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Abstract:

The microbial communities inhabiting the Atlantic-East Pacific (AEP) mangroves have been
poorly studied, and mostly comprise chronically polluted mangroves. In this study, we
characterized changes in the structure and diversity of microbial communities of mangroves
along the urban-to-rural gradient of the Cayenne estuary (French Guiana, South America) that
experience low human impact. The microbial communities were assigned into 50 phyla.
Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, and Planctomycetes were the most
abundant taxa. The environmental determinants found to significantly correlated to the
microbial communities at these mangroves were granulometry, dieldrin concentration, pH,
and total carbon (TC) content. Furthermore, a precise analysis of the sediment highlights the
existence of three types of anthropogenic pressure among the stations: (i) organic matter
(OM) enrichment due to the proximity to the city and its wastewater treatment plant, (ii)
dieldrin contamination, and (iii) naphthalene contamination. These forms of weak
anthropogenic pressure seemed to impact the bacterial population size and microbial
assemblages. A decrease in Bathyarchaeota, “Candidatus Nitrosopumilus”, and Nitrospira
genera was observed in mangroves subjected to OM enrichment. Mangroves polluted with
organic contaminants were enriched in Desulfobacteraceae, Desulfarculaceae, and
Acanthopleuribacteraceae (with dieldrin or polychlorobiphenyl contamination), and
Chitinophagaceae and Geobacteraceae (with naphthalene contamination). These findings
provide insights into the main environmental factors shaping microbial communities of
mangroves in the AEP that experience low human impact and allow for the identification of

several potential microbial bioindicators of weak anthropogenic pressure.
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Significance and impact of the study:

e The spatial variation of mangrove microbiota is studied in relation to environmental
factors and contaminants in the Cayenne estuary (French Guiana).

o Cayenne estuary mangroves are globally pristine, but low-level human pressures were
detected (OM enrichment and NOAA ERL thresholds exceeded for naphthalene and
dieldrin).

e pH, dieldrin, TC, and granulometry are the main drivers influencing the profile of the
microbial community.

o Bathyarchaeota, “Candidatus Nitrosopumilus”, and Nitrospira were identified as
potential indicators of OM enrichment in mangroves.

e Polluted mangroves were enriched in Deltaproteobacteria, Acidobacteria,

Chitinophagaceae, and Geobacteraceae.

1. Introduction

Tropical and subtropical intertidal zones are occupied by iconic mangrove forests
ecosystems, extending approximately 137,000 km? along the shores of 123 countries (Bunting
et al., 2018). Within latitudes of around 32°N and 38°S, mangroves harbor significant
biodiversity distributed in two distinct floristic realms (Spalding, 2010), the AEP and the
Indo—West Pacific (IWP) (Duke, 1992). These forests are assemblages of salt-tolerant trees
and shrubs that grow on soft sediments in places where freshwater mixes with seawater (e.g.,
estuarine margins and coastal marine environments). Mangroves are well adapted to dynamic
environments (salinity fluctuations, periodic flooding, and anoxia of sediment) and are among
the most productive ecosystems in tropical coastal areas (Donato et al., 2011). They carry out
functions of great ecological importance (e.g., carbon and nutrient recycling, provision of
breeding and feeding areas), and they also provide valuable ecosystem services such as

coastal protection (Massel et al., 1999) and climate change mitigation (Laffoley and

3
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Grimsditch, 2009; Walcker et al., 2018). Despite the numerous services they provide,
mangroves are being degraded by anthropogenic activities and lost at an alarming rate in
some areas (Carugati et al., 2018).

The benthic microbiota plays a fundamental role in mangrove functioning because it
processes most of the energy flow and nutrients. It is responsible for OM degradation and
nutrient recycling (Alongi, 1994). Mangrove microorganism biodiversity has been the subject
of numerous studies, which have deepened our understanding of the microbial communities
inhabiting the mangrove rhizosphere (Gomes et al., 2014) and mangrove sediments (Jiang et
al., 2013; Mendes et al., 2012; Nogueira et al., 2015; Rocha et al., 2016; Santana et al., 2019).
However, most of the studies were mainly focused on mangroves in the IWP region. Most of
the studies conducted in the AEP region have been within the Eastern American subregion
and dealt with coastal mangroves in southern Brazil (Dias et al., 2010, 2011; Peixoto et al.,
2011; Rigonato et al., 2013) and Colombia (Torres et al., 2019). In these countries, the
anthropogenic pressure on mangroves is very strong in some areas due to the proximity of big
industrial cities and sites of offshore oil exploitation. Because microorganisms are stress-
sensitive, several microbial bioindicators of pollution were identified in Brazilian and
Colombian mangroves (Peixoto et al., 2011; Torres et al., 2019).

Apart from chemical contaminants (Matturro et al., 2016; Sheng et al., 2016, Zhang et
al 2014), the microbial structure and composition of prokaryotic communities in soils and
sediments are known to be shaped by several physicochemical factors such as carbon and
nitrogen concentration (Liu et al 2012), redox potential (DeAngelis et al 2010), pH (Aciego
Pietri and Brookes, 2008; Wardle, 1992), and salinity (Chambers et al 2016). Compared to the
IWP mangroves and the human-impacted AEP mangroves, relatively little is known about the
factors shaping the distribution of the microbial communities in low-human impacted AEP

mangroves. Within the Eastern American subregion of the AEP zone, the mangrove coastline
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of the Guianas (between the Oyapock and Orinoco Rivers estuaries) appears to be an
exception, as the mangroves here experience low-level human impact (Diop et al., 2016;
Michelet et al., 2021). In French Guiana (FG), mangroves occupy about 80% of the coastal
line with a total extent of about 70,000 ha (Fromard, Vega, and Proisy 2004). Due to their
localization, near the Amazon’s mouth (Brazil), FG mangroves are very dynamic and are
under the influence of one of the world’s largest sediment discharge systems (Anthony et al.,
2010; Marchand et al., 2006).

In order to better understand which environmental drivers are important to explain the
compositional changes of mangrove microbiota in the AEP, an analysis of the microbial
diversity in Guiana’s mangroves was carried out.

Based on the same sedimentary cores used by Michelet et al. (2021) and considering
the different sedimentary layers, we assessed the microorganism response to low human
pressure along the Cayenne estuary and defined the main environmental drivers shaping the
structure and diversity of communities.

Finally, an exploration of the changes in the relationship between mangrove
microbiota diversity and the abiotic environment, according to sediment depth and the urban-
to-natural gradient, allowed us to identify potential microbial bioindicators of mangrove

health.

2. Materials and Methods
2.1. Study area and sampling strategy
The location of the study area was the Cayenne estuary in FG (South America; Figure 1).

Three stations (S1, S2, and S3) were selected on the edge of the estuary (<5 m) and at an
increasing distance from Cayenne city, which is the largest city and the capital of FG (61,268
inhabitants; INSEE 2017), along an urban-to-natural gradient. Station 1 (S1) is located at the

Crique Fouillée tributary creek (4°54°53.208” N, 52°20°15.9324” W; Figure 1), draining

5
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urban waters and the effluents of the wastewater treatment plant of Cayenne city (urban,
commercial, and industrial waters). Station 2 (S2) is located near the confluence of the
Cayenne and Montsinery Rivers, which flow in the Cayenne estuary (4°53°49.2288” N,
52°22°27.714” W; Figure 1). This station receives water from the suburban Cayenne drainage
basin. Station 3 (S3) is located southeast of Cayenne city, 11.7 km from S1 and 4.7 km from
S2, along the Cayenne River (4°51°31.9716” N, 52°23°59.5248” W, Figure 1) in a natural

area farther from human activities.

[ Mangrove cover

§

Figure 1. Location of mangrove sampling stations in FG (South America). S1 is located near
Cayenne city, S2 at the confluence of Cayenne and Montsinery Rivers, and S3 along the
Cayenne River. Mangrove cover is represented in green. (modified from Michelet et al.,
2021).

At each station, three sediment cores (A, B and C) were collected at low tide, within a 10

m? plot and located 2 m away from each other, with plexiglass tubes (internal diameter 10.4

cm, height 20 cm) between November 19 and 21, 2017 (spring tides, dry season). The
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sediment cores were sliced in 0.5 cm thick layers around the two first centimeters, then 1 cm
thick layers until the end of the core. The obtained layers were randomly subsampled to create

3 pools of sediments: 0 to 2 cm, 2 to 10 cm, and 10 cm to the end of the core.

During subsampling, the pH and redox potential (Eh) were immediately measured with a
multiparameter probe (WTW Multi 3500i). The slices were then subsampled for
characterization of environmental parameters: granulometry, TC, total nitrogen (TN), trace
metals and metalloids (TMM), organic contaminants, and microbial analysis. Subsamples
were immediately frozen and stored at —80 °C (for TC, TN, TMM, organic contaminants, and

microbial analyses) or 4 °C (for granulometry analysis).

2.2. Treatment
2.2.1. Measurement of TC and TN and determination of granulometry

Sediments were freeze-dried over 24 h, crushed to powder, and homogenized for
sediment analysis. TC and TN were measured by combustion at 930 °C using a CHN carbon
analyzer (Flash-2000; Thermo Fisher Scientific Inc., Milan, Italy). In FG, the total organic
carbon and TC appeared to be very well correlated, due to the lack of carbonates (Marchand
et al., 2004). Thus, TC can be considered as a proxy for carbon organic content in the
sediments. Granulometry analysis was realized using a laser beam diffraction analyzer

(Partica LA-950V2; Horiba Instruments, Inc.).

