
HAL Id: hal-03576117
https://hal.science/hal-03576117v1

Submitted on 16 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A multimodal variational autoencoder for estimating
progression scores from imaging and microRNA data in

rare neurodegenerative diseases
Virgilio Kmetzsch, Emmanuelle Becker, Dario Saracino, Vincent Anquetil,
Daisy Rinaldi, Agnès Camuzat, Thomas Gareau, Isabelle Le Ber, Olivier

Colliot

To cite this version:
Virgilio Kmetzsch, Emmanuelle Becker, Dario Saracino, Vincent Anquetil, Daisy Rinaldi, et al.. A
multimodal variational autoencoder for estimating progression scores from imaging and microRNA
data in rare neurodegenerative diseases. SPIE Medical Imaging 2022: Image Processing, Feb 2022,
San Diego, California, United States. pp.376-382, �10.1117/12.2607250�. �hal-03576117�

https://hal.science/hal-03576117v1
https://hal.archives-ouvertes.fr


A multimodal variational autoencoder for estimating
progression scores from imaging and microRNA data in rare

neurodegenerative diseases

Virgilio Kmetzscha, b, Emmanuelle Beckerc, Dario Saracinoa, b, d, e, Vincent Anquetilb, Daisy
Rinaldib, d, e, Agnès Camuzatb, f, Thomas Gareaub, Isabelle Le Berb, d, e, g, Olivier Colliotb, a,

and The PREV-DEMALS study group

aInria, Aramis project-team, F-75013, Paris, France
bSorbonne Université, Paris Brain Institute – Institut du Cerveau – ICM, Inserm U1127,
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ABSTRACT

Frontotemporal dementia (FTD) is a rare neurodegenerative disease, often of genetic origin, with no effective
treatment. There is a substantial pathophysiological overlap with amyotrophic lateral sclerosis (ALS), mutations
in the C9orf72 gene being their most common genetic cause. In these disorders, no single biomarker can
accurately measure progression, thus it is crucial to combine complementary information from multiple modalities
to evaluate new therapeutic interventions. In particular, neuroimaging and transcriptomic (microRNA) data
have been shown to have value to track FTD and ALS progression. As these conditions are rare, large samples
are not available, hence the need for methods to fuse multimodal data from small samples. In this paper, we
propose a method for computing a disease progression score (DPS) from cross-sectional multimodal data, based
on variational autoencoders (VAE). We show that unsupervised training leads to the estimation of meaningful
latent spaces, where subjects with similar disease states are clustered together and from which a DPS may be
inferred. Models were evaluated on 14 patients, 40 presymptomatic mutation carriers and 37 healthy controls
from the PREV-DEMALS study. Since there is no ground truth for the DPS, we used the inferred scores to
perform pairwise classification as a proxy metric. Presymptomatic subjects and patients were classified with
an average area under the ROC curve of 0.83 and 0.94, respectively without and with feature selection. The
proposed approach has the potential to leverage cross-sectional multimodal datasets with small sample sizes in
order to objectively measure disease progression.

Keywords: Multimodal, neuroimaging, transcriptomics, microRNA, variational autoencoder, deep learning,
disease progression score, neurodegenerative disease

1. INTRODUCTION

Frontotemporal dementia (FTD) is a rare heterogeneous neurodegenerative disease characterized by progressive
behavioral changes, executive dysfunction and language impairments.1 A large proportion of FTD cases are due
to genetic mutations, the most frequent being an expansion in the C9orf72 gene.2,3 C9orf72 expansions are
also an important genetic cause of amyotrophic lateral sclerosis (ALS), a motor neuron disease leading to muscle
atrophy, progressive weakness and eventual paralysis.4 These fatal disorders, which may occasionally co-occur
in C9orf72 -mutated individuals, have no effective treatment to date.
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Presymptomatic carriers of the C9orf72 mutation, with no current clinical symptoms, are an ideal population
for the evaluation of new disease-modifying treatments, before any irreversible brain damage has occurred.
Previous work demonstrated the importance of neuroimaging5 and transcriptomics (microRNA)6 biomarkers
to better understand the C9orf72 disease progression. However, when analysed independently, neuroimaging
and microRNA data provide incomplete views of FTD and ALS. Therefore, in order to monitor the effect of
experimental therapies, it is critical to leverage the complementary information provided by these modalities.

