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Abstract

In this paper, we tackle the computational
efficiency of kernelized UCB algorithms in
contextual bandits. While standard meth-
ods require a O(CT 3) complexity where T
is the horizon and the constant C is related
to optimizing the UCB rule, we propose an
efficient contextual algorithm for large-scale
problems. Specifically, our method relies on
incremental Nyström approximations of the
joint kernel embedding of contexts and ac-
tions. This allows us to achieve a complexity
of O(CTm2) where m is the number of Nys-
tröm points. To recover the same regret as
the standard kernelized UCB algorithm, m
needs to be of order of the effective dimension
of the problem, which is at most O(

√
T ) and

nearly constant in some cases.

1 Introduction

Contextual bandits for sequential decision making have
become ubiquitous in many applications such as online
recommendation systems (Li et al., 2010). At each
round, an agent observes a context vector and chooses
an action; then, the environment generates a reward
based on the chosen action. The goal of the agent is
to maximize the cumulative reward over time, which
requires a careful balancing between exploitation (maxi-
mizing reward using past observations) and exploration
(increasing the diversity of observations).
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In this paper, we consider a kernelized contextual ban-
dit framework, where the rewards are modeled by a
function in a reproducing kernel Hilbert space (RKHS).
In other words, we assume the expected reward to
be linear with respect to a joint context-action fea-
ture map of possibly infinite dimension. This setup
provides flexible modeling choices through the feature
map for both discrete and continuous action sets, and
exploration algorithms typically rely on constructing
confidence sets for the parameter vector and exploring
using upper confidence bound (UCB) rules (Li et al.,
2010). The extensions to infinite-dimensional feature
maps we consider has been introduced by Krause and
Ong (2011); Valko et al. (2013) using kernelized vari-
ants of UCB, which allow effective exploration even for
rich non-parametric reward functions lying in a RKHS,
such as smooth functions over contexts and/or actions.

Despite the rich modeling capabilities of such kernelized
UCB algorithms, they lack scalability since standard
algorithms scale at best as O(CT 3) where T is the
horizon (total number of rounds) and the constant C
is the cost of selecting an action according to the UCB
optimization rule. This large cost is due to the need
to solve linear systems involving a t× t kernel matrix
at each round t, and motivates developing efficient
versions of these algorithms for large problems. In
supervised learning, a common technique for reducing
computation cost is to leverage the fact that the kernel
matrix is often approximately low-rank, and to use
Nyström approximations (Williams and Seeger, 2001;
Rudi et al., 2015). We extend such approximations to
the contextual bandit setting, by relying on incremen-
tal updates of a dictionary of Nyström anchor points,
which allows us to reduce the complexity to O(CTm2),
where m is the final number of dictionary elements.
In order to preserve a small regret comparable to the
vanilla kernel UCB method, m is of the order of an
effective dimension quantity, which is typically much
smaller than T , and at most

√
T .

Closely related to our work, Calandriello et al. (2019,
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2020) recently considered Nyström approximations in
the non-contextual setting with finite actions, corre-
sponding to a Bayesian optimization problem. Whereas
their algorithm is effective when there are no contexts,
a direct extension to the contextual setting yields a
complexity of O(Tm3), which may be O(T 2.5) in the
worst case, despite a batching strategy allowing to re-
compute a new dictionary only about m times. In
contrast, our incremental strategy reduces the previous
complexity to O(Tm2), and thus at most O(T 2).

Even though adopting an incremental strategy for up-
dating the Nyström dictionary may seem to be a simple
idea, achieving the previously-mentioned complexity
while preserving a regret that is comparable to the
original kernel UCB approach is non-trivial. Nyström
approximations cause dependencies in the projected
kernel matrix that makes it difficult to use martin-
gale arguments, which led Calandriello et al. (2020)
to use other mathematical tools that are compatible
with updates resampling a new Nyström dictionary. In
contrast, we manage to use martingale arguments for
an incremental strategy that is less computationally
expensive. For that, we extend the standard analysis
of the OFUL algorithm for linear bandits (Abbasi-
yadkori et al., 2011; Chowdhury and Gopalan, 2017)
to the kernel setting with Nyström approximations.
In particular, this requires non-trivial extensions of
concentration bounds to infinite-dimensional objects.
Our analysis also uses the incremental structure of the
projections that Calandriello et al. (2019) do not have.
This allows us to prove the complexity of our algo-
rithm. Moreover, unlike previous works, we explicit
the regret-complexity trade-off under the capacity con-
dition assumption. Finally, we also provide numerical
experiments showing that our theoretical gains are also
observed in practice.

2 Related Work

UCB algorithms are commonly used in the bandit liter-
ature to carefully balance exploration and exploitation
by defining confidence sets on unknown reward func-
tions (Lattimore and Szepesvári, 2020). For stochastic
linear contextual bandits, the OFUL algorithm (Abbasi-
yadkori et al., 2011) obtains improved guarantees com-
pared to previous analyses (e.g., Li et al., 2010) by
providing tighter confidence bounds based on self-
normalized tail inequalities.

Extensions of linear contextual bandits and UCB algo-
rithms to infinite-dimensional representations of con-
texts or actions have been studied by Krause and Ong
(2011) and Valko et al. (2013) by using kernels and
Gaussian processes. While their analyses involve dif-
ferent concepts of effective dimension, it can be shown

that these are closely related (see Section 3.3). Valko
et al. (2013) notably achieves a better scaling in the
horizon in the regret, but requires a finite action space.
Chowdhury and Gopalan (2017) improves the analy-
sis of GP-UCB using tools inspired by Abbasi-yadkori
et al. (2011) and similar to our analysis of kernel-UCB,
though it considers the non-contextual setting. Tir-
inzoni et al. (2020) in the contextual linear bandit
problem use a primal-dual algorithm to achieve an op-
timal asymptotical regret bound but does not address
the issue of computational complexity nor the kernel-
ized setting. Likewise, Camilleri et al. (2021) propose a
new estimator in the non-contextual kernelized bandit
problem to achieve a tighter regret bound using an elim-
ination algorithm but does no focus on computational
efficiency neither.

In the Bayesian experimental design literature Derezin-
ski et al. (2020) propose an efficient sampling scheme
using determinant point processes in the non-kernel
case and a non-contextual framework. For improving
the computational complexity of kernelized UCB proce-
dures in a non-contextual setting as well, Calandriello
et al. (2019) use a Nyström approximation of the ker-
nel matrix which is recomputed at each step. Because
the corresponding algorithm is not practical when a
large number of steps are needed, Calandriello et al.
(2020) consider a batched version, which significantly
improves its computation and complexity.

In contrast, we use an incremental construction based
on the KORS method (Calandriello et al., 2017a), which
has been used previously with full information feed-
back (see also Jézéquel et al., 2019), allowing us to
significantly improve the computational complexity of
the contextual GP-UCB algorithm, for the same regret
guarantee. Such an incremental approach appears to
be a key to achieve better complexity than a natu-
ral contextual variant of the algorithm of Calandriello
et al. (2020), see Table 1, both in theory and in prac-
tice (see Section 5). Such an extension is unfortunately
non-trivial and requires a different regret analysis, as
discussed earlier.

Mutnỳ and Krause (2019) also study kernel approxi-
mations for efficient variants of GP-UCB, focusing on
random feature expansions. Nevertheless, the number
of random features may need to be very large–often
exponential in the dimension–in order to achieve good
regret, due to a misspecification error which requires
stronger, uniform approximation guarantees. Finally,
Kuzborskij et al. (2019) also considers leverage score
sampling for computational efficiency, but focuses on
linear bandits in finite dimension.
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Algorithm Regret Space Time Complexity
CGP-UCB (Krause and Ong, 2011) O(

√
Tdeff(λ, T )) O(T 2) O(CT 3)

SupKernelUCB (Valko et al., 2013) O(
√
Tdeff(λ, T ) log(C)) O(T 2) O(CT 3)

C-BKB (Calandriello et al., 2019) O(
√
T (
√
λdeff(λ, T ) + deff(λ, T )) O (Tdeff) O

(
T 2d2

eff + CTd2
eff

)
C-BBKB (Calandriello et al., 2020) O(

√
T (
√
λdeff(λ, T ) + deff(λ, T )) O (Tdeff) O

(
Td3

eff + CTd2
eff

)
K-UCB (ours) O(

√
T (
√
λdeff(λ, T ) + deff(λ, T )) O(T 2) O(CT 3)

EK-UCB (ours) O(
√
T (
√
λdeff(λ, T ) + deff(λ, T )) O (Tdeff) O(CTd2

eff)

Table 1: Comparison of regret bounds (up to logarithmic factors in T ) and total time complexity. When the
action space is finite, for e.g in SupKernelUCB, we write C = |A| its cardinality and note that the argmax is
obtained in C computations of the UCB rule. Note that the reported regret of CGP-UCB, SupKernel UCB and
CBBKB use here the definition of the effective dimension deff(λ, T ) in Eq. (7) which depends on the horizon T
and the parameter λ (i.e the inverse of the GP noise in CGP-UCB, BKB and BBKB). This effective dimension deff

is equivalent, up to logarithmic factors, to the information gain used by Srinivas et al. (2010); Calandriello et al.
(2020) and the definition used by Valko et al. (2013) (see Appendix D). Moreover, we report the complexities
of the contextualized versions of BKB and BBKBs, noting that the non-contextual versions may benefit from
certain optimizations when the action space is discrete (Calandriello et al., 2019, 2020).

3 Warm-up: Kernel-UCB for
Contextual Bandits

In this section, we introduce stochastic contextual ban-
dits with reward functions lying in a RKHS, and provide
an analysis of the Kernel-UCB algorithm (similar to
GP-UCB) which will be a starting point for studying
the computationally efficient version in Section 4.

Notations. We define here basic notations. Given
a vector v ∈ Rd we write its entries [vi]1≤i≤d and we
will write v>w or 〈v, w〉 the dot product for elements
in Rd and in the Hilbert space H. We denote by
‖ · ‖ the Euclidean norm and the norm in H. The
conjugate transpose for a linear operator L on H is
denoted by L∗. For two operators L,L′ on H, we write
L 4 L′ when L − L′ is positive semi-definite and we
use . for approximate inequalities up to logarithmic
multiplicative or additive terms. A summary of the
notations is provided in Appendix A.

3.1 Setup

In the contextual bandit problem, at each time t in
1, . . . , T , where T is the horizon, for each context xt
in X , an action at in A is chosen by an agent and
induces a reward rt in R. The input and action spaces
X and A can be arbitrary (e.g., finite or included in Rd
for some d ≥ 1). Note that A may change over time,
but we keep it fixed here for simplicity.

In this paper, we focus on stochastic kernel contextual
bandits and assume that there exists a reproducing
kernel Hilbert space (RKHS) H such that

rt = 〈θ∗, φ(xt, at)〉+ εt ,

where εt are i.i.d. centered subGaussian noise, θ∗ ∈ H

is an unknown parameter, and φ : X × A → H is a
known feature map associated to H. It satisfies

〈φ(x, a), φ(x′, a′)〉 = k
(
(x, a), (x′, a′)

)
,

where k is a positive definite kernel associated to H.
We assume k to be bounded, i.e., there exists κ > 0
such that k(s, s) ≤ κ2 for any s ∈ X ×A.