2.2.2. Contaminants and TMM analysis
Five groups of organic contaminants—15 polycyclic aromatic hydrocarbons (PAHS),

some of which are frequently monitored according to recommendations by the European
Union and the US Environmental Protection Agency (acenaphthene, acenaphthylene,

anthracene, benzo[ghi]perylene, benzo[a]anthracene, benzo[b]fluoranthene,
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benzo[b+k]fluoranthene,  benzothiophene,  biphenyl,  chrysene, dibenzothiophene,
fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene), 11 polychlorinated biphenyls
(PCB-7, PCB-28, PCB-52, PCB-101, PCB-105, PCB-118, PCB-138, PCB-153, PCB-156,
PCB-169, and PCB-180), 12 organochlorine pesticides (2,4-DDT, 2,4-DDD, 2,4-DDE, 4,4-
DDD, 4,4-DDE, 4,4-DDT, aldrin, chlordecone, dieldrin, endrin, hexachlorobenzene (HCB),
and isodrin), 6 phthalates (DMP, DEP, DBP, BBP, DEHA, and DEHP), and 7
polybromodiphenylethers (BDE 28, BDE 47, BDE 99, BDE 100, BDE 153, BDE 154, and
BDE 183) were extracted from the sediments and analyzed (Michelet et al., 2021). For PAHSs,
PCB, and pesticides quantification, naphthalene ds, biphenyl dio, phenanthrene dio, pyrene
d1o, chrysene di2, benzo(a)pyrene d12, benzo(g,h,i)perylene di> were used as standards. For the
plastic additives, di (2-ethylhexyl) phthalate- d4 and BDE 77 were respectively used as
standards. All standards were obtained from LGC Standard (Wesel, Germany) and Interchim
(Montlugon, France). In order to discriminate the sources of PAHS, the ratios FIt/(FIt + Pyr)
and Ant/(Ant/Phe) (FIt, fluoranthene; Pyr, pyrene; Ant, anthracene; Phe, phenanthrene) were
calculated and compared to the published cut-off values (at > 0.5, PAHs are likely to occur
from biomass burning) (Bréandli et al., 2007; Katsoyiannis et al., 2007).

Twenty-seven TMM were quantified in each sample such as lead (Pb), chromium
(Cn), nickel (Ni), copper (Cu), zinc (Zn), manganese (Mn), mercury (Hg), arsenic (As) and
molybdenum (**Mo). Extraction and analysis protocols are presented in detail in Michelet et
al. (2021). To check the accuracy of the TMM measurements, the certified reference material
MESS-4 (National Research Council Canada) was run before starting the measurements and
many times per analytical batch (Supplementary Data A). The analytical recovery was within
10% compared to certified concentration. Freeze-dried sediment (Christ Gamma 1-16
LSCplus) were analyzed for particulate Hg using a CV-AAS (LECO AMA 254) equipped

with a low Hg optical cell. The method detection limit was 2 pg (3 times the standard
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deviation of the blank samples). The measured values were always within +5% of the

recommended values.

2.2.3. Total DNA extraction and quantification

Sediments were freeze-dried for 48 h and crushed to powder using a sterilized mortar
and pestle. Total DNA was then extracted from 0.25-0.30 g dry sediment with the DNeasy
PowerSoil Kit (Qiagen) according to the manufacturer’s protocol. The DNA extracts were
quantified by fluorometric dosage with a Quantifluor dSDNA system kit (Promega) according
to the supplier’s recommendations. The total DNA measurement (molecular microbial

biomass) was used as a proxy for the microbial biomass.

2.2.4. Quantitative polymerase chain reaction (QPCR)
To determine the bacterial and archaeal abundances in the sediments, 16S rRNA genes

(rrs) were quantified by gPCR. The GoTag qgPCR Master Mix (Promega) was used following
the supplier’s recommendations, using specific archaeal (931F: 5’-
AGGAATTGGCGGGGGAGCA-3’ and m1100R: 5°-BTGGGTCTCGCTCGTTRCC-3") and
bacterial (300F: 5’-GCCTACGGGAGGCAGCAG-3 and univ516R: 5’-
GTDTTACCGCGGCKGCTGRCA-3") primer sets (for a review, see Klindworth et al.,
2013). The gPCR cycles for archaea consisted of initial denaturation (3 min at 98 °C),
followed by 35 cycles of denaturation for 10 s at 98 °C, primer hybridization for 10 s at
62 °C, and elongation for 20 s at 72 °C. For bacteria, the first step of initial denaturation
lasted 2 min at 98 °C, followed by 30 cycles of initial denaturation for 5 s at 58 °C, primer

hybridization for 10 s at 55 °C, and elongation for 12 s at 72 °C.

2.2.5. 16S rRNA gene amplification and sequencing
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To characterize the structure and composition of the bacterial and archaeal
communities, hypervariable regions V4-V5 of the 16S rRNA genes were amplified by PCR
using the 515f (5’-TGT GYC AGC MCG CGC GGT A-3’) and 928r (5’-CCG YCA ATT
CMT TTR AGT-3’) primer sets (Parada et al., 2016). Each 25 pL reaction mix contained 2
uL of DNA (~0.5-5 ng pL 1), 10 uM of 515f forward primer, 10 uM of 928r reverse primer,
10 mM of dNTPs, 0.4 pL of Pfu DNA polymerase (Promega), and 2.5 puL of Pfu buffer
(Promega). The PCR cycles consisted of initial denaturing for 2 min at 94 °C, followed by 35
cycles composed of denaturation for 20 s at 94 °C, primer hybridization for 20 s at 50 °C, and
elongation for 25 s at 72 °C in a T100 thermal cycler (Bio-Rad). PCR products were verified
by agarose gel electrophoresis (1.5% wi/v). Amplicon purification was performed using the
Agencourt AMPure XP system, and quantification, with QuantlT PicoGreen. Primers
containing the Illumina adapters flanked by floating tails complementing those on amplicons
and 5 pL of purified amplicons were added for the second round of amplification. The PCR
cycling started at 94 °C for 2 min, followed by 12 cycles of amplification (94 °C for 1 min, 55
°C for 1 min, 68 °C for 1 min), and a final extension step at 68 °C for 10 min. The purified

amplicons were sequenced on an Illumina MiSeq platform (Genotoul, Toulouse, France).

2.2.6. Sequence analysis

The raw data were processed using the dada2 package (v.3.9) in R studio interface
(v3.2.3) following the workflow described by Callahan et al. (2016). The raw sequence
datasets are available in the National Center for Biotechnology Information database under
the PRINA735070 BioProject. For taxonomic assignment, amplicon sequence variants
(ASVs) were compared with the Silva database (Silva v_132) (Quast et al., 2013). All non-
assigned reads at the phylum level and reads belonging to chloroplasts and mitochondria were

removed from the dataset. To compare the diversity index (specific richness and Shannon
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index), the samples were rarefied at an even number of sequences (4180 reads) with the

phyloseq package (v3.9) (McMurdie and Holmes, 2013).

2.2.7. Statistical analysis
Statistical analyses were performed with R studio software (v3.2.3). As described by

Michelet et al. (2021), a multiple factor analysis (MFA) (Escofier and Pageés, 1994)
constituted by four variable groups (physicochemical parameters, OM, organic contaminants,
and TMM) was performed using FactoMineR (Lé et al., 2008) and factoextra (Kassambara
and Mundt, 2020) packages to compare microbiota and environmental parameters in the three
stations and depths (statistical individuals). Only variables with a large contribution to one of
the axes (cos? > 0.5) were plotted (Figure 2). Differences in environmental parameters and
relative abundance of each taxonomic group were tested and displayed by the Scheirer—Ray—
Hare test and Wilcoxon pairwise test in the R companion package (Mangiafico, 2021). A
forward selection and a permutation test (vegan package) (Oksanen et al., 2020) were
performed on the noncollinear variables (lattice package) (Sarkar, 2008) to determine the
environmental drivers of the microbial community composition. This selection was followed
by permutational multivariate analysis of variance (PERMANOVA) in the vegan package in
order to test the differences in prokaryotic composition between samples. The top 30 phyla Z-
scores were calculated in the ComplexHeatmap package (Gu et al., 2016), and these analyses
were completed with pairwise Spearman correlation (rs) to determine the correlations between

taxa and environmental factors.

3. Results and discussion

3.1. Sampling stations characteristics and specificities

The physicochemical parameters (pH, Eh, granulometry), organic matter characteristics

(TC, TN, TC:TN), TMM levels, and organic contaminant concentrations of sediments from

11
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three sampling sites (S1, S2, and S3) and three depths (0-2, 2-10, and > 10 cm) are recorded
in Table 1 and in Supplementary Tables B. In addition, multivariate analysis (MFA) was used
to determine the sediment characteristics and specificities (Figure 2).

Axis 1 shows a separation between stations, mainly explained by variations in
granulometry, TC, TN, TC:TN, and TMM concentrations (Figure 2B). All sediments were
dominated by the silt fraction (74-89%), but a higher sand value is shown for S1 (18-21%;
p > 0.05), situated closer to the ocean (Figure 2B, Supplementary Data B). At this station,
higher TC (2-6%) was also measured (p < 0.001; Figure 2B; Supplementary Data B), while
the TC levels in the sediment at S2 and S3 (1-2%) were lower and similar to those of nearby
mangroves (Marchand et al., 2006). A slight enrichment in nitrogen was also observed in the
surficial sediment at S1 (TN ~0.3%; Figure 2B, Supplementary Data B). The slight OM
enrichment observed was likely due to the proximity with Cayenne city (urban runoff) and its
wastewater treatment plant. Higher TC: TN ratios were also observed at S1 at all depths (15.1
to 17.9; p < 0.001; Figure 2B, Supplementary Data B). This ratio is usually used as a proxy to
determine the source and fate of OM in water (e.g., Gordon and Goni, 2003; Ramanathan et
al., 2008; Wu et al., 2007). The measured values in S1 are in line with TC:TN ratio generally
observed for terrigenous OM (e.g., mangrove tree leaves and roots), which is known to be
poorly degradable by microorganisms (Marchand et al., 2003). The OM characteristics (TN,
TC, and TC:TN ratio) were very similar at S2 (10.3 £ 1.2) and S3 (9.5 + 0.4). S1 was also
characterized by 1.2 times higher Hg concentration than the two other stations (p < 0.01;
Table 1, Figure 2B). A positive correlation was found between Hg and TC (rs = 0.76; p <
0.001). Previous studies have shown that OM content probably promotes Hg storage in

mangrove sediments (Marchand et al., 2006; Lei et al., 2019).