Since different biomarkers characterize a disease in different stages, several biomarkers could be combined
to represent the entire progression with a single disease progression score (DPS). Many approaches have been
developed for data-driven disease progression modeling, including event-based models (EBM),7,8 a vertex-wise
model of brain pathology fitted with expectation-maximisation,9 non-linear mixed-effects models,10,11 alternating
least squares to fit sigmoid functions,12 Gaussian processes,13 Recurrent Neural Networks14 and M-estimation.15

Most of these approaches require a large amount of longitudinal data, which is not available for FTD/ALS. The
only published methods that infer a disease progression score from cross-sectional data are event-based models,7,8

but these approaches do not scale well for hundreds of biomarkers, such as microRNA data.

In the present work, we proposed a method for inferring a disease progression score (a latent trait) based
on a multimodal variational autoencoder (VAE).16 VAEs are powerful generative models that project data in a
regularized latent low dimensional space and have been shown to be effective in high dimensional low sample size
settings.17 These models have already been used with multimodal data,18 although not with the goal of inferring
a DPS. We hypothesized that the inferred score, based on cross-sectional neuroimaging and microRNA data,
could represent the distance traveled along the underlying FTD/ALS pathophysiological pathway, and thus be
used to monitor disease progression and evaluate novel treatments.

2. MATERIALS AND METHODS

2.1 Studied population

Participants were recruited through the PREV-DEMALS study (https://clinicaltrials.gov, ID NCT02590276),
a cohort focused on C9orf72 expansion carriers, comprising neuroimaging and microRNA sequencing data.
MicroRNAs (miRNAs) are a class of noncoding RNAs that negatively regulate gene expression,19 being detected
in blood plasma and correlating with the progression of many neurodegenerative diseases,20 including FTD and
ALS.

Our study comprised 110 individuals, divided into three groups: 22 symptomatic carriers of a pathogenic
expansion (patient group), 45 asymptomatic carriers (presymptomatic group) and 43 asymptomatic non-carriers
(control group). Written informed consents were obtained from all participants and the study was approved
by the ethics committee (Comité de Protection des Personnes CPP Ile-De-France VI, CPP 68-15 and ID RCB
2015-A00856-43).

2.2 Data acquisition and preprocessing

All individuals had transcriptomic data available, consisting of the expression levels of 589 miRNAs. However,
only 91 (14 patients, 40 presymptomatic carriers and 37 controls) had also neuroimaging data available, consisting
in grey matter volumes extracted from anatomical MRI (T1) including 68 cortical regions of interest (ROIs)
(Desikan atlas) and 18 subcortical ROIs (Aseg atlas) as well as the estimated total intracranial volume, thus
resulting in 87 imaging features. Details regarding features and population can be found in Ref. 6 and Ref. 5.
Subjects were divided into two datasets: 19 subjects with only microRNA data, used as a discovery set for
feature selection, and 91 subjects with multimodal neuroimaging and microRNA data, used as input to our
models. Features were rescaled from 0 to 1 and ordered via principal component analysis in the transposed data
matrix: we projected features into the first principal component and used the coordinate values to sort them.

We also conducted experiments with two simulated datasets, based on the real one. To build the simulated
data matrices, we simply increased (or decreased) each feature value by 5% or 15% for all patients and healthy
controls, to accentuate their means’ difference. The presymptomatic participants remained unchanged.