Thus, the goal of the agent is, given the previously ob-
served contexts, actions and rewards (xs, as, rs)s=1...t−1

and the current context xt, to choose an action at in
order to minimize the following regret after T rounds

RT := E

[
T∑
t=1

max
a∈A
〈θ∗, φ(xt, a)〉 −

T∑
t=1

rt

]
. (1)

3.2 Algorithm: Kernel-UCB

Upper confidence algorithm (UCB) algorithms main-
tain for each possible action an estimate of the mean
reward as well as a confidence interval around that
mean, and then chooses at each time the highest up-
per confidence bound. Formally, if we have a confi-
dence set Ct ⊂ H based on samples (xt′ , at′ , yt′), for
t′ ∈ {1, . . . , t−1} that contains the unknown parameter
vector θ∗ with high probability, we may define

K-UCBt(a) = max
θ∈Ct
〈θ, φ(xt, a)〉 (2)

as an upper bound on the mean pay-off 〈θ∗, φ(xt, a)〉
of a. To choose the highest upper confidence bound
from the confidence set at time t, the algorithm then
selects:

at ∈ arg max
a∈A

K-UCBt(a). (3)

We then build an empirical estimate of the unknown
quantity θ∗ using regression. More precisely in the
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kernelized setting, we use the regularized least square
estimator with

θ̂t ∈ arg min
θ∈H

{ t∑
s=1

(〈θ, φ(xs, as)〉 − rs)2
+λ‖θ‖2

}
. (4)

Rearranging the terms ϕs = φ(xs, as) and writing
Vt =

∑T
s=1 ϕs ⊗ϕs + λI, we obtain that the analytical

solution for Eq. (4) is θ̂t = V −1
t

∑t
s=1 ϕsrs. The previ-

ous solution from time t− 1 then defines the center of
the ellipsoidal confidence set

Ct = {θ ∈ H : ‖θ − θ̂t−1‖Vt−1 ≤ βt(δ)}. (5)

where ‖θ‖2V = θ>V θ, and βt(δ) is its radius (see
Lemma 3.1). With Ct in that form, we can write the
solution of Eq. (2) as

K-UCBt(a) = 〈θ̂t−1, φ(xt, a)〉+ βt(δ)
1/2‖φ(xt, a)‖V −1

t−1
.

(6)
Indeed, by defining B2 = {x ∈ Rd : ‖x‖2 ≤ 1} the
unit ball with the Euclidean norm, it is easy to see
that Ct = θ̂t + βt(δ)

1/2V
−1/2
t−1 B2. Then, for θ ∈ B2

maximising the quantity 〈θ, φ(xt, a)〉 = φ(xt, a)>θ̂t−1 +

βt(δ)
1/2φ(xt, a)>V

−1/2
t−1 θ gives Eq. (6).

3.3 Regret analysis

We provide an analysis of the regret of the kernelized
UCB rule in Eq. (6) using standard statistical analysis
definitions of the effective dimension.

Let us write the operator Φt : H → Rt such that
Φ∗t = [ϕ1, . . . ϕt], where ϕi = φ(xi, ai) for i ∈ [1, t]. Let
us define Kt the kernel matrix associated to kernel k
and the set of pairs (x1, a1), . . . , (xt, at), Kt = ΦtΦ

∗
t is

a t× t matrix. We define the effective dimension of a
kernel matrix as in Hastie et al. (2001) and will use the
following in our work.
Definition 3.1. The effective dimension of the matrix
KT is defined as,

deff(λ, T ) := Tr(KT (KT + λIT )−1) . (7)

In what follows, for simplicity of notation, we abbrevi-
ate deff(λ, T ) to deff unless we use different parameters
on deff . To extend the analysis of OFUL (Abbasi-
yadkori et al., 2011) to the contextual kernel UCB
algorithm, we will use the following proposition that
has been proved and used by Jézéquel et al. (2019).
Proposition 3.1. For any horizon T ≥ 1, λ > 0 and
all input sequences (x1, a1), . . . , (xT , aT )

T∑
k=1

log

(
1 +

λk(KT )

λ

)
≤ log

(
e+

eTκ2

λ

)
deff ,

where λk(KT ) denotes the k-th largest eigenvalue of KT .

We now provide a regret bound extending the analysis
of Abbasi-yadkori et al. (2011) to the kernel setting. In
particular, we start by providing an upper bound on
the ellipsoid greater axis.

Lemma 3.1. Let δ ∈ (0, 1) and define βt+1(δ) by

√
λ‖θ∗‖+

√
2 log

1

δ
+ log

(
e+

etκ2

λ

)
deff .

Then, with probability at least 1− Tδ, for all t ∈ [T ]∥∥θ̂t − θ∗∥∥Vt ≤ βt+1(δ). (8)

We use this lemma (which relies on Proposition 3.1
whose proof is in Appendix B.1) to bound the distance
between the estimated parameter θ̂t at each round t and
the true parameter θ∗. By combining this result with
Proposition 3.1, we then prove the following theorem
that extends the LinUCB upper bound result from
Lattimore and Szepesvári (2020).

Theorem 3.1. Let T ≥ 2 and θ∗ ∈ H. Assume that
|〈φ(x, a), θ∗〉| ≤ 1 for all a ∈

⋃T
t=1At ⊂ A and x ∈ X .

Then, the K-UCB rule defined in Eq. (3) for the choice
Ct as in (5) with parameter λ > 0, and δ = 1/T 2,
satisfies the pseudo-regret bound

RT .
√
T
(
‖θ∗‖

√
λdeff + deff

)
,

where . hides logarithmic factors in T .

The proof of Theorem 3.1 and the precise statement of
the regret bound are given in Appendix B.1.

In particular, assuming the norm of the true parame-
ter θ? to be bounded, we obtain the following corollary
with a capacity condition on the effective dimension.

Corollary 3.1. Assuming the capacity condition
deff ≤ (T/λ)α for 0 ≤ α ≤ 1 , the regret of K-UCB is
bounded as RT . T

1+3α
2+2α with an optimal λ ≈ T

α
1+α .

As an example, if we consider a kernel that is a tensor
product between a linear kernel on contexts and a
Sobolev-type kernel (e.g., a Matern kernel) of order s
on actions, with s > d/2 (where d is the dimension of
the continuous action space), then we may consider
that the kernel eigenvalues decay as i−2s/d, leading to
an effective dimension as above with α = d/2s, and a
regret of T

1
2

2s+3d
2s+d .

Discussion. We note that this regret is not optimal
for such problems, but matches the regret of most other
kernel or Gaussian process optimization algorithms (see,
e.g., Scarlett et al., 2017). More precisely, our analysis
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recovers classical rates of the GP-UCB algorithm (Srini-
vas et al., 2010; Chowdhury and Gopalan, 2017), and
extends them to the contextual bandit setting. We note
that the analysis of Chowdhury and Gopalan (2017)
further removes some logarithmic factors, and similar
improvements may be obtained in our setting since it is
based on similar tools. The SupKernelUCB algorithm
by Valko et al. (2013) obtains improved dependencies
on T in the regret bounds, but requires a finite set of ac-
tions, and therefore is not directly comparable to ours.
The CGP-UCB algorithm by Krause and Ong (2011)
obtains similar results to ours in the contextual setting,
but uses a different analysis. Our result is therefore
not new, and our analysis is meant as a starting point
for the efficient variant based on incremental Nyström
approximations, which will be introduced in the sequel.

We note that these works use different notions than
our effective dimension deff to characterize complexity,
namely the information gain

γ(λ, t) =
1

2
log

(
det

(
I +

1

λ
Kt

))
used by Krause and Ong (2011) as well as the different
effective dimension definition in (Valko et al., 2013)

d̃(λ, t) = min{j : jλ log T ≥
∑
k>j

λk(Kt)}.

It can be shown that these are equivalent up to logarith-
mic factors to our definition of the effective dimension
deff (see Appendix D). This allows us to compare up
to logarithmic factors the algorithm regrets, as shown
in Table 1.

4 Efficient Kernel-UCB

In this section, we introduce our efficient kernelized
UCB (EK-UCB) algorithm based on incremental Nys-
tröm projections. We begin by extending the ellipsoidal
confidence bounds from the previous section to the case
with projections on finite-dimensional linear subspaces
of the RKHS. Then, we present our main algorithm
and analyze its complexity and regret.

4.1 Upper confidence bounds with
projections

In this section, we study the UCB updates and corre-
sponding high-probability confidence bounds for our
EK-UCB algorithm. Because these steps do not depend
on a specific choice of projections, we consider generic
projection operators onto subspaces of the RKHS, not-
ing that the next sections will consider specific choices
based on Nyström approximations.

At round t ≥ 1, we consider a generic subspace H̃t
of H, and let Pt : H → H̃t be the orthogonal pro-
jection operator on H̃t, so that PtH = H̃t. For a
fixed regularization parameter λ > 0, we consider the
following regularized estimator restricted to H̃t:

θ̃t ∈ arg min
θ∈H̃t

{ t∑
s=1

(〈θ, φ(xs, as)〉 − rs)2
+λ‖θ‖2

}
. (9)

Define Ṽt =
∑t
s=1 Ptϕs ⊗ Ptϕs + λI, which may be

written Ṽt = PtFtPt + λI where Ft = Φ∗tΦt : H → H
is the covariance operator. Recalling the notation Yt =
(r1, . . . , rt)

>, we obtain that θ̃t = Ṽ −1
t PtΦ

∗
tYt. We may

then define the following ellipsoidal confidence set:

C̃t :=
{
θ ∈ H : ‖θ − θ̃t−1‖Ṽt−1

≤ β̃t(δ)
}
, (10)

for some radius β̃t(δ) to be specified later. Note that
the ellipsoid is not necessarily contained inside the
projected space H̃t, and may in fact include θ∗ even
if θ∗ /∈ H̃t. This is a crucial difference with random fea-
ture kernel approximations (Mutnỳ and Krause, 2019),
for which a standard confidence set would be finite di-
mensional, and thus generally does not include θ∗; this
leads to larger regret due to misspecification, unless
the number of random features is very large in order
to ensure good uniform approximation. We may then
define the following upper confidence bounds, which
still rely on the original feature map φ:

EK-UCBt(a) := max
θ∈C̃t
〈θ, φ(xt, a)〉. (11)

This may again be written in closed form as

EK-UCBt(a) = 〈θ̂t−1, φ(xt, a)〉+β̃t(δ)1/2‖φ(xt, a)‖Ṽ −1
t−1
.

We note that for appropriate choices of H̃t, such a
quantity can be explicitly computed using the ker-
nel trick, as we discuss in Section 4.3. The following
lemma shows that C̃t is a valid confidence set, which
contains θ∗ with high probability, provided that the
projection captures well the dominating directions in
the covariance operator.

Lemma 4.1. Let δ ∈ (0, 1). Define β̃t+1(δ) as

(√
λ+
√
µt

)
‖θ∗‖+

√
4 log

1

δ
+ 2 log

(
e+

etκ2

λ

)
deff ,

where µt := ‖(I − Pt)F 1/2
t ‖2. Then, with probability at

least 1− Tδ, for all t ∈ [T ]∥∥θ̃t − θ∗∥∥Ṽt ≤ β̃t+1(δ). (12)
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Algorithm 1: Incremental KORS subroutine
Input: Time t, past dictionary Z, context-action

st, regularization µ, accuracy ε, budget γ
Compute the leverage score τ̃t from Z, st, µ, ε ;
Compute p̃t = min{γτ̃t, 1} ;
Draw zt ∼ B(p̃t) and if zt = 1, add st to Z;
Result: Dictionary Z

The quantity µt controls how well the projection oper-
ator Pt captures the dominating eigen-directions of the
covariance operator, and should be at most of order λ
in order for the confidence bounds to be nearly as tight
as for the vanilla K-UCB algorithm. The next section
further discusses how this quantity is controlled with
incremental Nyström projections.

4.2 Learning with incremental Nyström
projections

We now consider specific choices of the projections Pt
and subspaces H̃t obtained by Nyström approxima-
tion (Williams and Seeger, 2001; Rudi et al., 2015). In
particular, the spaces H̃t now take the form

H̃t = Span
{
φ(s), s ∈ Zt

}
, (13)

where Zt ⊂ {(x1, a1), . . . (xt, at)} is a dictionary of an-
chor points taken from the previously observed data.
Our approach consists of constructing the dictionar-
ies Zt incrementally, by adding new observed exam-
ples (xt, at) on the fly when deemed important, so that
we have Z1 ⊂ Z2 · · · ⊂ Zt. We achieve this using the
Kernel Online Row Sampling (KORS) algorithm of Ca-
landriello et al. (2017a), shown in Algorithm 1, which
decides whether to include a new sample st = (xt, at)
by flipping a coin with probability proportional to its
leverage score (Mahoney and Drineas, 2009). More
precisely, an estimate τ̃ of the leverage score that uses
the state feature ϕt and parameters µ, ε is used to
assess how a given state is useful to characterize the
dataset. More details on the KORS algorithm are given
in Appendix E.

