order to capture these higher order inter-
actions, our method consists in measuring the adversarial
overlap allowed by all the variables together F (x,B) –
thus taking into account their interactions – and then forbid-
ding to play on a group of variables F (x,Bu) to estimate
the importance of u. Making the interactions of u dis-
appear reveals their importance. Note that several works
have mentioned the importance of taking into account the

interactions of the variables when calculating the impor-
tance (Petsiuk et al., 2018; Fel et al., 2021; Ferrettini et al.,
2021). Formally, we introduce EVA (Explainability using
Verified perturbation Analysis) that measure the drop in
adversarial overlap when we fixed the variables u:

EVA(x,u) = F̄ (B)− F̄ (Bu) (2)

As explained in Figure 2, the estimator requires two passes
of the perturbation analysis method; one for F̄ (B), and the
other for F̄ (Bu): the first term consists in measuring the
adversarial overlap by modifying all the variables, the
second term measures the adversarial surface when fixing
the variables of interest u. In other words, EVA measures
the adversarial overlap that would be left if the variables u
were to be fixed.

From a theoretical point of view, we notice that EVA - under
some conditions - yield the optimal subset of variables to
minimize the theoretical Robustness-Sr metric (see Theo-
rem A.6). From a computational point of view, we can note
that the first term of the adversarial overlap F (x,B) – as it
does not depend on u – can be calculated once and re-used
to evaluate the importance of any other variables considered.
Moreover, contrary to an iterative process method (Fong &
Vedaldi, 2017; Hsieh et al., 2021; Ignatiev et al., 2019a),
each importance can be evaluated independently and thus
benefit from the parallelization of modern neural networks.
Finally, the experiments in Section 4 show that even with
two calls to adversarial overlap per variables, our method
remains much faster than the one based on adversarial at-
tacks, see the results concerning the computing time in Table
1.

In this work, the verified perturbation based analysis con-
sidered are not always adapted to high dimensional models,
especially those running on ImageNet (Deng et al., 2009).
We are confident that the verification methods will progress
towards more scalability in the near future, enabling the
original version of EVA on deeper models. In the meantime,
we introduce in the next section an empirical method to
compute EVA on large models. We then show the interest
of this method on the ImageNet dataset in the experiments.

3.5. Scaling strategy

In this section, we propose an empirical method to scale our
method on ImageNet. Indeed, since verified perturbation
analysis is not directly applicable on ImageNet models so
far, we handle this scalability issue by combining empirical
bounds on some hidden layers, and then composing these
bounds with verified perturbation analysis on the last layers
of the network. Our modification of EVA takes inspira-
tion from the work of (Balunovic & Vechev, 2019) who
introduced an hybrid robust learning scheme by combining
empirical methods (a.k.a adversarial training) with a verified
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MNIST Cifar-10 ImageNet

Del.↓ Ins.↑ Fid.↑ Rob.↓ Time Del.↓ Ins.↑ Fid.↑ Rob.↓ Time Del.↓ Ins.↑ Fid.↑ Rob.↓
Saliency .193 .633 .378 .071 0.04 .171 .172 -.021 .026 0.16 .057 .126 .035 .769
GradInput .222 .611 .107 .074 0.04 .200 .143 -.018 .095 0.17 .057 .050 .023 .814
SmoothGrad .185 .621 .331 .070 1.91 .174 .181 .092 .048 9.07 .051 .069 .019 .809
VarGrad .207 .555 .216 .077 1.76 .183 .211 -.012 .193 9.07 .098 .201 .021 .787
InteGrad .209 .615 .108 .074 1.77 .194 .171 -.016 .154 7.19 .058 .052 .023 .813
Occlusion .247 .545 .137 .082 0.04 .217 .290 .105 .232 1.13 .100 .266 .026 .821
GradCAM na na na na na .297 .282 .056 .195 0.39 .073 .232 .036 .817
GradCAM++ na na na na na .270 .326 .102 .094 0.39 .074 .285 .054 .800
RISE .248 .558 .133 .093 2.26 .196 .273 .157 .385 20.5 .074 .276 .154 .818
GreedyAS .260 .497 .110 .061 335.8 .205 .264 -.003 .013 4618 .088 .047 .023 .612
EVA (ours) .089 .736 .428 .069 1.29 .164 .290 .352 .025 12.7 .070 .289 .048 .758