12



298 Table 1. Levels of organic contaminants and metals in sediments at three depths (0-2, 2-10, > 10 cm) at three sampling stations (mean £ SD, n =
299  3). Bold numbers correspond to values superior to OSPAR ERL or NOAA threshold.
300
Station 1 Station 2 \ Station 3
Depth 0-2cm | 2-10cm | >10cm 0-2 cm 2-10cm |  >10ecm | 02cm | 210cm |  >10cm
Organic contaminants concentrations (ng g ' d.w.)
ddd24 0.1+£0.1 0 0.3+0.3 03105 02+0.1 05+0.5 0 0 0
dde44 01+£01 0 0.3+0.3 0.1+0.2 02+0.2 02+0.3 0 0 0
DBT 0 2.8+3.9 24+4.2 44+7.6 24+4.1 10.1+17.4 11.2+126 14+24 6.4+1.6
Dieldrin 16+0.3 1.7+0.3 1.8+0.3 1.9+0.2 1.9+0.3 20+0.1 0 0 0
HCB 1.1+1.0 07+£0.1 1.4+09 1.9+22 06+04 2.8+2.6 0 0 0
Naphthalene 0 0 0 0 28.1+48.6 | 2275+394.1 | 274.1+191.6 | 1105+33.6 | 232.2+334
PCBs 1.2+0.5 11+0.1 22+09 14+43 32+09 3.4+30 0.1+0.1 0 0
Phenanthren | 85+ 1.2 125+5.0 6.7+6.9 7.3+4.8 8.1+5.1 14.1+135 17.0+ 189 6.0+ 1.6 9.3+13
e
TMM concentrations (ug g~ d.w.)
Al(mgg™) | 109.3+58 | 113.2+15 | 107.8+5.0 | 115.8+3.7 1150+ 3.7 114.7+£6.0 1183+ 15 1179+ 05 116.9+6.0
e 0.09+£0.02 | 0.08+0.01 0.08+0 0.07+0 0.07+0.01 0.07+0 0.07+0 0.06+£0 0.07x0
Cr 78.1+5.0 825+35 772145 84.4+3.6 843123 84.9+4.4 87.5+14 87.7+05 87.2+45
Hg(ngg™) | 64.2+5.0 56.3+2.3 57.5+44 44.7+0.8 484 +1.2 47.9+0.3 48.8+1.3 53.2+0.6 509+ 34
Mn 436.7 +44.0 434.4 + 4243 + 1328.4 + 696.7 + 560.0 + 80.0 1136.6 + 999.2 + 840.0 £ 224.3
225.6 68.4 404.2 291.3 100.5 227.2
Mo 26+0.2 1.8+0.1 1.9+0.6 1.2+0.2 15+0.3 1.2+0.1 1.3+0.1 1.6+0.1 1.4+0.1
Zn 131.7£13.3 149.20 £ 1345+ 1494 £5.2 147.8 £6.8 146.6 £ 8.0 160.2 £4.2 154.0+ 2.6 152.4£6.8
4.18 14.2
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The Hg concentrations measured in the Cayenne estuary correspond to natural background
levels observed in mangrove estuarine sediments in FG (Marchand et al., 2006) and were
below the NOAA ERL sediment quality guidelines (low effects range) (Burton, 2002). The
concentrations of ®*Mo (2.6-1.8 ug g %) and **'Cd (0.07-0.08 pg g ) were also higher at S1 (p
< 0.001; Table 1, Figure 2B). On the contrary, Cr, Zn, Al, and Mn concentrations were lower
at S1 (p < 0.01). At S2 and S3, the Cr content (84.5 pug g %) was slightly higher than the
NOAA ERL values (80 pug g*) (Burton, 2002) and higher than the range already observed in
FG (Marchand et al., 2006). At S3, the Zn concentration (155.5 pg g ) in the sediments was
also slightly higher than the ERL value (150 pg g%). As concluded by Marchand et al. (2006),
even if the origin of metals is difficult to clearly define, metals in FG mangrove sediments
most probably result from diagenetic processes rather than anthropogenic inputs. Observed
differences between stations are probably related to the differences in granulometry (e.g., sand
content) and TC contents.

The second axis of the MFA discriminated the samples based on pH, redox potential, and
organic contaminant concentration (Figure 2B). The pH of sediment pore water was 6.2 on
average (min 5.7, max 6.5), but clear differences in pH profiles were observed between
stations. Notably, pH gradients existed within the sedimentary columns at S1 and S3, where
increases and decreases greater than 0.5 pH units were observed, respectively. The sediments
were dominated by aerobic redox conditions in S1 and S3 (Eh ~100-200 mV) and were more
reduced in S2 (Eh ~-100 mV) (Figure 2B, Supplementary Data B). Significant differences in
pesticide, PCB, and PAH concentrations were also observed between stations (p < 0.05;
Figures 2B, 2D). Although organochlorine pesticides (HCB, ddd24, dieldrin) and PCBs were
detected at S1, the highest concentrations were observed at S2 (Table 1, Figure 2B). These

compounds are among the 12 most persistent organic pollutants (POPs) according to the
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325  Stockholm Convention on POPs (2001) and are also listed as priority chemicals in the EU

326  Water Framework Directive 2013/39/EC (European Union, 2013).
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328  Figure 2. Multiple factor analysis of data obtained from different stations with four groups of

329  variables (cos? > 0.5): physicochemical parameters (green), OM (orange), organic
330 contaminants (purple), and TMM (blue). Graphs represent (A,C) individual factor plots and
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(B,D) correlation plots on axes 1 and 2 (A,B) and 1 and 3 (C,D). Dots correspond to 26
samples from three sampling stations: S1 (green), S2 (blue), S3 (red). A, B, C indicate
replicates; 1: 0-2 cm; 2: 2-10 cm; 3: > 10 cm.

Among these compounds, dieldrin was the only one to show values close to or slightly
higher than the ERL (2 ng g 1) for about half of the samples at S2 (Table 1). This pesticide
was used extensively in agriculture as an alternative to DDT until its use was forbidden by the
French government in 1972. Measured HCB concentrations (up to 5.7 ng g™t) were under the
no-effect concentration value of 20 ng g* for chronic exposure of benthic organisms (OSPAR
ERL value) (Long et al. 1995). However, the quality of the sediment could be poor (class 3)
according to the environmental quality classification of sediment in Norway (Bakke et al.,
2010). Following this classification, considering the sum of DDT, the sediments would be
considered as good (class 2) or even, for some samples, as background (class 1) (Long et al.,
1995). The maximum value of the sum of PCBs (6.8 ng g’*; Table 1) was far from the
sediment ERL guideline value of 23 ng gt (Long et al., 1995). The maximum value of the
sum of PCBs (6.8 ng g; Table 1) was far from the sediment ERL guideline value of 23 ng
g ! (Long et al., 1995). By contrast, compared to the other two stations, S3 was characterized
by elevated concentrations of naphthalene (96.4 to 468.9 ng g %; Table 1), one of the 16 PAHSs
considered to be priority pollutants by the EPA (Bojes and Pope, 2007). According to the
values of the FIt/(FIt + Pyr) ratio, usually used to discriminate the sources of PAHS,
hydrocarbons detected in Cayenne River sediments are from diesel and wood combustion
(Pereira et al., 2019; Pichler et al., 2021). When present in the sediments, naphthalene levels
were always higher than the NOAA threshold effect level (34.57 ng g%), and for some
samples, were above the NOAA ERL value (160 ng g ) (MacDonald et al., 2000).

The study of Michelet et al. (2021) on the same cores showed low averaged
concentrations of the sum of the different organic contaminants measured (PAHSs,

organochlorine pesticides) in the whole sedimentary cores that were under the regulatory
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thresholds. By considering the mean individual concentrations of compounds at each depth
layers (0-2 cm; 2-10 cm; > 10 cm), it clearly appears however that some compounds were
above the regulatory thresholds in some layers at stations 2 et 3 (i.e. dieldrin and naphthalene,

respectively).

3.2. Prokaryotic community of mangrove sediments of Cayenne estuary
3.2.1. Estimations of community size

The total DNA extracted from the sediments (the molecular microbial biomass) was
used to estimate the size of the microbial pool at the sampling stations (Dequiedt et al., 2011,
Terrat et al., 2012). This proxy includes the prokaryotic communities and micro eukaryotic
inhabitants of mangrove sediments (e.g., fungi and meiofauna). At stations 1 and 3, molecular
microbial biomass was 3.1 + 0.4 pg g* dw. and 3.98 + 052 gt d.w., respectively
(Supplementary Data C). Higher values were observed in the surface layer at station 2 (p =
0.05; 7.3+ 0.8 pug g* d.w). These molecular microbial biomass values correspond well to
values reported in other mangrove sediments (~11-20 pg g %) (Fernandes et al., 2014; Jiang et
al., 2011).