We state the following proposition of Calandriello et al.
(2017a, Theorem 1, with ε = 1/2), which will be useful
for our regret and complexity analyses.

Proposition 4.1. Let δ > 0, n ≥ 1, µ > 0. Then
the sequence of dictionaries Z1 ⊂ Z2 ⊂ . . .ZT learned
by KORS with parameters µ > 0, ε = 1/2 and γ =
12 log(T/δ) satisfies with probability 1− δ, ∀t ≥ 1

‖(I−Pt)F 1/2
t ‖2 ≤ µ and |Zt| ≤ 9deff(µ, T ) log(2T/δ)2 .

Additionally, the algorithm runs in O(deff(µ, T )2) time
and O(deff(µ, T )2 log(T )4) space per iteration.

This result shows that when choosing µ ≈ λ, then
KORS will maintain dictionaries of size at most deff (up
to log factors), while guaranteeing that the confidence
bounds studied in Section 4.1 are nearly as good as for
the case of K-UCB.

4.3 Implementation and complexity analysis

Here, we analyze the complexity of the algorithm and
describe its practical implementation. Recall that at
each round t the agent chooses an action a that max-
imises the UCB rule µt,a+ β̃tσt,a where we use Eq. (11)
to reformulate the mean term µt,a = 〈θ̂t−1, φ(xt, a)〉
and the variance term σ2

t,a = ‖φ(xt, a)‖2
Ṽ −1
t−1

. We use
the representer theorem on the projection space Ht to
derive efficient computations of the latter two terms
instead of using a kernel trick with t× t gram matrices.
Indeed, in the next proposition, we prove that the two
terms can be expressed with mt ×mt matrices instead,
where mt = |Zt| is the size of the dictionary at time
t. We use the notations KSt(s′) for the kernel column
vector [k(s1, s

′), . . . , k(st, s
′)]>, where St = {si}i=1...t

are the past states, and KA,B for the matrix of kernel
evaluations [k(s, s′)]s∈A,s′∈B.
Proposition 4.2. At any round t, by considering
st,a = (xt, a), the mean and variance term of the
EK-UCB rule can be expressed with:

Γt = KZt−1St−1Yt−1

Λt =
(
KZt−1St−1

KSt−1Zt−1
+ λKZt−1Zt−1

)−1

µ̃t,a = KZt−1
(st,a)>ΛtΓt

∆t,a = KZt−1(st,a)>
(

Λt −
1

λ
K−1
Zt−1Zt−1

)
KZt−1(st,a)

σ̃2
t,a =

1

λ
k(st,a, st,a) + ∆t,a.

The algorithm then runs in a space complexity of O(Tm)
and a time complexity of O(CTm2).

In our algorithm, the incremental updates of the pro-
jections allow us to derive rank-one updates of the ex-
pressions Λt,Γt,K

−1
ZtZt in all cases. First, when the dic-

tionary does not change (i.e Pt = Pt−1), the update of
the mt×mt matrix Λt can be performed with Sherman-
Morrison updates, and the term Γt = KZt−1St−1

Yt−1

can also benefit from a rank-one update given the lat-
est reward and state. Both updates are performed in
no more than O(m2

t ) time and space. Second, when
the dictionary changes (i.e Pt � Pt−1), the matrix Λt
can be updated in two stages with a rank-one update
using Sherman-Morrison on the states as if the dictio-
nary did not change, in O(m2

t ) time and space, and
second rank-one update on the dictionary using the
Schur complement in O(tmt + m2

t ) time and space.
Similarly, we can update Γt = KZtSt−1

Yt−1 with a first
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Algorithm 2: Efficient Kernel UCB
Input: T the horizon, λ regularization and

exploration parameters, k the kernel
function, ε > 0, γ > 0

Initialization;
Context x0, a0 chosen randomly and reward r0 ;
S = {(x0, a0)}, YS = [r0] Z = {(x0, a0)} ;
Λt = (KZSKSZ + λKZZ)

−1
Γt = KZSYS ;

for t = 1 to T do
Observe context xt ;
Choose β̃t (e.g as in Lem. 4.1, and δ = 1

T 2 ) ;
Choose at ← arg maxa∈A µ̃t,a + β̃tσ̃t,a ;

µ̃t,a ← KZ(st,a)>ΛtΓt ;
∆t,a = KZ(st,a)>

(
Λt − 1

λK
−1
ZZ
)
KZ(st,a)

σ̃2
t,a ← 1

λk(st,a, st,a) + ∆t,a ;
Observe reward rt and st ← (xt, at) ;
YS ← [YS , rt]

>,S ← S ∪ {st} ;
Z ′ ← KORS(t,Z,KZ(st), λ, ε, γ) ;
if Z ′ = Z then

Incremental inverse update Λt with st;
Γt+1 ← Γt + rtKZ(st) ;

end
else

z = Z ′ \ Z ;
Incremental inverse update Λt with st, z ;
Incremental inverse update K−1

ZZ with z;
Γt+1 ← [Γt + rtKZ(st), KS(z)>YS ]>

end
end

update on the states and stacking a block of size 1×t in
O(tmt) space and time. Eventually, the inverse of the
dictionary gram matrix K−1

ZtZt is updated with Schur
complement in O(m2

t ). Besides, the second case when
the projection is updated occurs at most m times and
the first case at most T times. When the UCB rule is
computed on C discrete actions or when we assume that
it can be optimized using O(C) evaluations, given that
the KORS algorithm runs in O(m2) time and space,
our algorithm has a total complexity of O(CTd2

eff) in
time and O(Tdeff) in space, using that m ≈ deff . Note
that, as in all UCB algorithms, including ours, the the-
oretical value for β̃t in Lemma 4.1 is hard to estimate
and often too pessimistic and leads to over-exploration,
as discussed by Calandriello et al. (2020). In practice,
choosing a fixed value has shown to perform well in
our experiments.

In contrast, the non-incremental approach of Calan-
driello et al. (2020) in the BBKB algorithm needs to
recompute a new dictionary about deff times. Each
update involves the computation of a new covariance
matrix KZSKSZ which costs O(tm2

t ) operations for its

contextual variant1, yielding an overall O(Td3
eff) with

m ≈ deff , as illustrated in Table 1.

4.4 Regret analysis

We now analyze the regret of the EK-UCB algorithm,
using Proposition 4.1 as well as Lemma 4.1.

Theorem 4.1. Let T ≥ 1 and θ∗ ∈ H. Assume that
|〈φ(x, a), θ∗〉| ≤ 1 for all a ∈

⋃T
t=1At ⊂ A and x ∈ X .

Then, the EK-UCB algorithm with regularization λ
along with KORS updates with parameter µ satisfies
the regret bound

RT .
√
T

(√
µm

λ
+
√
deff

)(
‖θ∗‖(

√
λ+
√
µ)+

√
deff

)
,

where m := |ZT |. In particular, the choice µ = λ yields
m . deff and the bound

RT .
√
T
(
‖θ∗‖

√
λdeff + deff

)
.

Furthermore, the algorithm runs in O(Tm) space com-
plexity and O(CTm2) time complexity.

The regret bound is again given up to logarithmic
factors and we detail the proof as well as the precise
bound in Appendix C. As for K-UCB, one may analyze
the resulting regret under a capacity condition, and
when µ ≈ λ, we obtain the same guarantees as in
Corollary 3.1. Note that our analysis leverages the
fact that the dictionary is constructed incrementally,
in particular using a condition Pt � Pt−1, which yields
the approximation term

√
µm/λ. Had we used fixed

projections with some operator P , this approximation
term would instead be

√
µ/λ with µ = ‖(I−P )F

1/2
T ‖2.

As a consequence of this theorem, the following corol-
lary analyzes when the approximation terms dominate
the regret, i.e when the dictionary size does not suffice
to recover the original regret bound.

Corollary 4.1. Assuming the capacity condition
deff ≤ (T/λ)α for 0 ≤ α ≤ 1 . Let m ≥ 1, under
the assumptions of Thm. 4.1, the regret of EK-UCB
satisfies

RT .

{
Tm

α−1
2α if m ≤ T

α
1+α

T
1+3α
2+2α otherwise

for the choice λ = µ = Tm−1/α.

The proof is postponed to Appendix C. In a practical
setting, the dictionary size is controlled by the choice
of the projection parameter µ. When µ is too high,

1The original BBKB algorithm does not involve contexts
and consider a finite set of actions, allowing to compute the
covariance matrix in O(min(t, |A|)m2

t ).
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Figure 1: ’Bump’ setting: Regret and running times of EK-UCB, CBBKB, CBKB, SupKUCB and K-UCB,
with T = 1000 and λ = 10 (see Corollary 3.1 and 4.1). EK-UCB matches the best theoretical regret-time
compromise when the projection parameter µ = λ. We show other values of µ: higher µ (µ = 100) leads to faster
computational time but worse regret, and reciprocally (µ = 1) leads to worse computational time and better
regret. Additional results where λ and µ change simultaneously are available in the Appendix F.

it induces a smaller dictionary size m but thus linear
regret as indicated in the previous corollary. However,
by choosing a low µ, we still recover the original regret
but increase the size of the dictionary and thus pay
a higher computation time. To recover the original
regret, the regularization parameter λ must be set to
µ in all cases to recover the original regret, and both
values have a theoretical optimal value which depends
on the horizon to recover the best convergence rate
under the capacity condition assumption.

5 Numerical Experiments

We now evaluate our proposed EK-UCB approach em-
pirically on a synthetic scenario, in order to illustrate
its performance in practice. All algorithms have been
carefully optimized for fair comparisons.2 More experi-
mental details, discussions, and additional experimental
results are provided in Appendix F.

Experimental setup. We consider a ’Bump’ syn-
thetic environment with contexts uniformly distributed
in [0, 1]p, with p = 5, and actions in [0, 1]. The
rewards are generated using the function r(x, a) =
max(0, 1 − ‖a − a∗‖1 − 〈w∗, x − x∗〉) for some a∗, w∗
and x∗ picked randomly and fixed. We also consider
additional 2D synthetic settings ’Chessboard’ and ’Step
Diagonal’ presented in Appendix F.2.2. We use a Gaus-
sian kernel in this setting. We run our algorithms for
T = 2000 steps and average our results over different 3
random runs.

2The code with open-source implementations for experi-
mental reproducibility is available at https://github.com/
criteo-research/Efficient-Kernel-UCB.

Baselines. In our experiments, we chose to compare
to K-UCB, SupK-UCB and to works which focus on
improving the O(T 3) time-complexity for the kernel
case. We implemented K-UCB, SupK-UCB (SupKer-
nelUCB, Valko et al. (2013)), EK-UCB (our efficient
version of the K-UCB algorithm) as well as our contex-
tual adaptation of the BKB (Calandriello et al., 2019)
and BBKB (Calandriello et al., 2020) algorithms; we
will refer to these respectively as CBKB and CBBKB.
Specifically, we use the same accumulation criteria
as Calandriello et al. (2020) for the “resparsification”
strategies (i.e., the resampling of the dictionary) with
a threshold parameter C. We also proceed to the same
sampling and equation updates as the original algo-
rithms while using our joint kernel on context-action
pairs. Note also that CGP-UCB/K-UCB only differ
from their parameter βt and match the same algorithm
in our implementation (see second last paragraph in
Sec. 4.3).

Results. We report the average regret and running
times of the algorithms over different runs in Fig. 1 and
Fig. 2 to analyze how the the different algorithms per-
form. In particular, our algorithm (EK-UCB) achieves
low regret while running in low computational time.