Table 1. Results on Deletion (Del.), Insertion (Ins.), µFidelity (Fid.) and Robustness-Sr (Rob.) metrics. The Time in seconds
corresponds to the generation of 100 explanations on a Nvidia P100. For MNIST, the verified perturbation analysis used is (IBP + Forward
+ Backward), Forward is used for Cifar-10 and our empirical strategy is used for ImageNet. Grad-CAM and Grad-CAM++ are not
calculated on the mnist dataset since the network has only dense layers. The first and second best results are respectively in bold and
underlined.

perturbation-based analysis.

Specifically, our technique consists of splitting the model
into two parts, and (1) estimating the bounds of an interme-
diate layer using sampling, (2) propagating these empirical
intermediate bounds onto the second part of the model with
verified perturbation analysis methods.

For the first step we consider a f as a l layers neural net-
work f = hl ◦ hl−1 ◦ . . . ◦ h1(x), we propose to empiri-
cally estimate bounds (hi,x,h

i,x
) for the intermediate state

hi(.) ∈ Rd′
with 1 ≤ i < l using Monte-Carlo sampling

on the perturbation δ ∈ B. Obviously, since the sampling
is never exhaustive, the bounds obtained underestimate the
true maximum h

i,x ≤ maxhi(x + δ) and overestimates
the true minimum hi,x ≥ minhi(x+ δ). In a similar way,
we define h

i,x,u
and hi,x,u for δ ∈ Bu.

Once the empirical bounds are estimated, we may proceed
to the second step and use the obtained bounds to form the
new perturbation set Pi,x of all possible activations states
on the i layer such that:

Pi,x = {δ ∈ Rd′
: hi,x

j ≤ hi(x)j + δj ≤ h
i,x

j }

and Pi,x
u the set of all possible perturbations of the acti-

vation states when the variable u was not affected by the
perturbations:

Pi,x
u = {δ ∈ Rd′

: hi,x,u
j ≤ hi(x)j + δj ≤ h

i,x,u

j }

We then carry out the end of the bounds propagation in
the usual way, using verified perturbation analysis. This
amounts to computing bounds for the outputs of the net-
work for all possible activations contained in our empirical
bounds. The only change being that we no longer operate in

the pixel space x with the ball B, but in the activation space
hi(x) with the perturbations set Pi,x. The importance score
of a set of variables u is then :

EVA(x,u) = F (hi(x),Pi,x)− F (hi(x),Pi,x
u )

This empirical method allows to use EVA on state-of-the-art
models and thus to benefit from our method while remaining
tractable. We believe this extension to be a promising step
towards robust explanations on deeper networks.

4. Experiments
To evaluate the benefits and reliability of our explainabil-
ity method, we performed several experiments on standard
dataset, using a set of common explainability metrics against
EVA. In order to test the fidelity of the explanations pro-
duced by our method, we compared them to that of 10 other
explainability methods using the (1) Deletion, (2) Insertion
and (3) MuFidelity metrics. As it has been shown that these
metrics can exhibit biases, we completed the benchmark
by adding the (4) Robustness-Sr metric. Each score is
averaged over 500 samples.

We evaluated these 4 metrics on 3 image classifica-
tion datasets. First, we conducted our experiments on
MNIST (LeCun & Cortes, 2010) composed of 28x28
grayscale handwritten digit image. Then we experimented
on CIFAR10 (Krizhevsky et al., 2009), a low-resolution
labeled dataset with 10 classes composed of color image
of resolution 32× 32. Finally, we assessed the methods on
ILSVRC 2012 (Deng et al., 2009), the test set of ImageNet
dataset containing images of size 224× 224.