2.3 Multimodal variational autoencoder

In order to build disease progression scores, we propose a multimodal variational autoencoder for estimating a
latent space representation. Let x ∈ X represent a set of multimodal data, where each point is a vector with
concatenated neuroimaging and microRNA data. A variational autoencoder (VAE)16 is a generative model which
aims to learn the training data distribution using a latent representation model:

p(x) =

∫
p(x|z)p(z)dz, (1)

where z ∈ Z is a lower dimensional latent variable and p(z) is its prior distribution (commonly a multivariate
unit Gaussian). VAEs learn two mappings in the form of neural networks: an encoder qφ(z|x) which maps data
x to its latent representation z, and a decoder pθ(x|z) which maps from the latent representation z back to
the input space. Since the marginal log-likelihood of the data is intractable, VAEs are trained to maximize the
variational lower bound of the marginal log-likelihood, known as ELBO (Evidence Lower Bound):

log p(x) ≥ Ez∼qφ [log pθ(x|z)]−DKL[qφ(z|x)||p(z)], (2)

where DKL[qφ(z|x)||p(z)] is the Kullback-Leibler divergence between the approximated posterior qφ(z|x) and the
prior distribution p(z) and acts as a regularization term.

Our encoder consisted of a 1-dimensional convolution layer, followed by two fully-connected layers, while the
decoder was implemented with two fully-connected layers followed by a 1-dimensional transposed convolutional
layer. After each layer, batch normalization21 was applied for its regularization properties and to avoid vanishing
or exploding gradients. The nonlinear activation function was the rectified linear unit (ReLU) f(x) = max(0, x)
in all layers except the decoder’s last one, which used a sigmoid function f(x) = 1

1+e−x in order to have the

output normalized between 0 and 1. The loss function was optimized using Adam.22

Two slightly different networks were used as our final models. For the experiments with no feature selection
(589 miRNAs + 87 neuroimaging features), we identified that 64 channels and a kernel of dimension 80 with a
stride of 10 was a good parametrization, along with a hidden layer of 400 units and a latent space of dimension
5. For the experiments with the discovery set and feature selection (68 miRNAs + 87 neuroimaging features),
we chose 32 channels, a kernel of dimension 20 with a stride of 5, along with a hidden layer of 50 units and
2-dimensional latent space. The VAEs were implemented in Python 3.8.5 using PyTorch 1.8.1, and trained with
batches of 32 subjects for 250 epochs using a learning rate of 10−3.

2.4 Computing disease progression scores in the latent space

We used a stratified 5-fold cross-validation strategy, training the VAE with four folds and testing with the
remaining fold in each iteration. Training was unsupervised: no clinical labels were used. Our hypothesis was
that the VAE would identify a meaningful latent space, placing subjects with the same clinical status (and similar
disease stage among presymptomatic individuals and patients) closer together.

Once each model was trained, we projected the training data in the latent space and used the clinical labels
(patient, presymptomatic subject or control) to compute the centroid of each group. We then defined the
trajectory to traverse the latent space as the line passing through the centroids of the presymptomatic and the
patient groups. Finally, we encoded the test fold in the latent space and computed the DPS for each subject as
the coordinate of their projection in this line.

Since there is no ground truth for the DPS, we applied a proxy metric to assess model performance: the
inferred scores were used to classify subjects according to their clinical status. Therefore, labels were used during
test time to compute the area under the receiver operating characteristic curve (ROC AUC) averaged over the
five folds.



Figure 1. Example of (A) a 2-dimensional latent space encoding a test fold comprising 2 patients, 8 presymptomatic
individuals and 8 controls and the trajectory to traverse this latent space (blue arrow); (B) the corresponding disease
progression scores.

3. RESULTS

Figure 1 depicts an example of a two-dimensional latent space obtained after training the VAE with four folds
and using the trained model to encode the remaining test fold. In this particular fold, we observe a perfect
separation between patients and the other two groups, and a clear (although not perfect) distinction between
presymptomatic individuals and controls.

Table 1 displays the mean and standard deviation of the area under the ROC curve obtained after a 5-fold
cross-validation, for each pairwise comparison between clinical groups. The models were initially trained without
any feature selection, with the expression levels of 589 miRNAs and the grey matter volumes of 87 ROIs. Then,
we used 19 subjects as a discovery set to identify the most differentially expressed miRNAs between clinical
groups, reducing the dimension of the microRNA data to 68. Classification performance improved when feature
selection was applied. Table 1 also shows the results with the two simulated datasets. As expected, performance
increases when a dataset with more discriminating features is used as input.