In the first example for the ’Bump’ environment in
Fig. 1, for T = 2000, we have set λ = 10 (of the
order of

√
T ) and see that the value of µ = λ indeed

achieves a good tradeoff between regret and time. The
parameter µ determines the quality of the projection
required in the algorithm. Thus, for a smaller µ, the
algorithm achieves a better regret but pays a higher
time complexity. We note that a similar role is played
by the parameter C in the BBKB algorithm. The
smaller C, the more frequent the dictionary updates,

https://github.com/criteo-research/Efficient-Kernel-UCB
https://github.com/criteo-research/Efficient-Kernel-UCB
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Figure 2: ’Chessboard’ setting: Regret and running times of EK-UCB (λ = µ), CBBKB (C = 10) and CBKB,
with T = 2000 and with varying λ. We notice that low λ values have better regrets but higher computatinal times.
Overall EK-UCB achieves the best regret-time compromise for all parameters of λ while CBBKB sometimes
improves upon the K-UCB complexity but has both higher regret than EK-UCB and higher computational time.

and thus the slower is the algorithm. While the CGP-
UCB/K-UCB obtains the best regret, we note also,
that EK-UCB (µ = 1), CBKB (which is CBBKB with
C = 1) essentially take the full dictionary m ≈ T and
thus also match K-UCB, but with dictionary build-
ing computational overheads which make them more
computationally intensive than K-UCB itself. In the
Appendix F we provide additional results that show
that consistently EK-UCB provides the best time-regret
compromise with regards to K-UCB.

Second, in Fig. 2 we show for the ’Chessboard’ set-
ting the influence of varying λ for all methods (fixing
µ = λ for EK-UCB). Both CBBKB and EK-UCB im-
prove upon the K-UCB computational time in this
case, but EK-UCB achieves lower computational times
while also having lower regrets than CBBKB for all
settings. We also notice that the CBKB algorithm
runs much slower than the CBBKB algorithm in all
experiments, as expected due to its costly dictionary
update at every round which requires processing all
previous points. The computational overheads of its
dictionary building therefore makes it not practical de-
spite its theoretical guarantees. Note also that CBBKB
uses scores based on the variance estimates on past
states for its “resparfication” strategy and EK-UCB
uses leverage scores to build its dictionary thus look-
ing for directions that are orthogonal to the previous
anchor points; both approaches are more effective than
updating the dictionary at each round. Eventually, re-
call that our incremental projection scheme allows us to
perform rank-one updates of the dictionary. This also
contributes to the practical speedup of our EK-UCB
algorithm, as compared to the CBBKB strategy.

Moreover, SupK-UCB performs poorly in our exper-
iments due to its over-exploring elimination strategy

that might be beneficial only for large T and makes
it unpractical in its current time-complexity. Note
that the main author of SupK-UCB co-authored Ca-
landriello et al. (2019) where it is mentioned that it
indeed has "tighter analysis than GP-UCB [but] does
not work well in practice".

6 Discussions

In this work, we proposed a method for contextual ker-
nel UCB algorithms in large-scale problems. The EK-
UCB algorithm runs in O(Tdeff) space and O(CTd2

eff)
time complexity, which significantly improves over the
standard contextual kernel UCB method. Note that
while previous efficient Gaussian process algorithms
allow to scale up the learning problems in non contex-
tual and discrete action environments, we have shown
how the incremental projection updates were crucial to
perform efficient approximations in the joint context-
action space, providing the same regret guarantees for a
smaller computational cost. We note that the batching
strategy of BBKB may still be useful even under our
incremental updates, and thus provides an interesting
avenue for future work. Another natural question is
whether we may obtain algorithms with better regret
guarantees similar to Valko et al. (2013) in the finite
action case, while also achieving gains in computational
efficiency as in our work.
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Appendix

This appendix is organized as follows:

– Appendix A: summary of the notations used in the analysis
– Appendix B: proofs of Section 3 – Kernel-UCB
– Appendix C: proofs of Section 4 – Efficient Kernel-UCB
– Appendix E: details on the implementation of the algorithms
– Appendix F: additional experiment details, discussions and results

A List of notations

In this appendix, we recall useful notations that are used throughout the paper.

Below are generic notations and notations related to RKHS:
– [n] := {1, . . . , n}
– . denotes an approximate inequality up to logarithmic multiplicative or additive terms
– X is the input space
– A is the action set
– k : (X ×A)× (X ×A)→ R is a bounded positive definite Kernel
– κ > 0 is an upper-bound on the kernel κ2 ≥ sups∈X×A k(s, s).
– H is the reproducing kernel Hilbert space associated to k
– φ : X ×A → H is the feature map such that k(s, s′) = 〈φ(s), φ(s′)〉 for any s, s′ ∈ X ×A
– 〈ϕ,ϕ′〉 := ϕ>ϕ′ denotes the inner product for any ϕ,ϕ′ ∈ H
– ‖ · ‖ denotes the norm associated to H. It is the one induced by the inner product, i.e., ‖ϕ‖2 = 〈ϕ,ϕ〉
– ‖ · ‖V denotes for any symmetric positive semi-definite operator V : H → H the norm such that ‖ϕ‖V =
‖V 1/2ϕ‖ for all ϕ ∈ H

– L 4 L′ means that L− L′ is positive semi-definite for two operators L,L′ on H
– ϕ⊗ ϕ′ : H → H is the tensor product of ϕ and ϕ′ ∈ H

Below are notations related to the sequential setting. Here, t ∈ [T ] denotes the index of the round:
– θ∗ ∈ H is the unknown parameter
– xt ∈ X , at ∈ A are the context and action played at round t
– st := (xt, at) ∈ X ×A
– St := {s1, . . . , st} denotes the history
– ε1, . . . , εT are independent centered sub-Gaussian noise
– Ht := (ε1, . . . , εt)

>

– Ft := σ(ε1, . . . , εt) is the natural filtration with respect to (εi)i≥1

– rt := 〈θ∗, φ(xt, at)〉+ εt is the reward
– Yt := (r1, . . . , rt)

> ∈ Rt is the vector of rewards
– ϕt := φ(xt, at) ∈ H
– λ > 0 is the regularization parameter
– Ft :=

∑t
s=1 ϕs ⊗ ϕs is the covariance operator

– Vt :=
∑t
s=1 ϕs ⊗ ϕs + λI : H → H is the regularized covariance operator

– Φt : H → Rt is the operator such that [Φtϕ]i = ϕ(xi, ai) = 〈ϕ, φ(xi, ai)〉 for any ϕ ∈ H and i ∈ [t]
– Φ∗ denotes the conjugate transpose of a linear operator Φ on H
– Kt := ΦtΦ

∗
t : Rt → Rt is the kernel matrix at time t ≥ 1. Note that [Kt]ij = k((xi, ai), (xj , aj)).

– λi(Kt) is the i-th largest eigenvalue of Kt

– deff(λ, t) := Tr(Kt(Kt + λIt)
−1) is the effective dimension of the matrix Kt

Below are notations related to the Kernel-UCB algorithm without projections:
– θ̂t := V −1

t Φ∗tYt is the estimator of the algorithm
– δ > 0 is the confidence level
– βt(δ) is the radius of the confidence ellipsoid of the algorithm
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– Ct :=
{
θ ∈ H :

∥∥θ − θ̂t−1

∥∥
Vt−1

≤ βt(δ)
}
is the confidence ellipsoid played by the algorithm

Below are notations related to the Kernel-UCB algorithm with projections. All along the analysis, the notation x̃
corresponds to the projected version of the object x.

– Zt ⊂
{

(x1, a1), . . . , (xt, at)
}
is a dictionary

– H̃t := Span
{
φ(s), s ∈ Zt

}
is a linear subspace of H and is used at round t.

– Pt : H → H̃t is the Euclidean projection onto H so that H̃t = {Ptϕ,ϕ ∈ H}
– Ṽt :=

∑t
s=1(Ptϕs)⊗ (Ptϕs) + λI = PtFtPt + λI is the regularized projected covariance operator

– θ̃t := PtṼ
−1
t PtΦ

∗
tYt is the projected estimator of the algorithm

– C̃t :=
{
θ ∈ H : ‖θ − θ̃t−1‖Ṽt−1

≤ β̃t(δ)
}
is the confidence ellipsoid related to the projected estimator

– µt :=
∥∥(I − Pt)F 1/2

t

∥∥2 is the approximation error of the projection
Eventually, we provide notations related to the kernel matrix computations when we write the update rules of the
efficient algorithm.

– KS(s′) is the kernel column vector [k(s1, s
′), . . . , k(sl, s

′)]> of size |S| = l. Note that KSt(s) = Φtφ(s) .
– KZS is the kernel matrix vector [k(z, s)]z∈Z,s∈S of size |Z| × |S|.
– st,a = (xt, a) refers to the pair of context xt and any action a ∈ At that can be chosen in the UCB rule.

B Proofs of Section 3: Kernel UCB

In this appendix we prove of Lemma 3.1 and Theorem 3.1.

B.1 Proof of Lemma 3.1

We first prove Lemma 3.1, which controls the size of the confidence intervals considered by the algorithm. It
states that with probability 1− δ, for all t ≥ 1:

θ∗ ∈ Ct, where Ct =
{
θ ∈ Rd, ‖θ − θ̂t−1‖Vt−1

≤ βt(δ)
}
. (14)

Lemma 3.1. Let δ ∈ (0, 1). Assume κ2 ≥ sups∈X×A k(s, s). Then with probability at least 1− Tδ, for all t ∈ [T ]

‖θ̂t − θ∗‖Vt ≤
√
λ‖θ∗‖+

√
2 log

1

δ
+ log

(
det

(
1

λ
(Kt + λI)

))

≤
√
λ‖θ∗‖+

√
2 log

1

δ
+ log

(
e+

etκ2

λ

)
deff(λ, T ) =: βt+1(δ).

Proof. The analysis is inspired by the one of Abbasi-yadkori et al. (2011) for linear bandits and uses inequality
tails on vector valued martingales. We introduce Mt =

∑t
s=1 ϕsεs ∈ H, which is a martingale with regards to the

natural filtration Ft := σ(ε1, . . . , εt). Solving the least-square optimization problem (4), θ̂t equals

θ̂t = V −1
t

t∑
s=1

ϕsYs = V −1
t

t∑
s=1

ϕs(ϕ
>
s θ
∗ + εs) = V −1

t ((Vt − λId)θ∗ +Mt) = θ∗ − λV −1
t θ∗ + V −1

t Mt .

Multiplying by the square root of Vt and using the triangle inequality∥∥∥V 1/2
t

(
θ̂t − θ∗

)∥∥∥ =
∥∥∥− λV −1/2

t θ∗ + V
−1/2
t Mt

∥∥∥ ≤ λ∥∥V −1/2
t θ∗

∥∥+
∥∥V −1/2

t Mt

∥∥ .
On the other hand, given that Vt = Ft + λI where Ft is positive semi-definite, V −1/2

t 4 λ−1/2I and thus

λ‖V −1/2
t θ∗‖ ≤ λ 1√

λ
‖θ∗‖ =

√
λ‖θ∗‖ .

We now prove for the other term that with probability at least 1− δ

‖V −1/2
t Mt‖ ≤

√
2 log

1

δ
+ log det

1

λ
(Kt + λI) .
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Step 1: Martingales For all ν ∈ H, we define the random-variable

St,ν = exp
(
ν>Mt −

1

2
ν>Vtν

)
and now show that it is a Ft-super-martingale. First, note that the common distribution of the ε1, . . . , εt is 1-sub
Gaussian, i.e., for all Ft−1-measurable real-valued random variable νt−1, we have

E
[

exp(νt−1εt)|Ft−1

]
≤ exp

(ν2
t−1

2

)
. (15)

Thus, using that Mt = Mt−1 + ϕtεt and Vt = Vt−1 + ϕt ⊗ ϕt,

E [St,ν |Ft−1] = E
[

exp
(
ν>Mt −

1

2
ν>Vtν

)
|Ft−1

]
= E

[
St−1,ν exp

(
ν>ϕtεt −

1

2
ν>(ϕt ⊗ ϕt)ν

)
|Ft−1

]
= St−1,ν E

[
exp

(
ν>ϕtεt −

1

2
(ν>ϕt)

2
)∣∣Ft−1

]
≤ St−1,ν ,

where the last inequality is by applying (15) with νt−1 = ν>ϕt since ϕt = φ(xt, at) is Ft−1-measurable. Therefore,
St,ν is a Ft-super-martingale for any ν ∈ H, and

E
[
St,ν

]
≤ E

[
S0,ν

]
= exp

(
− λ

2
‖ν‖2

)
. (16)

Rewriting St,ν in its vertex form with m = Vt−1Mt yields

St,ν = exp

(
−1

2
(ν −m)>Vt(ν −m)

)
× exp

(1

2

∥∥V −1/2
t Mt

∥∥2
)
,

which substituted into (16) entails

E

[
exp

(
− 1

2
(ν −m)>Vt(ν −m)

)
× exp

(1

2

∥∥V −1/2
t Mt

∥∥2
)]
≤ exp

(
− λ

2
‖ν‖2

)
, ∀ν ∈ H . (17)

Step 2: Laplace’s method integrating

Now, following Laplace’s method which is standard for the proof of LinUCB, the goal is to integrate both sides of
the above expression. Let us first rewrite it in order to consider finite dimensional objects thanks to the Kernel
trick.