Through these experiments, the explanations were gener-
ated using EVA estimator introduced in Equation 2. The



Robust and Efficient Explainability with Verified Perturbation Analysis

Figure 4. Qualitative comparison with other attribution methods. To allow better visualization, the gradient-based methods (Saliency,
Gradient-Input, SmoothGrad, Integrated-Gradient, VarGrad) were 2 percentile clipped. For more results and details on each methods and
hyperparameters, see the appendix.

importance scores were not evaluated pixel-wise but on
each cell of the image after having cut it into a grid of 12
sides (see Figure 2). Moreover, for MNIST and Cifar-10,
we used ε = 0.5, whereas for ImageNet ε = 5. Con-
cerning the verified perturbation analysis method, we used
(IBP+Forward+Backward) for MNIST, and (IBP+Forward)
on Cifar-10. For computational purposes, we tested the em-
pirical strategy introduce in Section 3.5 for ImageNet. We
give in appendix the complete set of hyperparameters used
for the other explainability methods, metrics considered as
well as the architecture of the models used on MNIST and
Cifar-10.

4.1. Fidelity & Robustness

There is a general consensus that fidelity is a crucial criterion
for an explanation method. That is, if an explanation is
used to make a critical decision, then users are expecting it
to reflect the true decision-making process underlying the
model and not just a consensus with humans. Failure to
do so could have disastrous consequences. Pragmatically,
these metrics assume that the more faithful an explanation
is, the faster the prediction score should drop when pixels
considered important are changed. In Table 1, we present
the results of the Deletion (Petsiuk et al., 2018) (or 1 −
AOPC (Samek et al., 2016)) metric for the MNIST and
Cifar-10 datasets on 500 images sampled from the test set.
TensorFlow (Abadi et al., 2015) and the Keras API (Chollet
et al., 2015) were used to run the models. In order to evaluate
the methods, the metrics require a baseline and several were
proposed (Sturmfels et al., 2020; Hsieh et al., 2021), but we
chose to keep the choice of (Hsieh et al., 2021) using their
random baseline.

We observe that EVA is the explainability method getting

the best Deletion, Insertion and µFidelity scores on MNIST,
and is just behind Greedy-AS on Robustness-Sr. This can
be explained by the fact that the Robustness metric uses
the adversarial attack PGD (Madry et al., 2018), which is
the same one used to generate Greedy-AS, thus biasing the
adversarial search. Indeed, if PGD does not find an adversar-
ial perturbation using a subset u does not give a guarantee
on the robustness of the model, just that the adversarial
perturbation could be difficult to reach with PGD.

For Cifar-10, EVA remains overall the most faithful method
according to Deletion and µFidelity, and obtains the second
score in Insertion behind Grad-Cam++ (Chattopadhay et al.,
2018). Finally, we notice that if Greedy-AS (Hsieh et al.,
2021) allows us to obtain a good Robustness-Sr score, but
this comes with a considerable computation time, which is
not the case of EVA which is much more efficient. Even-
tually, EVA is a very good compromise for its relevance to
commonly accepted explainability metrics and more recent
robustness metrics.

ImageNet After having demonstrated the potential of the
method on vision datasets of limited size, it is interesting
to consider the case of ImageNet which has a significantly
higher level of dimension. The use of verified perturba-
tion analysis methods other than IBP is currently not able
to scale on these datasets. We therefore used the empiri-
cal method introduced in Section 3.5 in order to estimate
in a latent space the bounds and then plug those bounds
into the perturbation analysis to get the final adversarial
overlap score.

The Table 1 shows the results obtained with the empirical
method proposed in Section 3.5. We observe that even with
this relaxed estimation, EVA is able to score high on all the
metrics. Indeed, EVA obtains the best score on the Insertion
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Figure 5. Targeted explanations Attributions generated explana-
tion for a decision other than the one predicted. The class explained
is indicated at the bottom of each sample – e.g, the first sample
is a ‘4’ and the explanation is for the class ‘9’. As indicated in
section 4.2, the red areas indicate that a black line should be added
and the blue areas that it should be removed. More examples are
available in the appendix.

metric and ranks second on µFidelity and Robustness-Sr.
Greedy-AS ranks first on Robustness-Sr at the expense
of the other scores where it performs poorly. Finally, Rise
and SmoothGrad perform well on all the fidelity metrics but
collapse on the robustness metric.