Within the microbial communities, differences were only observed in the size of the
bacterial populations in the surface layer (p < 0.001). Indeed, the number of bacterial 16S
rRNA gene copies was higher at station 1 than at stations 2 and 3 (p < 0.01) on the surface
and reached 7.9 x 10° copies g~* d.w. vs. 1.4 x 10° and 4.9 x 10° copies g~* d.w., respectively
(Supplementary Data C). The environmental conditions at station 1 and, notably, the higher
OM content (1.5- to 4-fold more than other stations). seemed to promote bacterial growth (TC
and TN rs= 0.7, p < 0.01) (Kaiser and Guggenberger, 2003; Rocha et al., 2016). By contrast,
the archaeal abundance was not significantly different between the three stations at any depth
(p > 0.05; 5.8 x 10° copies g* sediment d.w.; Supplementary Data C) and corresponded to

values earlier observed for other mangrove sediments (Li et al., 2019; Zhou et al., 2017).
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3.2.2. Structure and composition of mangrove microbiota

After the filtering and trimming processes, 7759 ASVs were assigned (465 + 167
ASVs by sample; Supplementary Data C), and 650 ASVs that were not assigned, representing
0.6% of the community, were removed. There was no significant difference in alpha diversity
between stations (p > 0.05); specific richness and Shannon index fluctuated between 220 and
817 ASVs and 5.1 to 6.3, respectively (Supplementary Data C). By contrast to the soil
microbiomes in Brazilian mangroves, microbiota associated with the Cayenne estuary’s
mangroves seems less diverse (Tavares et al., 2021).

The taxonomic composition of the mangrove microbiota encompassed 50 phyla
(Supplementary Data D). These communities were predominantly composed of members of
Proteobacteria (40-58%), Chloroflexi (9.0-22.3%), Acidobacteria (4.7-13.1%), Bacteroidetes
(3.5-13.1%), Planctomycetes (3.7-6.9%), Crenarchaeota (1.0-9.4%), Thaumarchaeota (0.7-
4.7%), Gemmatimonadetes (2.3-4.7%), and Nitrospirae (0.65-3.6%) (Figure 3). The observed
prevalence of the most abundant phyla (> 3% of relative abundance) is in accordance with the
literature (Andreote et al., 2012; Huergo et al., 2018; Tavares et al., 2021) suggesting that
Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, and Planctomycetes constitute the
core microbiome of mangrove sediments in the AEP region. Differences in community
composition were observed between depths and stations (PERMANOVA, p < 0.05). At the
phylum level, the heatmap clustering analysis highlighted several microbial patterns
(Figure 3). In the surface mangrove sediment of the three stations, the relative abundance of
the major phyla Proteobacteria, Bacteroidetes, Epsilonbacteraeota, and Kiritimatiellaeota was
higher. Bacteroidetes and Kiritimatiellaeota are regarded as specialists in the degradation of
macromolecules, such as complex polysaccharides and proteins, to obtain carbon, amino
acids, and sulfur (McBride, 2014; Sackett et al., 2019). Both phyla could have a pivotal role in
initiating the mineralization of high-molecular-weight organic matter in mangrove sediments.

Within the Proteobacteria, Desulfobacteraceae (1.1-6.4%), Desulfobulbaceae (1.8-4.4%), and
18
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Desulfarculaceae (0.4-2.2%) were dominant (Supplementary Data E). These three families are
strictly anaerobic and chemoorganoheterotrophic, and they belong to the group of sulfate-
reducing bacteria (Kuever, 2014). They are commonly observed in mangroves (Huergo et al.,
2018; Gong et al., 2019). Mangrove sediments contain high levels of OM and sulfates; and
frequently experience anaerobic conditions (Correia and Guimaraes, 2017), creating favorable
conditions for sulfate reduction (Gros et al., 2018; Fernandez-Cadena et al., 2020). Within the
Epsilonbacteraeota, sulfur-oxidizing bacteria Sulfurimonas (Thiovulaceae) and Sulfurovum
(Sulfurovaceae) were the most abundant. These aerobic bacteria oxidize the sulfide produced
by anaerobic sulfate-reducing bacteria, suggesting transitions between oxic and anoxic
conditions in the surface sediment, probably related to tidal cycles and benthic infaunal
activities. Changes of the prokaryotic communities were observed between the surficial
sediment and the other sedimentary layers. Amongst the most abundant phyla,
Planctomycetes and Calditrichaeota were found to be enriched in deeper sediments at S1 and
S2 (Figure 3 and Supplementary Data D). Moreover, a significant increase in the relative
abundance of Crenarchaeota and Gemmatimonadetes was observed at S1 and S2,
respectively. Planctomycetes phylum comprises members related to Planctomycetia and
Phycisphaerae, but surprisingly no known anaerobic ammonia-oxidizing microorganisms
belonging to “Candidatus Brocardiales” were observed. Calditrichaeota was mostly
represented by the genus Calorithrix, but the genus Caldithrix is specifically observed in
deeper sediments at S1 and S2. The cultured Calditrichaeota are anaerobic,
chemoorganoheterotroph, and are able to degrade detrital proteins through the use of
extracellular peptidases (Marshall et al., 2017). Members of the phylum Gemmatimonadetes
are characteristically detected in the soil and mangrove microbiomes (Takayasu et al., 2019;
Zhang et al., 2019). Despite their widespread distribution, their physiology and ecology are

poorly described (Zeng, et al., 2021). Finally, a strong vertical stratification was observed for
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Crenarchaeota at S1 with higher relative abundances in the deeper sediments than in surficial
sediments. ldentified members of Crenarchaeota belong exclusively to Bathyarchaeota, a
taxon of global generalists that are widespread in anoxic sediments (Zhou et al., 2018).
Sediment depth is known to be one of the determinants in the structuration of the archaeal
communities in mangrove sediment, principally due to the biogeochemical zonation along
with depth profile (Zhou et al., 2017). Crenarchaeota and Lokiarchaeota usually dominate the
archaeal communities in subsurface sediments, while Thaumarchaeota and Euryarchaeota

dominate in surface sediments.

[ Proteobacteria
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Kiritimatiellacota

Verrucomicrobia
Thaumarchaeota
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Figure 3. Z-score heatmap of top 30 phyla (representing 94.3% of total community) at three
sampling stations (S1, S2, S3). Red indicates higher Z-scores (higher relative abundance
compared to mean of abundance of that phylum) and blue indicates lower Z-scores (lower
relative abundance).
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A different trend in the vertical stratification of the microbial communities was
observed at S3. In this station, Nitrospirae, Acidobacteria, and Chloroflexi were found to be
enriched in the subsurface layers. Within the phylum Nitrospirae, Nitrospira and
Thermodesulfovibrio were particularly abundant at S3. Nitrospira plays a pivotal role in the
second step of nitrification as nitrite-oxidizing bacteria (NOB) in diverse natural ecosystems
(Daebeler et al., 2014) or in wastewater treatment plants (Daims et al., 2011). They are often
associated with ammonia oxidizing archaea (AOA) for the two-step process of nitrification.
Nitrospira members seem also to be able to achieve complete ammonia oxidation
(comammox; Daims et al., 2015). This genus is adapted to oligotrophic conditions (Daims
and Wagner, 2018; Koch et al., 2019) but little is known about potential factors driving niche
specialization between comammox and canonical ammonia oxidizers. Thermodesulfovibrio
representatives occur in anaerobic environments, where they contribute to the degradation of
organic compounds and indirectly to the production of methane (Daims, 2014). Among the
less abundant phyla, Latescibacteria (family Latescibacteriaceae), Entotheonellaeota (family
Entotheonellaceae) Dadabacteria (order Dadabacteriales), Rokubacteria (order Rokubectiales)
were also more abundant in the deepest layer at S3 (Figure 3; Supplementary Data D).

Some studies have shown that factors such as pH, TC, TN, and granulometry could
modulate the observed microbial patterns in mangrove sediments (Colares and Melo, 2013;
Zhang et al., 2019; Li et al., 2021). The complex distributions that can be observed are
notably the results of the microbial lifestyles (e.g., heterotroph or oligotroph, anaerobe or

aerobe) with respect to the local environmental conditions.

3.2.3. Drivers of mangrove microbiota in the Cayenne estuary
Differences in microbial community composition among the sediment samples were

found to have significant correlations with four environmental factors (granulometry, dieldrin,
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pH, and TC), together explaining R%adj = 31.2%: sand percentage (p < 0.01, R%adj = 0.12),
dieldrin (p < 0.01, R%adj = 0.11), pH (p < 0.01, R%adj = 0.04), and TC (p < 0.01, R%dj =

0.04).

Several studies reported the effects of clay, sand, and silt contents on the microbial
communities in soils (e.g., Dequiedt et al., 2011) and mangrove sediments (Colares and Melo,
2013). Sessitsch et al. (2001) studied the effect of soil particle size fractions on microbial
population structures. These authors demonstrated that the microbial structure was
significantly affected by particle size, with higher diversity observed for microbiota inhabiting
soil composed of smaller size fractions. The authors hypothesized that the low nutrient
availability, protozoan grazing, and competition with microbes (i.e., fungi) could explain the
reduced diversity in larger size fractions. Colares and Melo (2003) studied the relationship
between microbial community structure and environmental factors in Brazilian mangrove
sediments. Their redundancy analysis revealed that the silt—clay percentage was the most
important factor controlling the microbial profiles. Particle size fractions (sand, silt, and clay)
differ in mineralogical composition (Acosta at al., 2011). They have specific surface reactivity
yielding the formation of organomineral complexes with different concentration, composition,
and availability of associated OM (Christensen, 2001). As a consequence, these fractions
represent various microenvironments in terms of organic substrates, but also oxygenation,

accessible water, and nutrients, promoting the development of specific communities.

An unexpected outcome in this study was the identification of dieldrin as one of the
main drivers of the distribution of microbial communities in the Cayenne estuary. To date,
studies showing a shift in microbial communities as a result of organochlorine pesticides are
scarce (Sangwan et al., 2012; Tejada et al., 2015; Wu et al., 2018). The effect of dieldrin on

microbial communities was observed in the gastrointestinal system of zebrafish (Hua et al.,
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2020), with an increased abundance of members belonging to Verrucomicrobia and a decrease
in Clostridia and Betaproteobacteria. Organochlorines can also induce shifts in microbial
functions in soils, such as through suppression of nitrogen-fixing bacteria that have a pivotal
role in replenishing natural nitrogen fertilizer in soil (Poltera, 2007).