Recalling Vt := Φ∗tΦt + λI and Kt := ΦtΦ
∗
t , following (Valko et al., 2013), we will use the following identities:

(Φ∗tΦt + λI)Φ∗t = Φ∗t (ΦtΦ
∗
t + λI) (18)

⇒ VtΦ
∗
t = Φ∗t (Kt + λI) (19)

⇒ Φ∗t (Kt + λI)−1 = V −1
t Φ∗t . (20)

Let x ∈ Rt and write ν = V −1
t Φ∗tx ∈ H and recall that m = V −1

t Mt = V −1
t Φ∗tHt, where Ht = (ε1, . . . , εt)

>. We
have

exp
(
− 1

2
(ν −m)>Vt(ν −m)

)
= exp

(
− 1

2
(x−Ht)

>ΦtV
−1
t VtV

−1
t Φ∗t (x−Ht)

)
= exp

(
− 1

2
(x−Ht)

>ΦtΦ
∗
t (Kt + λI)−1(x−Ht)

)
← by (20)

= exp
(
− 1

2
(x−Ht)

>Kt(Kt + λI)−1(x−Ht)
)

← Kt = ΦtΦ
∗
t

= exp
(
− 1

2
(x−Ht)

>K
1/2
t (Kt + λI)−1K

1/2
t (x−Ht)

)
, (21)
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where the last equality is because (Kt + λI)−1 and K1/2
t commute. Similarly,

exp
(
− λ

2
‖ν‖2

)
= exp

(
− λ

2
x>K

1/2
t (Kt + λI)−2K

1/2
t x

)
.

Combining with (16) and (21) thus gives for any x ∈ Rt,

E
[

exp
(
− 1

2
(x−Ht)

>K
1/2
t (Kt + λI)−1K

1/2
t (x−Ht)

)
× exp

(1

2

∥∥V −1/2
t Mt

∥∥2
)]

≤ exp
(
− λ

2
x>K

1/2
t (Kt + λI)−2K

1/2
t x

)
. (22)

Now, that we are back to finite dimensional space, the idea would consists in integrating both parts over x ∈ Rt.
But the matrix Kt may be non-invertible, we thus need a few more steps to integrate over Im(Kt) only.

Let dt = rank(Kt) and Qt ∈ Rt×dt the matrix formed by the orthonormal eigenvectors of Kt with non-zero
eigenvalues. Let u ∈ Rdt then Qtu ∈ Im(Kt) and there exists x ∈ Rt such that K1/2

t x = Qtu. Defining z ∈ Rdt
such that Qtz = K

1/2
t Ht and substituting into Inequality (22) yields, for any u ∈ Rdt

E
[

exp
(
− 1

2
(u− z)>Q>t (Kt + λI)−1Qt(u− z)

)
× exp

(1

2

∥∥V −1/2
t Mt

∥∥2
)]

≤ exp
(
− λ

2
u>Q>t (Kt + λI)−2Qtu

)
. (23)

Now, we integrate both sides over u ∈ Rdt , recognizing a multidimensional Gaussian density, we have∫
Rd

exp
(
− 1

2
(u− z)>Q>t (Kt + λI)−1Qt(u− z)

)
dµ(u) =

√
det
(
2π(Q>t (Kt + λI)−1Qt)−1

)
=

√√√√(2π)dt
dt∏
i=1

(
λi(Kt) + λ

)
,

where λi(Kt) is the i-th largest eigenvalue of Kt. Similarly∫
Rd

exp
(
−λ

2
u>Q>t (Kt+λI)−2Qtu

)
dµ(u) =

√
det
(

2πλ−1
(
Q>t (Kt + λI)−2Qt

)−1
)

=

√√√√(2π

λ

)dt dt∏
i=1

(
λi(Kt) + λ

)2
.

Therefore, by the Fubini-Tonelli theorem, plugging the last two equations into Inequality (23) entails√√√√(2π)dt
dt∏
i=1

(
λi(Kt) + λ

)
E
[

exp
(1

2

∥∥V −1/2
t Mt

∥∥2
)]
≤

√√√√(2π

λ

)dt dt∏
i=1

(
λi(Kt) + λ

)2
,

which, after reorganizing the terms, yields

E
[

exp
(1

2

∥∥V −1/2
t Mt

∥∥2
)]
≤

√√√√ dt∏
i=1

(
1 +

λi(Kt)

λ

)
=

√
det(Kt + λI)

λt
.

Step 3: Markov-Chernov bound. It remains to upper-bound the above expectation using concentration inequalities.
For u > 0,

P
(
‖V −1/2

t Mt‖ > u
)

= P

(
‖V −1/2

t Mt‖2

2
>
u2

2

)
≤ exp

(
−1

2
u2

)
E
[
exp

(
1

2
‖V −1/2

t Mt‖2
)]

≤ exp

(
−u

2

2
+

1

2
log

det(Kt + λI)

λt

)
= δ (24)

for the claimed choice

u =

√
2 log

1

δ
+ log det

1

λ
(Kt + λI) .

The proof then concludes by using Prop. 3.1 on the log det 1
λ (Kt + λI) term and by applying a union bound.
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B.2 Proof of Theorem 3.1

We are now ready to prove Theorem 3.1, which upper-bounds the regret of K-UCB.
Theorem 3.1. Let T ≥ 2 and θ∗ ∈ H. Assume that |〈φ(x, a), θ∗〉| ≤ 1 and ‖φ(x, a)‖ ≤ κ for all a ∈

⋃T
t=1At ⊂ A

and x ∈ X . Then, the K-UCB rule defined in Eq. (3) for the choice Ct as in (5) satisfies the pseudo-regret bound

RT ≤ 2 + 2

√
T

(
log

(
e+

eTκ2

λ

)
deff(λ, T )

)[√
λ‖θ∗‖+

√
2 log(T ) + log

(
e+

eTκ2

λ

)
deff(λ)

]
.
√
T
(
‖θ∗‖

√
λdeff(λ, T ) + deff(λ, T )

)
.

Proof. Let δ ∈ (0, 1/2). By Lemma 3.1, with probability 1− Tδ,

∀t ∈ [T ], θ∗ ∈ Ct . (25)

Step 1: Small instantaneous regrets under the event (25). Assume that (25) holds. Let

a∗t := max
a∈At
〈φ(xt, a), θ∗〉 and ∆t := 〈φ(xt, a

∗
t )− φ(xt, at), θ

∗〉

be respectively the optimal decision and the instantaneous regret at round t. We also define

ρt ∈ arg max
θ∈Ct

{
〈φ(xt, at), θ〉

}
.

Since θ∗ ∈ Ct, we have

〈φ(xt, a
∗
t ), θ

∗〉 ≤ max
θ∈Ct
{〈φ(xt, a

∗
t ), θ〉} = K-UCBt(a∗t ) ≤ K-UCBt(at) = max

θ∈Ct
{〈φ(xt, at), θ〉} = 〈φ(xt, at), ρt〉 ,

which entails because θ∗ and θ̃t−1 belong to Ct,

∆t = 〈φ(xt, a
∗
t )− φ(xt, at), θ

∗〉 ≤ 〈φ(xt, at), ρt − θ∗〉 ≤ ‖φ(xt, at)‖V −1
t−1
‖ρt − θ∗‖Vt−1

≤ 2‖φ(xt, at)‖V −1
t−1
βt(δ) .

Recall that ϕt := φ(xt, at). Then, summing over t = 1, . . . , T and using that by assumption

|∆t| ≤
∣∣〈φ(xt, a

∗
t ), θ

∗〉
∣∣+
∣∣〈φ(xt, at), θ

∗〉
∣∣ ≤ 2 sup

x∈X ,a∈At
|〈φ(x, a), θ∗〉| ≤ 2 ,

we can write the cumulative regret as

T∑
t=1

∆t ≤
√
T
∑T
t=1 ∆2

t ← Jensen’s inequality

≤ 2

√
T
∑T
t=1 min{‖ϕt‖2V −1

t−1

βt(δ)2, 1}

≤ 2βT (δ)

√
T
∑T
t=1 min{‖ϕt‖2V −1

t−1

, 1} ← 1 ≤ βt(δ) ≤ βT (δ)

≤ 2βT (δ)

√
T
∑T
t=1 log

(
1 + ‖ϕt‖2V −1

t−1

)
← min(u, 1) ≤ 2 log(1 + u), ∀u > 0 . (26)

Now we will use the kernel trick to obtain a formulation of ϕ>t V
−1
t−1ϕt using gram matrices. Define st := (xt, at) and

St := (si)1≤i≤t the historical data. For any l ≥ 1 and S ∈ (X ×A)l, we also denote by KS(s′) the kernel column
vector [k(s1, s

′), . . . , k(sl, s
′)]> of size |S| = l. Specifically, we have KSt−1(st) := [k(s1, st), . . . , k(st−1, st)]

> =
Φt−1ϕt ∈ Rt. When multiplying Vt−1 := Φ∗t−1Φt−1 + λI by ϕt on the right, we can express

Vt−1ϕt = Φ∗t−1KSt−1
(st) + λϕt,

⇒ ϕt = V −1
t−1Φ∗t−1KSt−1 (st) + λV −1

t−1ϕt

⇒ ϕt = Φ∗t−1(Kt−1 + λI)−1KSt−1
(st) + λV −1

t−1ϕt ,
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where the last equation is by Eq. (20). Thus, multiplying now by ϕ>t on the left and using ϕ>t Φ∗t−1 = KSt−1(st)
entails

ϕ>t ϕt = KSt−1 (st)
>

(Kt−1 + λI)−1KSt−1 (st) + λϕ>t V
−1
t−1ϕt .

Therefore, reorganizing the terms ans recognizing ‖ϕt‖2V −1
t−1

= ϕ>t V
−1
t−1ϕt and k(st, st) = ϕ>t ϕt, we can write

1+‖ϕt‖2V −1
t−1

= 1 + ϕ>t V
−1
t−1ϕt

=
λ+ k(st, st)

λ
− 1

λ
KSt−1(st)

>(Kt−1 + λI)−1KSt−1(st)

=
λ+ k(st, st)

λ

(
1−KSt−1

(st)
>(Kt−1 + λI)−1KSt−1

(st)
(
λ+ k(st, st)

)−1
)

=
λ+ k(st, st)

λ
det

(
1−KSt−1

(st)
>(Kt−1 + λI)−1KSt−1

(st)
(
λ+ k(st, st)

)−1
)

=
λ+ k(st, st)

λ
det

(
I − (Kt−1 + λI)−1/2KSt−1(st)

(
λ+ k(st, st)

)−1
KSt−1(st)

>(Kt−1 + λI)−1/2

)
,

where the last equality follows by the matrix determinant lemma det(I +AB>) = det(I +B>A) if A and B are
n-by-m matrices. Then, 1 + ‖ϕt‖2V −1

t−1

equals

λ+ k(st, st)

λ
det

(
(Kt−1 + λI)−1/2

(
Kt−1 + λI −KSt−1

(st)
(
λ+ k(st, st)

)−1
KSt−1

(st)
>
)

(Kt−1 + λI)−1/2

)

=
λ+ k(st, st)

λ

det
(
Kt−1 + λI −KSt−1(st)

(
λ+ k(st, st)

)−1
KSt−1(st)

>
)

det(Kt−1 + λI)
.