Qualitatively, Figure 4 shows examples of explanations pro-
duced on the ImageNet VGG-16 model. The explanations
produced by EVA are more localized than Grad-CAM or
RISE, while being less noisy than the gradient-based or
Greedy-AS methods.

In addition, as the literature on verified perturbation analysis
is evolving rapidly we can conjecture that the advances
will benefit the proposed explainability method. Indeed,
EVA proved to be the most effective on the benchmark when
an accurate formal methods was used. After demonstrating
the performance of the proposed method, we want to study
its ability to generate explanations specific to each class.

4.2. Targeted Explanations

In some cases, it is instructive to look at the explanations
for unpredicted classes in order to get information about the
internal mechanisms of the models studied. Such explana-
tions allow to highlight contrastive features: elements that
should be changed or whose absence is critical. Our method
allows us to obtain such explanations: for a given input, we
are then exclusively interested in the class we are trying to
explain, without looking at the other decisions. Formally,
for a given targeted class c′ the adversarial overlap (Equa-
tion 1) become Fc(x,B) = maxδ∈B fc′(x+δ)−fc(x+δ).
Moreover, by splitting the perturbation ball into a positive
one B(+) =

{
δ ∈ B : δi ≥ 0, ∀i ∈ {1, ..., d}

}
and a

negative one B(−) =
{
δ ∈ B : δi ≤ 0, ∀i ∈ {1, ..., d}

}
,

one can deduce which direction – adding or removing black
line in the case of gray-scaled images – will impact the most
the model decision.

We generated targeted explanations on the MNIST dataset
using (IBP+Forward+Backward). For several inputs, we
generate the explanation for the 10 classes. Figure 7 shows

4 examples of targeted explanations, the target class c′ is
indicated at the bottom. The red areas indicate that adding a
black line increases the adversarial overlap with the target
class. Conversely, the blue areas indicate where the increase
of the score requires to remove black lines. All other results
can be found in the appendix. In addition to favorable
results on the fidelity metrics and guarantees provided by the
verification methods, EVA can provide targeted explanations
that are easily understandable by humans, which are two
qualities that make them a candidate of choice to meet the
recent General Data Protection Regulation (GDPR) adopted
in Europe (Kaminski, 2021). More examples are available
in the Appendix E.

4.3. Tighter bounds lead to improved explanations

Tightness↓ Del.↓ Ins.↑ Fid.↑ Rob.↓
IBP 4.58 .148 .588 .222 .077
Forward 2.66 .150 .580 .209 .078
Backward 2.36 .115 .607 .274 .074
IBP + Fo. + Ba. 1.55 .089 .736 .428 .069

Table 2. Impact of the verified perturbation analysis method
on EVA. Results of EVAon Tightness, Deletion (Del.), Insertion
(Ins.), Fidelity (Fid.) and Robustness-Sr (Rob.) metrics obtained
on MNIST. The Tightness score corresponds to the average adver-
sarial surface. A lower Tightness score indicates that the method is
more precise: it reaches tighter bound, resulting in better explana-
tions and superior scores on the other metrics. The first and second
best results are respectively in bold and underlined.

Verified perturbation analysis method is an hyperparame-
ter of EVA. Hence, it is interesting to see the effect of the
choice of this method on the previous benchmark. We re-
call that only the MNIST dataset could benefit from the
(IBP+Forward+Backward) combo. Table 2 reports the re-
sults of the fidelity metrics using other verified perturba-
tion analysis methods. We also report a tightness score
which corresponds to the average of the adversarial over-
lap : E

x∼X
(F (x,B)). Concretely, a low score indicates that

the verification method is accurate – i.e the over approxima-
tion is closer to the true value. We observe that the tighter
the bounds, the higher the scores. This allows us to conjec-
ture that the more scalable the formal methods will become,
the better the quality of the generated explanations will be.