Table 1. Area under the ROC curve (mean ± SD) for each pairwise classification, obtained using the inferred disease
progression scores respectively without feature selection, with feature selection and with two simulated datasets.

Comparison | Features
589 miRNAs,
87 T1 ROIs

68 miRNAs,
87 T1 ROIs

Simulated
dataset (5%)

Simulated
dataset (15%)

Control vs Presymptomatic 0.57 ± 0.15 0.62 ± 0.20 0.76 ± 0.19 0.89 ± 0.12

Control vs Patient 0.88 ± 0.11 0.95 ± 0.07 0.99 ± 0.02 1.00 ± 0.00

Presymptomatic vs Patient 0.83 ± 0.19 0.94 ± 0.12 0.95 ± 0.10 0.98 ± 0.03

Finally, Fig. 2 presents the visualization of the inferred scores for all 91 subjects after a 5-fold cross validation.
The scores were computed for each subject when included in a test fold, without or with feature selection in the
microRNA data. There is a superior performance (better separation between groups) when miRNAs are selected
using the discovery set.

4. DISCUSSION

We proposed a multimodal variational autoencoder for combining imaging and transcriptomic (microRNA) data.
It allowed inferring a single score to represent disease progression, using only cross-sectional neuroimaging and
microRNA data from less than a hundred subjects. We showed that variational autoencoders built with shallow
1-dimensional convolutional neural networks were able to infer meaningful latent spaces, putting closer together
subjects from the same clinical groups (patients, presymptomatic individuals and controls) without using any



Figure 2. Disease progression score densities conditioned on clinical status, obtained from 5-fold cross-validation with 91
individuals, when using (A) all 589 miRNAs and all 87 T1 MRI ROIs and (B) selected 68 miRNAs and all 87 T1 MRI
ROIs.

labels during training. We were able to encode individuals from the test sets into the latent spaces and compute
their corresponding DPS. Then using only the computed scores, presymptomatic subjects and patients were
distinguished with an average ROC AUC of 0.83 and 0.94, respectively without and with feature selection.

Our experiments with the simulated datasets showed that more informative features will lead to better results.
In addition, the presented approach is generic enough to be used with datasets from other neurodegenerative
diseases, even though our experiments focused only on C9orf72 -associated FTD and ALS. So our results motivate
further experiments with other neurodegenerative diseases with well established biomarkers.

The current study has a limitation: the absence of ground truth for the progression scores, which led us to
use classification performance as a proxy metric. Long-term longitudinal data would be needed to confirm the
accuracy of the inferred DPS. For instance, we hypothesize that, for presymptomatic subjects, a higher DPS
implies an earlier disease onset, and we would need long-term follow-up data to confirm this hypothesis. Future
work could explore different network architectures (e.g. 2-dimensional inputs, different number of layers, feature
maps and kernel sizes), investigate the integration of different prior information to order the input data and
analyze different methods to traverse the latent space.

In summary, our results encourage the use of the proposed approach as a tool to measure disease progression
in rare neurodegenerative diseases and evaluate potential treatments.
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Dypuytren, Limoges), Stéphanie Bombois (CHU Roger Salengro, Lille), Agnès Camuzat (ICM, Paris), Mathieu
Chastan (CHU Charles Nicolle, Rouen), Yaohua Chen (CHU Roger Salengro, Lille), Marie Chupin (ICM, Paris),
Olivier Colliot (ICM, Paris), Philippe Couratier (CHU Dypuytren, Limoges), Xavier Delbeuck (CHU Roger
Salengro, Lille), Vincent Deramecourt (CHU Roger Salengro, Lille), Christine Delmaire (CHU Roger Salengro,
Lille), Emmanuel Gerardin (CHU Charles Nicolle, Rouen), Claude Hossein-Foucher (CHU Roger Salengro, Lille),
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