Now, using that

Kt + λI =

[
Kt−1 + λI KSt−1

(st)
KSt−1

(st)
> k(st, st) + λ

]
,

by the block matrix determinant formula

det
(
Kt + λI

)
= (k(st, st) + λ) det

(
Kt−1 + λI −KSt−1

(st)(k(st, st) + λ)−1KSt−1
(st)

>
)

we finally get

1 + ‖ϕt‖2V −1
t−1

=
1

λ

det(Kt + λI)

det(Kt−1 + λI)
. (27)

Note here that contrary to the proof in Lattimore and Szepesvári (2020), we used here computations using the
gram matrix Kt instead of the Vt which lives in the feature space that can be infinite dimensional.

Taking the log and summing over t = 1, . . . , T telescopes

T∑
t=1

log
(

1 + ‖ϕt‖2V −1
t−1

)
= log

(
det

(
1

λ
(Kt + λI)

))
≤ log

(
e+

eTκ2

λ

)
deff(λ, T ) ,

where we used the Proposition 3.1 for the last inequality and that . Substituting into the regret bound (26)
together with βT (δ) ≤ βT+1(δ) entails with probability at least 1− Tδ

T∑
t=1

∆t ≤ 2βT+1(δ)

√
T

(
e+

eTκ2

λ

)
deff(λ, T ) .

Choosing δ = 1/T 2, taking the expectation RT = E
[∑T

t=1 ∆t

]
and using |∆t| ≤ 2 concludes.

We now provide a proof for the Corollary that gives out the convergence speed of the K-UCB algorithm with the
capacity condition assumption.
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B.3 Proof of Corollary 3.1

Corollary 3.1. Assuming the capacity condition deff ≤ (T/λ)α for 0 ≤ α ≤ 1, the regret of K-UCB is bounded
as RT . T

1+3α
2+2α with an optimal λ ≈ T

α
1+α .

Proof. Starting from RT .
√
T
(√

λdeff(λ) + deff(λ)
)
and assuming the capacity condition deff(λ) .

(
T
λ

)α
for

some α ∈ (0, 1),

RT .
√
T
(√

Tαλ1−α + Tαλ−α
)
.

Minimizing in λ > 0 entails √
Tαλ1−α = Tαλ−α ⇒ λ∗ = T

α
1+α ,

which yields for λ = λ∗

RT . T
1
2 +α− α2

1+α = T
1+3α
2+2α .

C Proofs of Section 4: Efficient Kernel-UCB

Let us start by recalling the setting and the notation of this section. Let Zt ⊆ St, H̃t := Span
{
φ(s), s ∈ Zt

}
be the corresponding linear subspace of H, and Pt : H → H̃t be the Euclidean projection onto H so that
H̃t = {Ptϕ,ϕ ∈ H}. The EK-UCB algorithm also builds an estimator

θ̃t−1 ∈ arg min
θ∈H̃t−1

{ t−1∑
s=1

(〈θ, φ(xs, as)〉 − rs)2
+ λ‖θ‖2

}
∈ H̃t−1 , (28)

and uses the confidence set C̃t :=
{
θ ∈ H : ‖θ − θ̃t−1‖Ṽt−1

≤ β̃t(δ)
}
. We define Ṽt :=

∑t
s=1(Ptϕs)⊗ (Ptϕs) + λI,

that we rewrite Ṽt = PtFtPt + λI where Φ∗t = [ϕ1, . . . , ϕt] and Ft = Φ∗tΦt. Recalling the notation,
Yt := (r1, . . . , rt)

>, we then obtain that θ̃t = PtṼ
−1
t PtΦ

∗
tYt. We recall the definition µt :=

∥∥(I − Pt)F 1/2
t

∥∥2.

C.1 Proof of Lemma 4.1

The following lemma serves to compute the distance of the center θ̃t to any point in the ellipsoid in the projected
space H̃t. Note that the norm uses the geometry induced by the direction matrix Ṽt.

Lemma 4.1. Let δ ∈ (0, 1). Assume that sups∈X×A k(s, s) ≤ κ2. Then, with probability 1− δ, for all t ≥ 1

‖θ̃t − θ∗‖Ṽt ≤
(√

λ+
√
µt

)
‖θ∗‖+

√
4 log

1

δ
+ 2 log det

(Kt + λI

λ

)
≤
(√

λ+
√
µt

)
‖θ∗‖+

√
4 log

1

δ
+ 2 log

(
e+

etκ2

λ

)
deff(λ, T ) := β̃t+1(δ) ,

where ‖θ‖2V = θ>V θ.

Proof. Let t ≥ 1. Note that PtVtPt = Pt(Ft + λI)Pt = PtṼt = ṼtPt and consequently as well PtṼ −1
t = Ṽ −1

t Pt.
We can write with Ht := (ε1, . . . , εt)

>,

θ̃t = PtṼ
−1
t PtΦ

∗
tYt

= Ṽ −1
t PtΦ

∗
tYt ← PtṼ

−1
t = Ṽ −1

t Pt

= Ṽ −1
t PtΦ

∗
t (Φtθ

∗ +Ht)

= Ṽ −1
t PtFtPtθ

∗ + Ṽ −1
t PtFt(I − Pt)θ∗ + Ṽ −1

t PtΦ
∗
tHt

= θ∗ − λṼ −1
t θ∗ + Ṽ −1

t PtFt(I − Pt)θ∗ + Ṽ −1
t PtΦ

∗
tHt .
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To obtain later on the norm ‖θ̃t − θ∗‖Ṽt , we multiply by Ṽ 1/2
t on the left

Ṽ
1/2
t (θ̃t − θ∗) = −λṼ −1/2

t θ∗︸ ︷︷ ︸
(i)

+ Ṽ
−1/2
t PtFt(I − Pt)θ∗︸ ︷︷ ︸

(ii)

+ Ṽ
−1/2
t PtΦ

∗
tHt︸ ︷︷ ︸

(iii)

. (29)

We then compute each norm separately.

(i) Since Ṽt = PtFtPt + λI, all its eigenvalues are larger than λ. Thus, Ṽ −1/2
t 4 λ−1/2I, which implies∥∥λṼ −1/2

t θ∗
∥∥ ≤ √λ‖θ∗‖ . (30)

(ii) We write
∥∥Ṽ −1/2

t PtFt(I − Pt)θ
∗
∥∥ =

∥∥Ṽ −1/2
t PtF

1/2
t F

1/2
t (I − Pt)θ

∗
∥∥ and recall Ṽt = PtF

1/2
t F

1/2
t Pt + λI

therefore Ṽ 1/2
t < PtF

1/2
t , which entails∥∥Ṽ −1/2

t PtFt(I − Pt)θ∗
∥∥ ≤ ∥∥F 1/2

t (I − Pt)θ∗
∥∥ ≤ √µt‖θ∗‖ , (31)

where we recall that µt :=
∥∥(I − Pt)F 1/2

t

∥∥2 .

(iii) Let us upper-bound the norm of the last term∥∥Ṽ −1/2
t PtΦ

∗
tHt

∥∥ ≤ ∥∥Ṽ −1/2
t PtV

1/2
t

∥∥∥∥V −1/2
t Φ∗tHt

∥∥
≤
∥∥Ṽ −1/2

t PtV
1/2
t

∥∥√2 log
1

δ
+ log det

( 1

λ
(Kt + λI)

)
, (32)

with probability at least 1− δ, where the last inequality follows from the same analysis as (24). Then, using that
PtVtPt = PtFtPt + λPt = Ṽt + λ(Pt − I), we have∥∥Ṽ −1/2

t PtV
1/2
t

∥∥2
=
∥∥Ṽ −1/2

t PtVtPtṼ
−1/2
t

∥∥ =
∥∥Ṽ −1/2

t

(
Ṽt + λ(Pt − I)

)
Ṽ
−1/2
t

∥∥
=
∥∥I + λṼ

−1/2
t (Pt − I)Ṽ

−1/2
t

∥∥ ≤ 1 + λ
∥∥Ṽ −1/2

t

∥∥2∥∥Pt − I∥∥ ≤ 2 ,

where the last inequality is because
∥∥Pt−I∥∥ ≤ 1 and

∥∥Ṽ −1/2
t

∥∥ ≤ λ−1/2. Therefore, substituting into Inequality (32)
yields ∥∥Ṽ −1/2

t PtΦ
∗
tHt

∥∥ ≤√4 log
1

δ
+ 2 log det

( 1

λ
(Kt + λI)

)
, (33)

with probability at least 1− δ.

Finally, combining (30), (31), and (33) with Equation (29) concludes∥∥θ̃t − θ∥∥Ṽt ≤ λ∥∥Ṽ −1/2
t θ∗

∥∥+
∥∥Ṽ −1/2

t PtFt(I − Pt)θ∗
∥∥+

∥∥Ṽ −1/2
t PtΦ

∗
tHt

∥∥
≤
(√
λ+
√
µt
)∥∥θ∗∥∥+

√
4 log

1

δ
+ 2 log det

( 1

λ
(Kt + λI)

)
.

The second line of the statement follows from Proposition 3.1.

C.2 Proof of Theorem 4.1

Theorem 4.1. Let T ≥ 1 and θ∗ ∈ H. Assume that |〈φ(x, a), θ∗〉| ≤ 1 for all a ∈
⋃T
t=1At ⊂ A and x ∈ X

then the EK-UCB rule in Eq. (4.1) with C̃t defined in Eq. (10), with m = |Zt| dictionary updates, satisfies the
pseudo-regret bound

RT .
√
T

(√
µm

λ
+
√
deff

)(√
λ+
√
µ+

√
deff

)
.

In particular, the choice µ = λ yields m . deff and

RT .
√
T
(
‖θ∗‖

√
λdeff + deff

)
.
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Proof. Let δ > 0. By Lemma 4.1, with probability 1− δ,

∀t ≥ 1, θ∗ ∈ C̃t . (34)

Let us recall and start from the definition of the regret

RT := E
[ T∑
t=1

∆t

]
, where ∆t := 〈φ(xt, a

∗
t )− φ(xt, at), θ

∗〉 and a∗t := max
a∈At
〈φ(xt, a), θ∗〉 .

Step 1: Small instantaneous regrets under the event (34). Assume that (34) holds and define

ρ̃t ∈ arg max
θ∈C̃t

{〈φ(xt, at), θ〉} .

Note here that the use of the original feature map allows us to not have any misspecified term that would have
been incurred if the projected feature map was used instead instead with 〈φ(xt, a

∗
t ), θ

∗〉 = 〈Ptφ(xt, a
∗
t ), θ

∗〉+ 〈(I −
Pt)φ(xt, a

∗
t ), θ

∗〉) in the upper bound expression.

Now given that θ∗ ∈ C̃t and at ∈ arg maxa∈A EK-UCBt(a), we have

〈φ(xt, a
∗
t ), θ

∗〉 ≤ max
θ∈C̃t
{〈φ(xt, a

∗
t ), θ〉} = EK-UCBt(a∗t ) ≤ EK-UCBt(at) = max

θ∈C̃t
{〈φ(xt, at), θ〉} = 〈φ(xt, at), ρ̃t〉 .