5. Conclusion
In this work, we presented the first explainability method
that uses verification perturbation analysis to have an ex-
haustive exploration of a perturbation space to generate
explanations. We presented an efficient estimator that yields
explanations which are state-of-the-art on current metrics.
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We also described a simple strategy to scale up the approach
in anticipation of improvements in perturbation verification
methods. Finally, we showed that this estimator can be used
to form easily interpretable targeteted explanations.

We hope that this work will help guide further developments
– searching for safer and more efficient explanation meth-
ods for neural networks – and that it will inspire further
synergies with the field of formal verification.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
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A. EVA and Robustness-Sr

We show here that the explanations generated by EVA pro-
vides an optimal solution from a certain stage to the
Robustness-Sr metric proposed by (Hsieh et al., 2021).
We admit a unique closest adversarial perturbation δ∗ =
min ||δ||p : f(x+ δ) ̸= f(x), and we define ε, the radius
of B as ε = ||δ||p. Note that ||δ||p can be obtained by binary
search using verified perturbation analysis method.

We briefly recall the Robustness-Sr metric. With x =
(x1, ..., xd), the set U = {1, ..., d}, u a subset of U : u ⊆ U
and u its complementary. Moreover, we denote the mini-
mum distance to an adversarial example ε∗u:

ε∗u =
{
min ||δ||p : f(x+ δ) ̸= f(x), δu = 0

}
The Robustness-Sr score is the AUC of the curve formed
by the points {(1, ε∗(1)), ..., (d, ε

∗
(d))} where ε∗(k) is the min-

imum distance to an adversarial example for the k most im-
portant variables. From this, we can deduce that ||δ∗|| ≤ ε∗u,
∀u ⊆ {1, ..., d}.

The goal here is to minimize this score, which means for a
number of variables |u| = k, finding the set of variables u∗

such that ε∗u is minimal. We call this set the optimal set at
k.
Definition A.1. The optimal set at k is the set of variables
u∗
k such that

u∗
k = argmin ε∗u

u⊆U, |u|=k

.

We note that finding the minimum cardinal of variable to
guarantee a decision is also a standard research problem
(Ignatiev et al., 2019a;b) and is called subset-minimal expla-
nations.

Intuitively, the optimal set is the combination of variables
that allows to find the closest adversarial example. Thus,
minimizing Robustness-Sr means finding the optimal set
u∗ for each k. Note that this set can vary drastically from
one step to another, it is therefore potentially impossible for
an attribution to satisfy this optimality criterion at each step.
Nevertheless, an optimal set that is always reached at some
step is the one allowing to build δ∗. We start by defining the
notion of essential variable before showing the optimality
of δ∗.
Definition A.2. Given an adversarial perturbation δ, we call
essentials variables u all variables such that |δi| > 0, i ∈ u.
Conversely, we call inessentials variables variables that are
not essential.

For example, if δ∗ has k essential variables, it is reachable
by modifying only k variables. This allow us to characterize
the optimal set at step k.
Proposition A.3. Let u be the set of essential variables of
δ∗, then u is an optimal set for k, with k ∈ [[|u|, d]].

Proof. Let v be a set such that ε∗v < ε∗u, then ε∗v < ||δ∗||
which is a contradiction.

Specifically, as soon as we have the variables allowing
to build δ∗, then we reach the minimum possible for
Robustness-Sr. We will now show that EVA allows us
to reach this in |u| steps, with |u| ≤ d by showing (1) that
δ∗ essential variables obtain a positive attribution and (2)
that δ∗ inessential variables obtain a zero attribution.

Proposition A.4. All essential variables u w.r.t δ∗ have a
strictly positive importance score EVA(u) > 0.