In biogeography studies, pH was recognized as another factor determining the
microbiota structure of soils in terms of richness, diversity, and composition (Fierer and
Jackson, 2007; Lauber et al., 2009; Dequiedt et al 2011). Chen et al. (2016) and Li et al.
(2021) showed that in mangroves, pH is also one of the main factors explaining the microbial
community composition in sediments regardless of the season or developmental stage of the
mangrove forest. pH was also shown to be the best predictor of community structure and the
relative abundance of major dominant lineages at the continental scale in North and South
America (Lauber et al., 2009). Most microorganisms have a low tolerance to pH variations
that affect biogeochemical processes and their activities and related biogeochemical processes
(Nicol et al., 2008).

Other studies have shown that mangrove microbiota composition responds strongly to
other physicochemical properties of the sediment, such as TC content (Colares and Melo,
2003; Zhang et al 2019; Li et al., 2021). Colares and Melo (2003) highlighted a significant
correlation between microbial community structure and OM content in Brazilian mangroves.
Zhang et al. (2019) characterized the microbiota from six Chinese mangroves and showed that
mean annual precipitation and TC were the main factors explaining the distribution of the
community. Tidal cycles (Zhang et al., 2018) and variables associated with the vegetation
above (e.g., Jiang, et al., 2013; Gomes et al., 2014, Luis et al., 2019) have also been reported
to be drivers of the distribution and structure of bacterial communities of mangrove soils and

sediments.
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3.3. Potential microbial bioindicators of anthropogenic pressures

Potential microbial bioindicators of anthropogenic pressure were found based on the
correlations between specific taxa and the variables associated with the three types of
anthropogenic pressure identified along the urban-to-rural gradient of the Cayenne estuary

(OM enrichment and organochlorine and naphthalene contamination).

3.3.1. Microbial signature of slight OM enrichment in mangrove

Several microbial taxa exhibited a negative or positive correlation with OM
enrichment (TC), making them serious candidates for bioindication purposes (Figure 4).

This is the case of the Bathyarchaeota class, formerly known as the Miscellaneous
Crenarchaeotal Group (MCG), (0.93-8.1%), which was positively correlated with TC (rs= 0.6,
p < 0.01; Figure 4A, Supplementary Data F). In mangrove sediments, Bathyarchaeota is the
dominant archaeal taxon (Zhou et al., 2017, 2018), its abundance was suggested to be mainly
correlated with total organic carbon content (Xiang et al., 2017; Yu et al., 2017). This
observation may be associated with their heterotrophic lifestyle and their ability to
anaerobically use detrital proteins, fatty acids/aromatic compounds, polymeric carbohydrates,
and other OM (Lazar et al., 2016; Meng et al., 2014). Despite the diversity of Bathyarchaeota
(over 25 subgroups) (Zhou et al., 2018) and their environmental preferences, the abundance of
the overall population seems to be a good indicator of OM enrichment in mangrove.

The levels of Euryarchaeota (0-1.6%) and Asgardaeota (0-0.88%), both highly
abundant in anaerobic marine sediments (Hoshino et al., 2020), were also correlated with TC
(both rs = 0.7, p < 0.01; Figure 4A). Almost all the ASVs in the phylum Euryarchaeota were
included in the Thermoplasmata sublineage, especially in the anaerobic heterotrophic MBG-D
archaeal group (newly named Thermoprofundales). In recent years, single-cell genomic and
metagenomic approaches have shown that MBG-D archaea are capable of exogenous protein

mineralization and acetogenesis in marine sediment (Lazar et al., 2017; Lloyd et al., 2013). In
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mangrove sediments, these archaea appear to be capable of transporting and assimilating
peptides and generating acetate and ethanol through fermentation (Zhou et al., 2019). In the
phylum Asgardaeota, the majority of ASVs belong to Lokiarchaeota, which vary in their

metabolic activity, and their in situ activities are still largely unknown (Yin et al., 2021).

A TC PCB HCB Dieldrin ~ Naphthalene
Acidobacteria -
Asgardaeota - - -
Bacteroidetes -
Calditrichaeota -
Crenarchaeota - . - . - . Spearman
Euryarchaeota -
] . 0.4
Latescibacteria -
Modulibacteria - - - - -
Nitrospirae- i 04
Proteobacteria -
Spirochaetes
Thaumarchaeota -
Verrucomicrobia - - - - -
B TC HCB Dieldrin ~ Naphthalene
Acanthopleuribacteraceae - - - -
Beggiatoaceae
Calditrichaceae -
Chitinophagaceae -
Desulfarculaceae - Spearman
Desulfobacteraceae - ! 0.4
Geobacteraceae -
Microscillaceae -

Nitrosopumilaceae -
Nitrospiraceae -
Solibacteraceae -

Synthrophobacteraceae -

Spearman’s rank correlation coefficient heatmap showing relationships between
environmental variables and interesting taxa. A: phylum level; B: family level. Statistically
significant Spearman correlations are highlighted (*p < 0.05, **p < 0.01, ***p < 0.001).
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By contrast, Nitrospirae (rs = —0.7; p < 0.01), Acidobacteria (rs = —0.6; p < 0.01),
Thaumarchaeota (rs = —0.6; p < 0.01), and Latescibacteria (rs = —0.6; p < 0.01) were
negatively correlated with TC (Figure 4A). The majority of Thaumarchaeota ASVs (38
ASVs) belong to “Candidatus Nitrosopumilus”, which are mesophilic, autotrophic, and
aerobic AOA. Some groups of Thaumarchaeota are recognized as major contributors of
ammonia oxidation (the first step in nitrification) in marine oligotrophic ecosystems (Pester et
al., 2011; Wang et al., 2019) and could be dominant in some ecosystems, such as in the
Amazon River and its plume (Pinto et al., 2020). Ammonia oxidation is known to be inhibited
by several parameters, notably organic carbon content (Pester et al., 2012), OM quality
(Strauss and Lamberti, 2000), and the TC:TN ratio (Bates et al., 2011). AOA are adapted to
low ammonium concentrations and are outcompeted by bacteria when concentrations become
higher (Nakagawa and Stahl, 2013). Sensitivity to slight OM enrichment was also observed
for the Nitrospira genus (19 ASVs; 0-0.9%; rs = —0.68; p < 0.05), the NOB and comammox
bacteria. Latescibacteria (formerly WS3) represents a ubiquitous phylum found in terrestrial,
aquatic, and marine environments (Youssef et al., 2015). Metabolic reconstruction suggests a
saprophytic lifestyle for this candidate phylum, with a marked capacity for decomposition of
OM (proteins, lipids, and polysaccharides) predominant in plant, bacterial, fungal, crustacean,
and eukaryotic algal cell walls (Farag et al., 2017; Youssef et al., 2015). Finally, a negative
correlation between Acidobacteria abundance and TC content was observed in our dataset
(Figure 4A), as it was also in terrestrial ecosystems, leading to the conclusion that members of

this taxon may be oligotrophic bacteria (Fierer et al., 2007).

3.3.2. Taxa sensitive to organochlorine compounds

Correlations between several microbial taxa and organochlorine (dieldrin, PCB, and

HCB) concentrations were observed (Figure 4; Supplementary Data F).
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Calditrichaeota (Calditrichaceae family) and Spirochaetes (Spirochaeta genus) were
significantly correlated (rs < 0.7; p < 0.05) with PCB, HCB, and dieldrin content (Figure 4).
Spirochaetes are indigenous to sulfide-rich mud or sediments (Tanner et al., 2000; Leschine et
al., 2006) and are typically found in PCB-contaminated waters (Dong et al., 2018) or
contaminated sediments (Quero et al., 2015). Calditrichaeota and Spirochaeota are known to
be very diversified and to have a wide range of ecological niches (Leschine et al., 2006;
Marshall et al.,, 2017). Until now, these organisms have never been associated with
dechlorination of organochlorine compounds; however, our results suggest that
Calditrichaeota and Spirochaeta could have a role in the degradation of PCB, HCB, and
dieldrin, or at least could be tolerant to these compounds. Future experimental studies are
needed to validate this finding (e.g., biodegradation assays). “Candidatus Modulibacteria”
phylum (previously named KS3B3 or GNO03) was also positively correlated with the three
organochlorine compounds. By contrast, “Candidatus Rokubacteria” (0-1.5%; previously
named SPAM or candidate division NC10) was negatively correlated with PCB (rs=—0.6; p <
0.05), HCB (rs= —0.6; p < 0.001), and dieldrin (rs = —0.7; p < 0.01). This phylum is found in
diverse terrestrial ecosystems such as alpine soil, crop soil, or copper mine soil (Becraft et al
2017), and this is the first time that it is identified in a marine ecosystem. The lack of
knowledge on “Candidatus Modulibacteria” and “Candidatus Rokubacteria”, two phyla
without cultivable representatives, does not allow us to explain the significant correlations
with organochlorine compounds in this study. The relative abundance of the Verrucomicrobia
phylum was significantly higher at S3 than at S1 and S2 (0.49%; p < 0.05). This taxon is
related to the Planctomycetes—Verrucomicrobia—Chlamydia superphylum, has diverse
metabolism capabilities (such as methanogenesis and degradation of sulfated polysaccharides)
(Freitas et al., 2012; Van Vliet et al., 2019), and is typically found in mangrove sediments

(Liang et al., 2007; Nogueira et al., 2015). It was negatively correlated with PCB (rs= —0.6; p
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< 0.05), HCB (rs = —0.6; p < 0.05), and dieldrin (rs = —0.5; p < 0.05), suggesting that
Verrucomicrobia is sensitive to the organochlorine compounds in mangrove sediments.