Therefore,

∆t := 〈φ(xt, a
∗
t )− φ(xt, at), θ

∗〉 ≤ 〈φ(xt, at), ρ̃t − θ∗〉 ≤ ‖ϕt‖Ṽ −1
t−1
‖ρ̃t − θ∗‖Ṽt−1

≤ 2‖ϕt‖Ṽ −1
t−1
β̃t(δ) . (35)

Then, summing over t = 1, . . . , T and using |∆t| ≤ 2 and β̃T (δ) ≥ βt(δ) ≥ 1, we get

T∑
t=1

∆t ≤

√√√√T

T∑
t=1

∆2
t ← Jensen’s inequality

≤ 2

√√√√T

T∑
t=1

min
{
‖ϕt‖2Ṽ −1

t−1

β̃t(δ)2, 1
}

← |∆t| ≤ 2 and (35) (36)

≤ 2β̃T (δ)

√√√√T

T∑
t=1

min
{
‖ϕt‖2Ṽ −1

t−1

, 1
}
← 1 ≤ βt(δ) ≤ βT (δ) . (37)

Note now that

min
{
‖ϕt‖2Ṽ −1

t−1

, 1
}
≤ 2 min

{
‖Ptϕt‖2Ṽ −1

t−1

+ ‖(I − Pt)ϕt‖2Ṽ −1
t−1

, 1
}

≤ 2 min
{
‖Ptϕt‖2Ṽ −1

t−1

, 1
}

+ 2‖(I − Pt)ϕt‖2Ṽ −1
t−1

≤ 4 log
(

1 + ‖Ptϕt‖2Ṽ −1
t−1

)
+ 2‖(I − Pt)ϕt‖2Ṽ −1

t−1

. (38)

The first term can be upper-bounded similarly to (27). First, note that since Ps = PsPt−1 for any 1 ≤ s ≤ t− 1,

Ṽt−1 :=

t−1∑
s=1

(Pt−1ϕs)⊗ (Pt−1ϕs) + λI <
t−1∑
s=1

(Psϕs)⊗ (Psϕs) + λI =: W̃t−1

which implies Ṽ −1
t−1 4 W̃−1

t−1 and thus

log
(

1 + ‖Ptϕt‖2Ṽ −1
t−1

)
≤ log

(
1 + ‖Ptϕt‖2W̃−1

t−1

)
. (39)
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Now, recalling that Vt−1 :=
∑t−1
s=1 ϕs ⊗ ϕs + λI, following the same analysis as for (27), replacing ϕs with Psϕs

for all s = 1, . . . , t, we get

1 + ‖Ptϕt‖2W̃−1
t−1

=
1

λ

det(K̃t + λI)

det(K̃t−1 + λI)
,

where K̃t ∈ Rt×t is the kernel matrix such that
[
K̃t

]
ij

= 〈Piϕi, Pjϕj〉 for all 1 ≤ i, j ≤ t. Together with
Inequalities (38) and (39), and summing over t = 1, . . . , T , it yields

T∑
t=1

min
{
‖ϕt‖2Ṽ −1

t−1

, 1
}
≤ 4

T∑
t=1

log

(
1

λ

det(K̃t + λI)

det(K̃t−1 + λI)

)
+ 2

T∑
t=1

‖(I − Pt)ϕt‖2Ṽ −1
t−1

≤ 4 log

(
det(K̃T + λI)

λt

)
+ 2

T∑
t=1

‖(I − Pt)ϕt‖2Ṽ −1
t−1

. (40)

We now upper-bound the second term in the right-hand-side. Denoting by 1 = τ1 < τ2 < · · · < τm ≤ T the
indexes in time when the projection is updated, i.e., Pt = Pτi for all t ∈ {τi, . . . , τi+1 − 1}, we can write

T∑
t=1

∥∥(I − Pt)ϕt
∥∥2

=

m∑
i=1

τi+1−1∑
t=τi

∥∥(I − Pτi)ϕt
∥∥2

=

m∑
i=1

τi+1−1∑
t=τi

Tr
(
(I − Pτi)ϕt ⊗ ϕt(I − Pτi)

)
=

m∑
i=1

Tr

(
(I − Pτi)

( τi+1−1∑
t=τi

ϕt ⊗ ϕt
)

(I − Pτi)
)

=

m∑
i=1

Tr

(
(I − Pτi+1−1)

( τi+1−1∑
t=τi

ϕt ⊗ ϕt
)

(I − Pτi+1−1)

)

≤
m∑
i=1

Tr

(
(I − Pτi+1−1)

( τi+1−1∑
t=1

ϕt ⊗ ϕt
)

(I − Pτi+1−1)

)

≤
m∑
l=1

µτi+1−1 ≤ mµ ,

where the last inequality follows from Prop. 4.1. Therefore, using that Ṽ −1
t−1 4 λ−1I, from (38) we get

T∑
t=1

min
{
‖ϕt‖2Ṽ −1

t−1

, 1
}
≤ 4 log

(
det(K̃T + λI)

λt

)
+

2mµ

λ
.

Substituting into Inequality (37) entails

T∑
t=1

∆t ≤ 2β̃T (δ)

√√√√T

(
4 log

(
det(K̃T + λI)

λt

)
+

2mµ

λ

)

≤ 2β̃T (δ)

√
T

(
4 log det

(
KT + λI

λ

)
+

2mµ

λ

)

≤ 2β̃T (δ)

√
T

(
4 log

(
e+

eTκ2

λ

)
deff +

2mµ

λ

)
where the last inequality is by Prop. 3.1 and where we recall

β̃T (δ) ≤
(√

λ+
√
µ
)
‖θ∗‖+

√
4 log

1

δ
+ 2 log

(
e+

eTκ2

λ

)
deff .
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Choosing δ = 1/T and taking the expectation concludes

RT ≤ 2 + 2β̃T (1/T )

√
T

(
4 log

(
e+

eTκ2

λ

)
deff +

2mµ

λ

)
.
(

(
√
λ+
√
µ)‖θ∗‖+

√
deff

)√
T
(
deff +

mµ

λ

)
.

In particular, for the choice µ = λ, by Prop. 4.1, the dictionary is at most of sizem . deff with high probability.

C.3 Proof of Cor. 4.1

Corollary 4.1. Assuming the capacity condition deff ≤ (T/λ)α for 0 ≤ α ≤ 1. Let 1 ≤ m ≤ Tα/(1+α), under the
assumptions of Thm. 4.1, the regret of EK-UCB satisfies

RT .

{
Tm

α−1
2α if m ≤ T

α
1+α

T
1+3α
2+2α otherwise

for the choice λ = µ = Tm−1/α. Furthermore, the algorithm runs in O(Tm) space complexity and O(CTm2)
time complexity.

We start from the regret bound of Theorem 4.1, which, forgetting all dependencies that do not depend on T , for
the choice µ = λ yields

RT .
√
T
(√

λdeff + deff

)
.

Under the capacity condition deff(λ, T ) ≤ (T/λ)
α, it entails

RT .
√
T
(
λ

1−α
2 T

α
2 + λ−αTα

)
= T

1
2

(
T 1/2m

α−1
2α +m

)
= Tm

α−1
2α +

√
Tm ,

where we replaced λ = Tm−1/α. Optimizing in m, we retrieve the original rate RT . T
1+3α
2+2α for a dictionary

of size m = T
α

1+α � T . Note that a larger dictionary is not necessary in theory since it only hurts both the
theoretical rate and the computational complexity. For a smaller dictionary, the first term is predominant and
yields a regret of order O

(
Tm

α−1
2α

)
, highlighting a trade-off between the complexity which increases with m and

the regret which decreases.

D Details on the comparison of the regret bounds of CGP-UCB, SupKernelUCB,
and K-UCB

In this appendix, we first detail why we can compare the regrets of CGP-UCB (Krause and Ong, 2011),
SupKernelUCB (Valko et al., 2013) and K-UCB as shown in Table 1. We compare the quantities d̃, γ and deff

that appear in the regret bound of the literature (Valko et al., 2013; Calandriello et al., 2019; Krause and Ong,
2011). We show that they are essentially equivalent up to logarithmic factors. We recall first their definitions: for
any t ≥ 0 and λ > 0

γ(λ, t) =
1

2
log

(
det

(
I +

1

λ
Kt

))
d̃(λ, t) = min{j : jλ log T ≥

∑
k>j

λk(Kt)}

deff(λ, T ) = Tr(KT (KT + λIT )−1) .

We start by proving the first equality (up to logarithmic factors) deff(λ, t) . γ(λ, t) . deff(λ, t). We first obtain
that γ(λ, t) . deff with Proposition 3.1. Next, to prove that deff . γ(λ, t), we prove that for all x > −1
x

x+ 1
≤ log(1 + x) by writing for x > −1, h(x) =

x

x+ 1
− log(1 + x) studying h′ and h(0). Therefore,

deff(λ, t) = Tr(Kt(Kt+ λI)−1) =

t∑
k=1

λk
λ

λk
λ + 1

≤
t∑

k=1

log(1 +
λk
λ

) = γ(λ, t)
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Next we detail that d̃(λ, t) . γ(λ, t) . d̃(λ, t). First, Valko et al. (2013) shows that d̃(λ, t) . γ(λ, t). Second, to
prove γ(λ, t) . d̃(λ, t), we write

t∑
k=1

log

(
1 +

λk
λ

)
≤
∑
k>d̃

λk
λ

+
∑
k≤d̃

log(1 +
λk
λ

) ≤ d̃(λ, t) log(t) + d̃(λ, t) log

(
λ1

λ

)
,

where we used log(1 + x) ≤ x on the first term of the sum decomposition, and λ1 the first and larger eigenvalue
of the matrix Kt. Then, using λ1(Kt) ≤ Tr(Kt) =

∑t
k=1 ‖ϕk‖2 ≤ tκ2, we subsequently obtain γ(λ, t) ≤

d̃

(
log(T ) + log

(
tκ2

λ

))
which concludes the inequality.

E Algorithm Implementations

Here we give details on the implementations of the contextual kernel UCB algorithms as well as our EK-UCB.

E.1 Kernel UCB algorithm – Implementation details

Let us write st,a := (xt, a) and by abbreviation si := (xi, ai), let us write the historical data St = (si)1≤i≤t. Let
us recall Φ∗t = [ϕ1, . . . , ϕt] where ϕi = φ(xi, ai) = φ(si) and KSt (s) = Φtφ(s) = [k(s1, s), . . . k(st, s)]

>. We write
Ft = Φ∗tΦt and the gram matrix Kt = ΦtΦ

∗
t . As in (Valko et al., 2013):

(Φ∗tΦt + λI)Φ∗t = Φ∗t (ΦtΦ
∗
t + λI)

(Ft + λI)Φ∗t = Φ∗t (Kt + λI)

Φ∗t (Kt + λI)−1 = (Ft + λI)−1Φ∗t .

Expression of the mean µ̂t,a = 〈θ̂t, ϕt,a〉. For the mean expression recall that we have: µ̂t,a = 〈θ̂t−1, ϕt,a〉 =

ϕ>t,aθ̂t−1 and θ̂t = V −1
t Φ∗tYt. Therefore,

µ̂t,a = ϕ>t,aθ̂t−1 = ϕ>t,aΦ∗t−1(Kt−1 + λI)−1Yt−1 = KSt−1
(st,a)

>
(Kt−1 + λI)−1Yt−1.

Expression of the standard deviation σ̂t,a = ‖ϕt,a‖V −1
t−1

. When multiplying by ϕt,a := φ(xt, a) on the right

and then by ϕ>t,a on the left

(Φ∗t−1Φt−1 + λI)ϕt,a = Φ∗t−1KSt−1 (st,a) + λϕt,a

ϕt,a = Φ∗t−1(Kt−1 + λI)−1KSt−1
(st,a) + λ(Φ∗t−1Φt−1 + λI)−1ϕt,a

ϕ>t,aϕt,a = KSt−1 (st,a)
>

(Kt−1 + λI)−1KSt−1 (st,a) + λϕ>t,aV
−1
t−1ϕt,a

σ̂t,a = ‖ϕt,a‖V −1
t−1

=
1

λ
k (st,a, st,a)− 1

λ
KSt−1 (st,a)

>
(Kt−1 + λI)−1KSt−1 (st,a)

This allows to compute the UCB rule with kernel representations as illustrated in Alg. 3.
Algorithm 3: Kernel UCB
Input: T the horizon, λ regularization and exploration parameters, k the kernel function
initialization;
Kλ = λ, Y0 = [r0] where r0 = r(x0, a0) and a0 is chosen randomly ;
for t = 1 to T do

Observe context xt ;
Compute βt ;
Choose at ← arg maxa∈A µ̂t,a + βtσ̂t,a ;

µ̂t,a ← KSt−1
(st,a)

>
K−1
λ Yt−1 ;

σ̂2
t,a ← 1

λk (st,a, st,a)− 1
λKSt−1

(st,a)
>
K−1
λ KSt−1

(st,a) ;
Observe reward rt and update Yt ← [r1, . . . rt] ;
Update the translated gram matrix Kλ ← [k(si, sj)]1≤i,j≤t + λI ;

end
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Since the kernel matrices are used instead of estimating and computing directly θ̂t and φ(xt, a), we can use
first-rank updates of the matrices Kt, since:

Kt =

[
Kt−1 KSt−1

(st,a)

KSt−1
(st,a)

>
K (st,a, st,a)

]
.