Proof. Let us assume that i is essential and EVA(i) = 0,
then F (B) = F (Bi) which implies

max
δ∈B
c′ ̸=c

fc′(x+δ)−fc(x+δ) = max
δ′∈Bi

c′ ̸=c

fc′(x+δ′)−fc(x+δ′)

by uniqueness of the adversarial perturbation, δ = δ′ which
is a contradiction as δ′ /∈ Bi since δ′i ̸= 0 by definition of
an essential variable. Thus xi cannot be essential, which is
a contradiction.

Essentially, if the variable i is necessary to reach δ∗, then
removing it prevents the adversarial example from being
reached and lowers the adversarial overlap, giving a strictly
positive attribution.

Proposition A.5. All inessential variables v w.r.t. δ∗ have
a zero importance score EVA(v) = 0.

Proof. With i being an inessential variable, then δ∗i = 0. It
follow that δ∗ ∈ Bi ⊆ B. Thus

F (B) = max
δ∈B
c′ ̸=c

fc′(x+ δ)− fc(x+ δ)

= fc′(x+ δ∗)− fc(x+ δ∗)

as δ∗ is the unique adversarial perturbation in B, similarly

F (Bi) = max
δ′∈B
c′ ̸=c

fc′(x+ δ′)− fc(x+ δ′)

= fc′(x+ δ∗)− fc(x+ δ∗)

thus F (B) = F (Bi) and EVA(i) = 0.

Finally, since EVA ranks the essential variables of δ∗ before
the inessential variables, and since δ∗ is the optimal set
from the step |u| to the last one d, then EVA provide the
optimal set, at least from the step |u|.
Theorem A.6. EVA provide the optimal set from step |u| to
the last step. With u the essential variables of δ∗, EVA will
rank the u variables first and provide the optimal set from
the step |u| to the last step.
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Proof. Let u denote the essential variables of δ∗ and v the
inessential variables. Then according to Proposition A.4
and Proposition A.5, ∀i ∈ u,∀j ∈ v : EVA(i) > EVA(j).
It follow that u are the most important variables at step |u|.
Finally, according to Proposition A.3, u is the optimal set
for k, with k ∈ [[|u|, d]].

Figure 6. EVA yield optimal subset of variable from step |u|.
Robustness-Sr measures the AUC of the distances to the nearest
adversary for the k most important variables. With δ∗ the nearest
reachable adversarial perturbation around x, then EVA yield the
optimal set – the variables allowing to reach the nearest adversarial
example for a given cardinality – at least from ||u|| ≤ d step to
the last one, u being the so-called essential variables.

B. Attribution methods
In the following section, we give the formulation of the
different attribution methods used in this work. The li-
brary used to generate the attribution maps is Xplique (Fel,
Thomas and Hervier, Lucas, 2021). By simplification of
notation, we define f(x) the logit score (before softmax)
for the class of interest (we omit c). We recall that an at-
tribution method provides an importance score for each
input variables xi. We will denote the explanation function-
nal mapping an input of interest x = (x1, ..., xd) ∈ X as
g : X → Rd. All the attribution

Saliency (Simonyan et al., 2013) is a visualization tech-
niques based on the gradient of a class score relative to the
input, indicating in an infinitesimal neighborhood, which
pixels must be modified to most affect the score of the class
of interest.

g(x) = ||∇xf(x)||

Gradient ⊙ Input (Shrikumar et al., 2017) is based on the
gradient of a class score relative to the input, element-wise
with the input, it was introduced to improve the sharpness
of the attribution maps. A theoretical analysis conducted
by (Ancona et al., 2018) showed that Gradient ⊙ Input is

equivalent to ϵ-LRP and DeepLIFT (Shrikumar et al., 2017)
methods under certain conditions – using a baseline of zero,
and with all biases to zero.

g(x) = x⊙ ||∇xf(x)||

Integrated Gradients (Sundararajan et al., 2017) consists
of summing the gradient values along the path from a base-
line state to the current value. The baseline x0 used is zero.
This integral can be approximated with a set of m points
at regular intervals between the baseline and the point of
interest. In order to approximate from a finite number of
steps, we use a Trapezoidal rule and not a left-Riemann
summation, which allows for more accurate results and im-
proved performance (see (Sotoudeh & Thakur, 2019) for a
comparison). For all the experiments m = 100.