At the family level, some taxa seem particularly interesting in their response to PCB
pressure, notably in the Desulfobacterota (formerly Deltaproteobacteria) phylum. Two
families were significantly correlated with PCB content (Figure 4B): Desulfobacteraceae (rs =
0.6; p < 0.05) and Desulfarculaceae (rs = 0.6; p < 0.001). These Desulfobacterota are strictly
anaerobic and sulfate-reducing bacteria, and are indirectly implicated in PCB dechlorination
by promoting organohalide respiration of PCB dechlorinating bacteria (Praveckova et al.,
2016; Matturro et al., 2020). The Acanthopleuribacteraceae family (Acidobacteria) is known
to degrade PCB and is considered very useful in remediating polluted environments
(Falkiewicz-Dulik et al., 2015). The significant response of Acanthopleuribacteraceae (rs =
0.6; p < 0.01) to the low quantity of PCBs measured makes this taxon a particularly

interesting bioindicator of PCB contamination.

3.3.3. Bacterial signature of naphthalene contamination in mangrove

Although naphthalene content was above the regulatory threshold, it was not identified
as one of the main drivers of mangrove microbiota along the estuary. However, the levels of
some taxa were positively correlated with naphthalene content, such as uncultured
Rokubacteria phylum (rs = 0.5, p < 0.05; Fig. 4A). As seen previously, Rokubacteria are not
well described, but their diversified genome reveals a potential implication in the nitrogen,
methane, and sulfur cycles (Hug et al., 2013; Becraft et al., 2017). However, a meta-analysis
of the rokubacterial MAGS conducted by Kroeger et al. (2018) showed that taxa members
have several features involved in metabolizing long and short hydrocarbons in soil via two
enzymes, cytochrome P450 and alkane 1-monooxygenase, respectively. Cytochrome P450
has been described as one of the enzymes involved in the naphthalene biodegradation

(Mohapatra and Prashant, 2021) which may explain the observed positive correlation. These
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details can explain the positive correlation observed in this study. Within the Acidobacteria,
the Solibacteraceae family was also positively correlated with naphthalene (rs= 0.7; p < 0.01;
Figure 4B). Members of this family possess some functional genes that allow them to degrade
branched hydrocarbons such as pristane (Wang et al., 2016), yet it has not been proven if they
can degrade PAHSs.

A correlation between the Chitinophagaceae family and naphthalene was observed
(rs= 0.6; p < 0.05). Strains of this family have been isolated from freshwater sediments and
soil contaminated with petroleum (Blanco-Enriquez et al., 2018). Members of
Chitinophagaceae are known to be able to degrade biopolymers (Gomes et al., 2010) and to
belong to microbial consortia that remove PAHs. Specifically, some members of
Chitinophagaceae have the capacity to degrade pyrene and benzo[a]pyrene in water (Blanco-
Enriquez et al., 2018), but no significant correlation was found in this study between
Chitinophagaceae and these two compounds, which were barely detected in the samples. No
direct link between Chitinophagaceae and naphthalene degradation is reported in the
literature. Similarly, Geobacteraceae, a sulfur-reducing and iron-reducing Desulfobacterota
bacteria (Kleindienst et al., 2012) were positively correlated with naphthalene (rs = 0.6; p <
0.01; Figure 4B). Some studies have shown that this family has the capacity to degrade
aromatic compounds and PAHSs (Coates et al., 2001; Holmes et al., 2004; Durante-Rodriguez
et al., 2018), and it was used in the bioremediation of organic contaminants in the soil

subsurface (Holmes et al., 2004).

4. Conclusion

Our study shows that estuarine mangroves of the Cayenne River are globally exposed
to low anthropogenic pressures. However, we detected low OM enrichment, and
organochlorine and pyrolytic PAH pollution derived from human activities, mainly at the

stations closest to the city of Cayenne (S1 and S2). The core microbial taxa are similar to the

29



659

660

661

662

663

664

665

666

667

668
669
670
671
672
673

674

675

676

677

678

679

680

681

682

683

684

one observed in Brazil mangroves, which are more impacted by human activities.
Granulometry, dieldrin concentration, pH, and TC content appear to drive the mangrove
microbiota. Taxa of interest were identified that are correlated to OM enrichment and
organochlorine (dieldrin, PCB and HCB) and naphthalene contamination, represent potential
bioindicators of the health status of the mangrove ecosystem. However, much more research
is needed to assess the structural, spatial, and temporal distributions of microbial communities
in mangroves as well as their response to growing anthropogenic pressures in an overall still

relatively preserved environment.
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Figures legends :

Figure 1. Location of mangrove sampling stations in FG (South America). S1 is located near
Cayenne city, S2 at the confluence of Cayenne and Montsinery Rivers, and S3 along the
Cayenne River. Mangrove cover is represented in green. (modified from Michelet et al.,
2021).

Figure 2. Multiple factor analysis of data obtained from different stations with four groups of
variables (cos? > 0.5): physicochemical parameters (green), OM (orange), organic
contaminants (purple), and TMM (blue). Graphs represent (A,C) individual factor plots and
(B,D) correlation plots on axes 1 and 2 (A,B) and 1 and 3 (C,D). Dots correspond to 26
samples from three sampling stations: S1 (green), S2 (blue), S3 (red). A, B, C indicate
replicates; 1: 0-2 cm; 2: 2-10 cm; 3: > 10 cm.

Figure 3. Z-score heatmap of top 30 phyla (representing 94.3% of total community) at three
sampling stations (S1, S2, S3). Red indicates higher Z-scores (higher relative abundance
compared to mean of abundance of that phylum) and blue indicates lower Z-scores (lower
relative abundance).

Figure 4. Spearman’s rank correlation coefficient heatmap showing relationships between
environmental variables and interesting taxa. A: phylum level; B: family level. Statistically
significant Spearman correlations are highlighted (*p < 0.05, **p < 0.01, ***p < 0.001).
Table legend:

Table 1. Levels of organic contaminants and metals in sediments at three depths (0-2, 2-10, >

10 cm) at three sampling stations (mean + SD, n = 3). Bold numbers correspond to values
superior to OSPAR ERL or NOAA threshold.
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Supplementary Data A: Concentrations of TMM in the blank (ug L-1) and calculated limits of detection (LOD) and quantification (LOQ) (ug
L-1) for water samples.

Element blank LOD | LOQ
Ag 0.002 0.001 | 0.003
Al 0.5 0.3 1
As 0.002 0.003 | 0.01
Ba 0.02 0.005 |0.015
Be 0.001 0.001 | 0.003
Bi 0.002 0.001 | 0.003
Cd 0.001 0.001 | 0.003
Co 0.001 0.002 | 0.006
Cr 0.005 0.003 | 0.01
Cs 0.001 0.001 | 0.003
Cu 0.02 0.01 0.03
Fe 0.02 0.02 0.06
Li 0.005 0.002 | 0.006
Mn 0.005 0.003 | 0.01
Mo 0.005 0.003 | 0.01
Ni 0.001 0.001 | 0.003
Pb 0.001 0.001 | 0.003
Rb 0.005 0.003 | 0.01
Sb 0.001 0.002 | 0.006
Sn 0.002 0.001 | 0.003
Sr 0.02 0.01 0.03
Ti 0.05 0.03 0.1
U 0.001 0.001 | 0.003
\" 0.002 0.002 | 0.006
Zn 0.010 0.005 |0.015
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Supplementary data B: Averaged physicochemical characteristics over depth (0-2 cm; 2-10 cm; > 10 cm) from the three sampling stations

(mean = SD, n=3).

Station 1 Station 2 Station 3
Depth 0-2cm 2-10cm >10cm 0-2 cm 2-10 cm >10cm 0-2 cm 2-10cm >10cm
Physicochemical parameters
pH 6.0£01 |6.3+x00 6.5+£0.1 6.4+0.2 6.2+0.2 6.5+£0.1 6.4+0.1 6.0£0.3 57+0.1
Redox potential (mV) | 198 +34.6 | 177.6 £16.8 | 26.1 +39.3 | -1425+55.5 | -50.3+61.5 | -77.6 £24.8 | 165.0+ 15.2 | 152.6 + 11.9 | 164.7 + 14.7
Granulometry (%)
Clay 19+07 |39%10 49+0.8 80x11 8.1+£04 8.6+0.8 78+£13 6.7+£05 7.2+0.2
Silt 76.1+45 | 73.7+3.0 76.1+£09 |88.7+26 864+13 [858+20 [889+13 87.8+2.1 88.2+1.7
Sand 209+46 |215+4.0 182+0.8 |3.0x15 51+£11 53%21 3.0+£0.3 50£25 22+1.7
Carbon TC and nitrogen TN contents
TC (%) 55+13 [3.0+x04 25+0.3 1.7+£03 19+04 1.3+04 15+£0.2 1.3+£0.2 1.7+£0.2
TN (%) 03+£01 [02£0.0 0.2+£0.01 |0.2+0.15 0.2 £0.03 0.1+ 0.01 0.2+0.01 0.2+£0.01 0.1+£0.01
TC:TN (mol/mol) 179+21 |143+£13 151+15 |98+0.38 11.5£1.2 9.7x0.7 9.7+£04 9.7+£0.2 9.1+£05
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Supplementary data C: Values of the molecular microbial biomass, bacterial and archaeal 16S rRNA gene copies number and alpha diversity

indexes (specific richness and Shannon index) at each station and for the different depth layers (mean + SD; n=3).

Station 1 Station 2 Station 3
Depth 0-2cm 2-10cm > 10cm 0-2cm 2-10cm >10cm 0-2cm 2-10cm > 10cm
Molecular ~ microbial | 3.67+0.35 [238+131 |207+011 |[7.34+£0.86 273+145 |240+036 [398+052 |3.26+023 [240+0.04
biomass (ug g* d.w.)