g(x) = (x− x0)

∫ 1

0

∇xf(x0 + α(x− x0)))dα

SmoothGrad (Smilkov et al., 2017) is also a gradient-based
explanation method, which, as the name suggests, aver-
ages the gradient at several points corresponding to small
perturbations (drawn i.i.d from an isotropic normal distri-
bution of standard deviation σ) around the point of interest.
The smoothing effect induced by the average help reduc-
ing the visual noise, and hence improve the explanations.
The attribution is obtained by averaging after sampling m
points. For all the experiments, we took m = 100 and
σ = 0.2 × (xmax − xmin) where (xmin,xmax) being the
input range of the dataset.

g(x) = E
δ∼N (0,Iσ)

(∇xf(x+ δ))

VarGrad (Hooker et al., 2019) is similar to SmoothGrad
as it employs the same methodology to construct the attri-
bution maps: using a set of m noisy inputs, it aggregate
the gradients using the variance rather than the mean. For
the experiment, m and σ are the same as Smoothgrad. For-
mally:

g(x) = V
δ∼N (0,Iσ)

(∇xf(x+ δ))

Grad-CAM (Selvaraju et al., 2017) can only be used on
Convolutional Neural Network (CNN). Thus we couldn’t
use it for the MNIST dataset. The method uses the gradient
and the feature maps Ak of the last convolution layer. More
precisely, to obtain the localization map for a class, we
need to compute the weights αk

c associated to each of the
feature map activation Ak, with k the number of filters
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and Z the number of features in each feature map, with
αc
k = 1

Z

∑
i

∑
j

∂f(x)

∂Ak
ij

and

g = max(0,
∑
k

αc
kA

k)

As the size of the explanation depends on the size (width,
height) of the last feature map, a bilinear interpolation is
performed in order to find the same dimensions as the input.
For all the experiment, we used the last convolutional layer
of each model to compute the explanation.

Grad-CAM++ (G+) (Chattopadhay et al., 2018) is an exten-
sion of Grad-CAM combining the positive partial derivatives
of feature maps of a convolutional layer with a weighted
special class score. The weights α

(k)
c associated to each

feature map is computed as follow :

αc
k =

∑
i

∑
j

[

∂2f(x)

(∂A
(k)
ij )2

2 ∂2f(x)

(∂A
(k)
ij )2

+
∑

i

∑
j A

(k)
ij

∂3f(x)

(∂A
(k)
ij )3

]

Occlusion (Zeiler & Fergus, 2014a) is a sensitivity method
that sweep a patch that occludes pixels over the images
using a baseline state, and use the variations of the model
prediction to deduce critical areas. For all the experiments,
we took a patch size and a patch stride of 1

7 of the image
size. Moreover, the baseline state x0 was zero.

g(x)i = f(x)− f(x[xi=0])

RISE (Petsiuk et al., 2018) is a black-box method that
consist of probing the model with N randomly masked
versions of the input image to deduce the importance of
each pixel using the corresponding outputs. The masks
m ∼ M are generated randomly in a subspace of the input
space. For all the experiments, we use a subspace of size
7× 7, N = 6000 and E(M) = 0.5.

g(x) =
1

E(M)N

N∑
i=0

f(x⊙mi)mi

Greedy-AS (Hsieh et al., 2021) is a greedy like method
which aggregate step by step the most important pixels – the
pixels that allow us to obtain the closest possible adversarial
example. Starting from an empty set, we evaluate the im-
portance of the variables at each step. Formally, with u the
feature set chosen at the current step and u his complement.
We define b : P(u) → {0, 1}|u| a function which binarizes
a sub-set of the unchosen elements. Then, given the set of
selected elements u, we find the importance of the elements

still not selected, while taking into account their interactions.
This amounts to solve the following regression problem:

wt, ct = argmin
∑

v∈P(u)

(
(wtb(v) + c)− v(u ∪ v)

)2
The weights obtained indicate the importance of each vari-
able by taking into account these interactions. We specify
that v(.) is defined here as the minimization of the distance
to the nearest adversarial example using the variables u∪ v.
In the experiments, the minimization of this objective is
approximated using PGD (Madry et al., 2018) adversarial
attacks, a regression step (computation of wt) adds 10% of
the variables and v is sampled using 1000 samples from
P(u). Finally, the variables added first get a better score.

C. Evaluation
For the purpose of the experiments, three fidelity metrics
have been chosen. For the whole set of metrics, f(x) score
is the score after softmax of the models.

Deletion. (Petsiuk et al., 2018) The first metric is Dele-
tion, it consists in measuring the drop of the score when the
important variables are set to a baseline state. Intuitively,
a sharper drop indicates that the explanation method has
well identified the important variables for the decision. The
operation is repeated on the whole image until all the pixels
are at a baseline state. Formally, at step k, with u the most
important variables according to an attribution method, the
Deletion(k) score is given by:

Deletion(k) = f(x[xu=x0])

We then measure the AUC of the Deletion scores. For all the
experiments, and as recommended by (Hsieh et al., 2021),
the baseline state is not fixed but is a value drawn on a
uniform distribution x0 ∼ U(0, 1).

Insertion. (Petsiuk et al., 2018) Insertion consists in per-
forming the inverse of Deletion, starting with an image
in a baseline state and then progressively adding the most
important variables. Formally, at step k, with u the most
important variables according to an attribution method, the
Insertion(k) score is given by:

Insertion(k) = f(x[xu=x0])

The baseline is the same as for Deletion.

µFidelity (Bhatt et al., 2020) consists in measuring the
correlation between the fall of the score when variables are
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put at a baseline state and the importance of these variables.
Formally:

µFidelity = Corr
u⊆{1,...,d}

|u|=k

(∑
i∈u

g(x)i,f(x)− f(x[xu=x0])

)

For all experiments, k is equal to 20% of the total number
of variables and the baseline is the same as the one used by
Deletion.

D. Models
The models used were all trained using Tensorflow (Abadi
et al., 2015). For Mnist, the model is a stacking of 5 Dense
layer composed of (256, 128, 64, 32, 10) neurons respec-
tively. It achieves an accuracy score above 98% on the test
set. Concerning the Cifar-10 model, it is composed of 3
Convolutional layers of (128, 80, 64) filters, a MaxPooling
(2, 2) and to Dense layer of (64, 10) neurons respectively
and achieve 75% of accuracy on the test set. For ImageNet,
we used a pre-trained VGG16 (Simonyan et al., 2014).

E. Targeted explanations
In order to generate targeted explanations, we split the calls
to EVA(·, ·) in two: the first one with ‘positive’ perturba-
tions from B(+) (only positive noise), a call with ‘negative’
perturbations from B(−) (only negative-valued noise) as
defined in Section 4.2.

We then get two explanations, one for positive noise ϕ(+)
u =

Fc(B(+)(x)) − Fc(B(+)
u (x)), the other for negative noise

ϕ
(−)
u = Fc(B(−)(x)) − Fc(B(−)

u (x)). Intuitively, a high
importance for ϕ(+)

u means that the model is sensitive to the
addition of a white line. Conversely, a high importance for
ϕ

(−)
u means that removing it changes the decision model.

These two explanations being opposed, we construct the
final explanation as ϕu = ϕ

(+)
u − ϕ

(−)
u . More examples of

results are given in Figure 7.

Figure 7. Targeted Explanations Attributions generated explana-
tion for a decision other than the one predicted. Each column
represent the class explained – e.g, the first column look for ex-
planation for the class ‘0’ for each of samples. As indicated in
section 4.2, the red areas indicate that a black line should be added
and the blue areas that it should be removed. More examples are
available in the appendix.