Prokaryotic abundance estimation (16S rRNA copies g* d.w.)
Bacterial 16S rRNA [ 7.9 x 10° + 23x10°% 1.5x10°+ 1.4x10°+ 2.4 %108 + 9.4 x 10" + 49 %108+ 4.0x 108+ 2.6 x 108 +
genes 4.4 x 10° 1.4% 10° 6.2 x 108 1.3 x 108 1.7 x 108 4.8x 107 1.8 x 108 5.6 x 107 1.4 x 108
Archaeal 16S rRNA | 5.8 x 10%+ 41x10%+ 6.6x105+ |[25x107+ 8.0x108+ [25x10%+ |52x10%+ [3.1x106+ |4.9x10%+
genes 3.1x 10° 1.6 x 10° 3.7 x 106 1.7 x 107 6.1 x 106 9.6 x 10° 3.1x 108 1.2 x 10° 6.0 x 106

Alpha diversity index
Specific richness 352 +128 539 + 40 643 + 213 437 + 193 515 + 227 458 + 220 354 + 122 431+ 120 480 + 144
Shannon index 55+0.3 6.0+0.1 6.1+04 57+05 58105 57104 55+0.3 58+0.3 59+0.3
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Supplementary data D: Histogram of the relative abundance of the top 30 phyla at each station and for the different depth layers (mean =+ SD; n

=3). The p-values represent the significant differences of taxa relative abundances between station (*p = 0.05, **p= 0.01, ***p=0.001).
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Supplementary data E: Relative abundances of the top 50 families at each station over depth (L1: 0-2 cm; L2; 2-10 cm; L3: > 10 cm) (mean +

SD; n=23).
Family Si1L1 S1L2 S1L3 S21L1 S21L.2 S2L.3 S3L1 S3L.2 S3L3
Desulfobacteraceae 343+0.18 |5+0.37 6.4 +1.02 3974172 | 471+183 |524+14 1324037 | 1.08+052 | 1.89+0.78
Syntrophobacteraceae 044+017 |118+006 |1.26+009 |0.19+005 |033+0.16 | 0.8+0.47 0154003 | 022+005 |0.15+0.14
Anaerolineaceae 1.99+054 [264+076 |211+012 |097+032 | 172091 |179+047 |1.71+056 |3.48+126 | 3.74+1.01
Desulfobulbaceae 3.28+0.1 184+001 |261+111 |[388+078 |438+074 |226+133 |226+063 |214+047 |229+0.81
Nitrosopumilaceae 023+0.14 |016+0.09 |007+002 |24+039 137+154 |105+125 |224+009 |258+049 | 15+043
Xanthobacteraceae 1.09+034 [138+059 |096+045 |00 006+006 |013+0.12 [0.32+046 |09+0.25 1.08 +0.09
Rhizobiales_IS 04+0.1 0784004 |028+023 |003+002 |014+008 |004+003 |028+008 | 047021 | 0.56+0.17
TRA3-20 005009 |009+001 [001£002 |013+002 |0.08+0.06 |009+005 |019+0.06 |051+0.16 | 0.33+0.13
Beggiatoaceae 053+008 | 055+022 |0.3+0.17 0+0 0+0 0+0 008+0.14 | 015+0.14 | 0.09+0.05
bacteriap25 0+0 009+0.13 |013+007 |0+0 0+0 014+015 |006+009 |048+0.26 | 0.89+0.29
Kiloniellaceae 0.4+0.27 072026 | 051+046 |084+024 |056+022 |0.76+0.16 |093+024 |1+0.11 0.88 +0.04
Sval033 0274012 |00 0+0 0.68+0.1 074+058 |0.17+0.3 053+0.11 | 02%0.2 0+0
Mariprofundaceae 155+073 | 037+0.01 | 04+027 011+009 |032+03 0284032 |00 0+0 0.17+0.27
Desulfarculaceae 064+006 |136+005 |221+054 |057+007 |074+031 |114+036 |049+009 |043+0.13 | 0.580.05
Calditrichaceae 055+0.19 | 144+018 |1.97+024 |068+0.14 |1.3+0.35 2.13+0.9 044+019 |058+023 | 0.69+0.12
Spirochaetaceae 026+003 |036+006 |0.65+043 |043+0.06 |047+0.08 |055+023 |0.09+0.07 |0.04+0.05 [ 0.070.07
Thioalkalispiraceae 113+065 |057+015 |1.08+071 | 025+004 |063+035 | 023+021 |021+£021 |007+009 |0.1£0.12
Vibrionaceae 0324027 |0.07%0.1 0+0 0.12+0 004+006 |007+012 [049+041 |[0.11+0.12 | 0.02+0.03
Gemmatimonadaceae 009+0.15 | 058%0 048+025 | 0.2+0.18 042+0.16 |098+032 |026+026 |063+0.15 | 0.74+0.17
Pirellulaceae 062+041 |099+008 |1.13+081 |029+027 |0.66+006 |078+027 |035+0.38 |0.74+0.16 | 0.79%0.27
Entotheonellaceae 0.18+0.1 0.6+0.14 061+£062 |004+006 |012+003 |023+0.14 |009+008 |079+015 | 1.28+0.38
Nitrosomonadaceae 065+025 | 053+0.2 014+008 |016+002 |025+001 |0.16+003 |067+046 |1.11+031 | 0.99+0.29
Ectothiorhodospiraceae 0274012 |031%0.3 0194017 |00 0.08+0.07 |005+009 [005+008 |00 0.06 +0.06
Desulfuromonadaceae 02+02 009+0.12 | 003+006 |021+£007 |023+007 |021+008 |026+019 |03+0.1 0.33+0.14
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KF-JG30-B3 0.12+0.04 0.3+0.04 0.07 £0.07 0.13+0.11 0.1+0.01 0.07 +£0.08 0.24 +0.06 0.51+0.28 0.25+0.13
SG8-4 0.13+£0.12 0.18 £0.04 0.52+£0.18 0.09 £0.16 02404 0.38+0.4 0.09 £0.08 0.06 £0.11 0.12+0.11
Acidiferrobacteraceae 0.59+£0.11 0.52 +£0.16 0.38+0.12 0+0 0.04 +0.05 0.03+£0.03 0.04 £0.07 0.34+0.1 0.47 £0.22
Kiritimatiellaceae 0.2+0.15 0.04 £0.05 0.03£0.04 0.4 +0.08 0.09 £0.08 0.19+£0.15 0.28 £0.07 01+0.1 0.03£0.03
Moduliflexaceae 0.01 £0.02 0.05+£0.04 0.43+£0.39 0.07 £0.07 0.14£0.13 0.56 £0.28 00 00 00
Thermoanaerobaculaceae 0.58 +£0.47 1.81+0.11 1.23+1.19 0.93+0.15 1.19+£05 1.9+0.86 0.47 £0.23 0.9+0.26 1.21 £0.47
Nitrosococcaceae 0.03 +£0.05 0.13+0.06 0.05 +0.05 0.46 £0.04 0.27+0.19 0.29 +£0.07 0.28 +0.06 0.12+0.05 0.14 +£0.06
Thiohalorhabdaceae 0+0 0+0 0+0 0.44 +£0.16 0.11+0.15 0.08 £0.13 0.24 +£0.01 0.07 £0.08 0+0
PHOS-HE36 0.23+0.11 0.48 £0.07 04+0.11 0.14 +0.25 0.59+0.33 0.92+0.38 00 0.21+0.06 0.39+0.25
Prolixibacteraceae 04+0.23 0.01+0.01 0.01+0.01 0.9+0.15 0.66 £ 0.2 0.34+0.27 0.35+0.15 0.15+0.06 0.23+0.06
Rubinisphaeraceae 0.15 +0.09 0.09 +£0.02 0.19+0.2 0.03 +0.04 0+0.01 00 0.06 £0.1 0.19 +0.05 0.09 +£0.08
Flavobacteriaceae 1.08 £ 0.43 0.05+0.07 0.01+0.01 1.67 £0.39 0.7+0.61 0.38+0.51 2.54+1.38 0.33+0.16 0.01+0.01
SB-5 0.45+0.44 0.46 +£0.11 0.67 £0.48 0.21+0.15 0.49+0.1 0.35+0.14 0+0.01 0.06 +0.05 0.23+0.07
Woeseiaceae 0.23+0.16 0.22+0.04 0.02 £0.02 217+0.73 0.85+0.58 0.75+0.54 144 +0.22 0.48+0.24 0.33+0.13
Nitrospiraceae 0.01 £0.02 00 0.14+0.2 0.3+0.09 0.15+0.1 0.09£0.12 0.35+0.11 0.53+0.14 0.59+0.19
B1-7BS 00 0+0 00 0.11+0.03 0.07 £0.07 0.24 +0.09 0.16 £0.02 0.28 +0.09 0.3+0.11
Solibacteraceae_Subgroup3 0.08 £0.02 0.15+0.02 0.14 +£0.09 0.03 £ 0.06 0.2+0.1 0.18+0.11 0.32+0.2 0.41+0.07 0.41+0.13
Nitrincolaceae 0.33+£0.19 0.05+0.03 0+0 0.1+0.12 0.08 £0.07 0+0 0.65+0.14 0.33+£0.13 0.1 +0.02
Gallionellaceae 0.44+0.18 0.03+£0.02 0.12+0.11 00 0.05 +0.05 0.01+0.01 0.1+0.18 0.03+0.06 0.1+0.15
Phycisphaeraceae 0.08£0.1 0.19 £0.09 0.21 £ 0.06 0.44+£0.24 0.2+0.02 0.45+0.18 0.49 £0.09 0.31+£0.03 0.36 £0.13
Ignavibacteriaceae 0.64+£0.34 0.31+0.04 0.12 +£0.09 0+0.01 0.18 £0.08 0.08+0.14 00 0.2+0.09 0.36+0.2
Gimesiaceae 0.55+£0.18 0.57+£0.11 0.25+£0.18 0.15 £ 0.06 0.18 £0.12 0.15+£0.15 0.55+£0.38 0.57 £0.22 0.38£0.17
Adb 0.34+£0.18 0.66 + 0.09 0.39+0.1 0.34£0.17 0.2+0.15 0.24 £0.07 0.66 £0.13 1.06 +0.44 0.94 £0.32
Sphingomonadaceae 04+0.3 0.14 +0.04 0.07+0.1 0.26 + 0.05 0.2+0.22 0.17 £ 0.16 0.63+0.42 0.42+0.19 0.17 £ 0.09
Stappiaceae 00 00 00 0.25+£0.16 0.09+0.1 0.12 £0.17 0.02 £0.04 00 0.07 £0.12
Rhodobacteraceae 0.97+0.3 0.02 £0.02 00 0.67 £0.05 0.51+0.37 0.24+0.3 1.19+0.4 0.38+0.08 0.18 +0.08
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Supplementary data F: Values of the Spearman’s rank correlation coefficient between the environmental variables and the taxa at the phylum

levels (*p = 0.05, **p=0.01, ***p=0.001), HCB = Hexachlorobenzene, Naph = Naphthalene, Phen = Phenanthrene.

Phylum Al Cdll |CN | Cr | Ctot | ddd24 | dde44 | DBT | dieldrin | HCB | Hg Mn Mo9 | Naph | Ntot | PCBs | Phen | Zn
1 5
Acidobacteria 02 (8*7) ;2;3) 03 igf) 01 |01 |03 |-03 03 |02 |04 02 |05 (2)6 03 |00 |03
Actinobacteria 04 |05 |04 |-05 |03 |03 0,1 02 |04 02 |01 |-04 0,1 (2)6 01 |04 |01 |-05
Altiarchaeota 03 |02 |02 [-03 01 [-02 0.1 02 |01 02 |03 [-03 0L |02 |00 [00 |-01 [-03
AncK6 04 |03 |03 [-05[02 |01 0,2 00 |03 03 |04 |05 [02 [-02 [00 [03 [0l |-04
Asgardacota 05 | 06(* (();1*) 2236 (();1) 0,0 0,2 02 |03 0,5 ?;Z) igfi) 06(*|-04 |04 |03 |02 |-05
Bacteroidetes 03 |01 |01 [02 [00 |00 0.1 02 |01 02 [-03 |05 02 [-01 |03 [-01 [-02 |02
BRC1 04 00 [02 [-02 02 |01 0.1 02 |00 01 |03 |-04 03 |01 |01 [0l |02 [-02
Calditrichaeota 04 |01 |03 |-04 |01 |05 05 0,0 ?,;1) ?,;1) 00 |05 |00 |[-04 |-02 ?,;1) 00 | -05
Chlamydiae 03 |04 |03 [-04 03 |01 0.2 00 (03 00 |02 [-04 02 [-02 |02 |02 |00 [-02
Chloroflexi 03 [02 |03 [-02[03 [-02 0,0 01 |-01 00 [06() [-06(%[05 lo1 [00 [-02 [02 [-01
CK-2C2-2 02 03 02 [-02 03 [-02 0.1 01 |02 00 |02 [-03 02 [-02 |02 [00 |03 [00
Crenarchaeota i%ﬁ 0,6 (%) ((),;1*) -05 (();i) 0,2 0,2 01 |04 05 0,4 igfi) 0,3 igsﬁ 02 |05 |01 |-05
Dadabacteria 00 [-01 [-02 [02 [-02 [-02 04 02 |03 01 |02 [-02 00 |02 |05 |03 |02 |04
Deinococcus-Thermus | 0,2 |03 [ 02 |03 [02 |02 0,0 01 ot 01 |00 [-02 00 [-01 |02 J[o02 |03 [-03
Dependentiae 05 (01 |03 [-04 02 o1 0,0 01 |02 03 |01 [-03 00 [-02 [-01 [02 [oi1 [-05
Diapherotrites 02 |03 |03 [-0303 [00 0.1 01 |00 03 |03 [-03 03 |02 o1 [0l |01 [-02
Elusimicrobia 00 [-02 [-03 [-02 [-02 [03 0.3 02 |03 03 [-03 |03 03 [-02 |00 [03 [-03 [00
Entotheonellacota 00 [-02 |02 |01 [-01 [-03 0.1 03 | -04 01 |05 [-02 04 |04 [-02 [-04 |03 |oa
Epsilonbacteraeota [ 00 |01 |01 [-04 [02 |00 0.1 02 |01 03 [-02 |03 01 [-01 Jo04 [-01 [-01 [00
Euryarchaeota 05 (();1*) ((),ﬁ*) 05 ?,;1) 0,0 01 03 |03 04 | 06(% iff;i) 05 |-05 |04 |02 |01 |-05
FCPU426 00 [02 |00 [-01 00 |00 0.2 01 [-02 00 |01 |00 01 |01 o1 |01 |02 |00
Fibrobacteres 00 |02 Jo01 [-01]01 |00 0,0 00 |03 03 |02 00 01 |04 |02 [038 [-02 [-01
Firmicutes 02 [-01 Jol [-02 00 |02 0.2 00 o1 00 |02 [00 02 [o1 [00 [o1 Jo02 [-02
Fusobacteria 03 03 |03 [-03]02 |04 0,4 00 103 02 |02 [-03 02 [-01 |03 |04 [o01 [-03
Gemmatimonadetes 0,2 | -05 |03 |02 [-05 |02 0.1 00 |02 02 |04 o4 05 Jo1 |05 ol |00 |02
GNO1 03 |01 |02 [-02 00 |04 0.3 01 |05 05(* 01 |-05 01 |01 |03 |04 |00 [-03




w

Hydrogenedentes 02 [-04 [-03 02 [-08 [-00 |01 [00 [-02 03 00 03 01 [08 [-01 [08 [-01 J[o02
Kiritimatiellaeota 04 |01 [-01 [02 [00 |04 0,0 02 o4 01 [-05 |04 03 [-01 |03 |01 [-02 |02
Latescibacteria ?*g’ 05 ig;g 05 igf 02 |02 |02 |-01 02 |05 |06( |04 |03 |-03 |02 |-01 |05
LCP-89 04 |01 |03 [-04 |01 |03 03 00 |04 05 |02 [-05() |00 |01 [-02 |04 |00 |-04
Lentispharae 04 |03 |-04 |03 |-04 |02 0,1 02 |o1 -0,1 igf ?;i) %6 02 |-01 |01 |00 |04
Margulisbacteria 01 |02 [-01 [02 |00 [-02 [01 |02 |-02 02 |01 |oa 02 |02 |00 [02 [-03 |02
Marinimicrobia 02 [03 |03 [-02 02 |04 01 (01 |00 00 |ol [-04 o1 [-01 [-01 |01 |00 |-03
Modulibacteria 03 |03 |03 |03 |02 |04 03 02 ?;1) ?;1) 01 |04 |01 |04 |-01 ?,ﬁ) 01 |-04
Nanoarchaeaeota -0,5 0,3 0,5 -04 | 04 0,0 0,1 0,0 0,2 0,2 0,4 -07(*%) |1 04 -0,2 0,0 0,2 0,1 -0,4
Nitrospinae 03 |01 |01 [-03]00 |03 04 03 |01 01 |03 [-02 o1 [02 |00 |01 |02 [-01
Nitrospirae 03 | -07 igf) 0.4 igf) 02 01 02 |-01 00 |-03 |04 04 |04 QS;Z*) 01 |-01 |03
Ochrophyta 02 (01 |01 [-01 |01 |03 01 (02 |00 01 02 |00 00 |02 |02 |02 |-02 |-02
Omnitrophicaeota | 05 |03 |04 | -04 |03 |00 02 01 |02 02  |05() |-06(%) |04 |01 |01 |01 |03 |-04
Patescibacteria 00 |02 [-01 [00 [-02 |04 02 02 |02 01 [-01 |04 03 |02 [-04 (02 [00 |00
PAUCSAf 00 |01 00 |01 [-01 |03 04 04 |03 01 |00 [-01 [-02 [03 [-02 02 |02 |01
Planctomycetes 00 |03 [-03 [-01[-02 |02 04 03 |02 03 [-01 |02 01 |02 |01 (02 02 ot
Proteobacteria 03 |02 |04 (01 |01 [-00 |01 [-01 |00 01 02 |03 01 [-02 |05 (00 00 ot
Rokubacteria 01 |04 |-05 [03 |-04 |-04 |02 |04 |-07(% (8)6 01 |02 00 |07(|-03 (st 02 |03
Schekmanbacteria | 55 | .03 |-02 |01 |-03 |03 01 01 |02 01 |01 |02 |01 |02 (2*7) 02 |00 |00
Spirochaetes 04 |03 |05 |-05 |03 |05 05 0,2 (();1) 0('*6) 01 | -03 0,1 igf 0,1 ((),ﬁ*) 02 |-06
TA06 03 [00 |01 |03 |-01 |03 02 01 |04 05 |00 |04 |02 [-01 [-04 |04 |-02 |-04
Tenericutes 01 [02 01 [01 01 [-02 [02 |02 [-02 03 03 |00 02 |00 |01 |02 |00 |-04
Thaumarchaeota 0,7 -0,6 -06 |06 -0,6 -0,7 0,8 -0,6

: ' S8 5 1oo 02 |01 |02 03 * : & los |-04 |02 |-03 |06

- (*) (*) ) ) 1 (**) (**) (*)

Verrucomicrobia 05 02 04 |04 |-02 04 03 03 EQ)S Eg)s -0,2 04 -0,1 04 01 (2)6 01 0,5
WS1 03 |04 |02 |02 |-02 |03 02 01 |03 03 |01 |01 |04 |01 |-04 |03 |01 |-03
WS2 02 [00 |02 [-01 02 |00 03 [01 o4 01 |02 [-01 [-02 [04 |00 |01 |00 [-02
Ws4 02 [01 |01 [-01 |01 |03 01 [02 |00 01 02 |00 00 |02 [-02 |02 [-02 |-02
Zixibacteria 03 (02 |03 [-03]03 |01 02 01 |od 02 |05 |-06(% 04 |00 |00 02 |02 |-02