It is then easy to use the Schur complement on the inverse K−1
λ . Specifically, the update is performed as the

following, with

s← k (st,a, st,a) + λ−KSt−1(st,a)>K−1
λ KSt−1(st,a)

Z12 ← −
1

s
KSt−1(st,a)>K−1

λ

Z21 ← −
1

s
K−1
λ KSt−1(st,a)

Z11 ← K−1
λ +

1

s
K−1
λ KSt−1(st,a)KSt−1(st,a)>K−1

λ

K−1
λ ← [Z11, Z12, Z21,

1

s
].

Therefore, while inverting the full matrices would induce as full cost of O(CT 4), using first order updates with
Schur complement allows to run the algorithm in O(CT 3), while using O(T 2) in space.

E.2 Efficient Kernel UCB algorithm – Implementation details

Instead of using the kernel trick as in the standard algorithm, the efficient Kernel UCB algorithm uses computations
in the projected feature space. The key high-level idea is to use as much as possible computations in the projected
space Ht = span{φ(z)}z∈Zt which is of dimension mt and does not use implicit kernel representation of the whole
data which are of size t× t. Here, we detail the computations of the predicted mean and variance bound in the
projected space.

At the time t we define the dictionary Zt = {z1, . . . , zmt} of size |Zt| = mt and the mt × mt kernel matrix
KZt = [k(zi, zj)]1≤i,j≤mt , we also write KZtSt = [k(zi, sj)]1≤i≤mt,1≤j≤t the mt × t matrix on anchor points and
historical data St = {si}1≤i≤t.

The following proposition provides closed-form formulas to implement EK-UCB (Alg. 2).

Proposition 4.2. At any round t, by considering st,a = (xt, a), the mean and variance term of the EK-UCB
rule (Alg 2) can be expressed as3

Γt = KZt−1St−1
Yt−1

Λt =
(
KZt−1St−1KSt−1Zt−1 + λKZt−1Zt−1

)−1

µ̃t,a = KZt−1(st,a)>ΛtΓt

∆t,a = KZt−1
(st,a)>

(
Λt −

1

λ
K−1
Zt−1Zt−1

)
KZt−1

(st,a)

σ̃2
t,a =

1

λ
k(st,a, st,a) + ∆t,a.

The algorithm then runs in a space complexity of O(Tm) and a time complexity of O(CTm2).

Expression of the mean µ̃t+1,a = 〈θ̃t, ϕt+1,a〉. At a time t+ 1, we look for θ̃ ∈ C̃t+1 that we write θ̃ = α>KZt
where α ∈ Rmt . We can rewrite the optimization process in Eq. (9) as

arg min
α∈Rmt

{
(KStZtα− Yt)>(KStZtα− Yt) + λα>KZtZtα

}
3Erratum: Note that the proposition slightly differs from the original one in the main document due to typos in the

indexes that will be corrected in the final version of the manuscript.
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which can be rewritten as

arg min
α∈Rmt

{
α>KZtStKStZtα− 2α>KZtStYt + λα>KZtZtα

}
,

and can be solved in closed-form as

α∗ = (KZtStKStZt + λKZtZ)−1KZStYt.

This eventually gives the expression µ̃t+1,a = α>KZtst+1

µ̃t+1,a = KZt(st+1,a)>(KZtStKStZt + λKZtZt)
−1KZtStYt .

Expression of the standard deviation σ̃t+1,a = ‖ϕt+1,a‖Ṽ −1
t

. When we look for the value of EK-UCB in
Eq. (11), it is equivalent to have:

EK-UCBt+1(a) = max
θ∈H, s.t ‖θ−θ̃t‖Ṽt≤β

〈θ, φ(st+1,a)〉 = µ̃t+1,a + βσ̃t+1,a.

where the variance term σ̃t+1,a is solution to

max
θ∈H

θ>φ(st+1,a) .

s.t ‖θ‖Ṽt ≤ 1.

Below, we abbreviate s = st+1,a := (xt+1, a) for simplicity of notation. We advocate that at each time t when we
solve this maximization problem, θ lives in the finite dimensional space

θ ∈ Ht+1,s =: Span
(
Kz1 , . . .Kzmt

,Ks

)
,

where Kz,Ks ∈ H such that Kz(z
′) = k(z, z′) and Ks(s

′) = k(s, s′). To prove the above statement, following the
Representer theorem proof, and Ht+1,s be the linear span of Kz1 , . . .Kzmt

,Ks ∈ H. Ht+1,s is a finite dimensional
subspace of H, therefore any θ ∈ H can be uniquely decomposed as

θ = θHt+1,s
+ θ⊥

with θHt+1,s
∈ Ht+1,s and θ⊥ ⊥ Ht+1,s. H being a RKHS it holds that 〈θ⊥, φ(s)〉 = 〈θ⊥,Ks〉 = 0 because

Ks ∈ Ht+1,s. Therefore, 〈θ,Ks〉 = 〈θHt+1,s ,Ks〉.

Now writing Ṽt = PtVtPt + λ(I − Pt), we have that ‖θ‖Ṽt can be written as

‖θ‖Ṽt = θ>Ht+1,s
PtVtPtθHt+1,s + λθ>Ht+1,s

(I − Pt)θHt+1,s + λθ>⊥(I − Pt)θ⊥.

Therefore, ‖θHt+1,s
‖Ṽt ≤ ‖θ‖Ṽt ≤ 1. The maximization domain {θ ∈ H s.t ‖θ‖Ṽt ≤ 1} is thus included in {θ ∈

Ht+1,s s.t ‖θHt+1,s
‖Ṽt ≤ 1} , while 〈θ,Ks〉 = 〈θHt+1,s

,Ks〉. Therefore, maxθ∈H〈θ,Ks〉 = maxθ∈Ht+1,s
〈θHt+1,s

,Ks〉.
Hence we can write the solution of the problem from Eq. (4.1) as

θHt+1,s
=

mt∑
i=1

αiKzi + αmt+1Ks, α ∈ Rmt , αmt+1 ∈ R.

We will write K̄Ztα =
∑mt
i=1 αiKzi and therefore K̄>ZtK̄Zt = KZt,Zt or even K̄>ZtKs = KZts ∈ Rmt .

Using this notation allows us to write Ptϕt+1 =
∑mt
i=1 βi(st+1,a)Kzi = K̄Zt(K

−1
Zt,ZtKZt(st+1,a)) where the β

coefficient is obtained by solving with the minimization problem defined in the Nyström projection. Therefore
when taking the projection Pt : H → Rmt and the operator Φt : Rt → H we can write PtΦt = K̄Zt(K

−1
Zt,Zt)KZtSt .

Therefore when writing Ṽt = PtFtPt + λI we can express ‖θ‖Ṽt as

‖θ‖Ṽt = [K̄Ztα+ αmt+1Kst ]
>[K̄ZtK

−1
Zt,ZtKZt,StKSt,ZtK

−1
Zt,ZtK̄

>
Zt + λI][K̄Ztα+ αmt+1Ks].
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This can be reformulated as [
α αmt+1

]
Qt

[
α

αmt+1

]
,

where Qt =

[
At bt
b>t ct

]
and for which we have At = KZtStKStZt + λKZtZt , b>t = KsZtK

−1
ZtZtKZtStKStZt + λKsZt

and eventually ct = KsZtK
−1
ZtZtKZtStKStZtK

−1
ZtZtKZts + λKss

Next to find the variance term, we note qt = [KZts,Kss]
> and reformulate the optimization process above as

max
α∈Rmt+1

α>qt

s.t α>Qtα ≤ 1

gives the solution α′ =
Q
−1/2
t qt

‖Q−1/2
t qt‖

which gives σt,a the maximum value:
√
q>t Q

−1
t qt. We will now express the

squared maximum σ2
t+1,a = q>t Q

−1
t qt using the Schur complement on the Qt matrix.

Defining At = KZtStKStZt + λKZtZt and the Schur complement lt = ct − b>t A−1
t bt.

We start by simplifying the expression of the Schur complement. For this we reformulate

At = KZtStKStZt + λKZtZt

b>t = KsZtK
−1
ZtZt(At − λKZtZt) + λKsZt

= KsZtK
−1
ZtZtAt

ct = KsZtK
−1
ZtZt(At − λKZtZt)K

−1
ZtZtKZts + λKss

= KsZtK
−1
ZtZtAtK

−1
ZtZtKZts − λKsZtK

−1
ZtZtKZts + λKss.

Thus we obtain:

lt = KsZtK
−1
ZtZtAtK

−1
ZtZtKZts − λKsZtK

−1
ZtZtKZts + λKss −KsZtK

−1
ZtZtAtA

−1
t AtK

−1
ZtZtKZts

= λ(Kss −KsZtK
−1
ZtZtKZts).

Then we write the product between Q−1
t and qt as:

σ̃2
t+1,a =

[
KsZt Kss

] [A−1
t + 1

lA
−1
t btb

>
t A
−1
t − 1

lA
−1
t bt

− 1
l b
>
t A
−1
t

1
l

] [
KZts
Kss

]
=
[
KsZtA

−1
t + 1

lKsZtA
−1
t btb

>
t A
−1
t − 1

lKssb
>
t A
−1
t − 1

l λKsZtA
−1
t bt + 1

lKss

] [KZts
Kss

]
= KsZtA

−1
t KZts +

1

l
KsZtA

−1
t btb

>
t A
−1
t KZts −

1

l
Kssb

>
t A
−1
t KZts −

1

l
KsZtA

−1
t btKss +

1

l
K2
ss

= KsZtA
−1
t KZts +

1

l

(
KsZtA

−1
t bt −Kss

)2
= KsZtA

−1
t KZts +

1

l

(
KsZtK

−1
ZtZtKZts −Kss

)2
= KsZtA

−1
t KZts +

1

λ
Kss −

1

λ
KsZtK

−1
ZtZtKZts

=
1

λ
k(st,a, st,a) + ∆t+1,a ,

where ∆t+1,a := KZt(st+1,a)>
(
Λt+1 − 1

λK
−1
ZtZt

)
KZt(st+1,a) and Λt+1 := A−1

t+1.

This proves the first of Prop. 4.2.
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Algorithm 4: Efficient Kernel UCB
Input: T the horizon, λ regularization and exploration parameters, k the kernel function, ε > 0, γ > 0
Initialization;
Context x0, a0 chosen randomly and reward r0 ;
S = {(x0, a0)}, YS = [r0] ;
Z = {(x0, a0)} ;
Λt = (KZSKSZ + λKZZ)

−1
Γt = KZSYS ;

for t = 1 to T do
Observe context xt ;
Choose β̃t (e.g as in Lem. 4.1, and δ = 1

T 2 ) ;
Choose at ← arg maxa∈A µ̃t,a + β̃tσ̃t,a ;

µ̃t,a ← KZ(st,a)>ΛtΓt ;
∆t,a = KZ(st,a)>

(
Λt − 1

λK
−1
ZZ
)
KZ(st,a) ;

σ̃2
t,a ← 1

λk(st,a, st,a) + ∆t,a ;
Observe reward rt and st ← (xt, at) ;
YS ← [YS , rt]

>,S ← S ∪ {st} ;
Z ′ ← KORS(t,Z,KZ(st), λ, ε, γ) ;
if Z ′ = Z then

Incremental inverse update Λt with st;
Γt+1 ← Γt + rtKZ(st) ;

end
else

z = Z ′ \ Z ;
Incremental inverse update Λt with st, z ;
Incremental inverse update K−1

ZZ with z;
Update Γt+1 ← [Γt + rtKZ(st), KS(z)>YS ]>

end
end

Discussion on practical implementation and time and space complexities The efficient imple-
mentation of the algorithm requires to perform efficient updates of the quantities (defined in Prop 4.2)
Λt = (KZt−1St−1KSt−1Zt−1 + λKZt−1Zt−1)−1 and Γt = KZt−1St−1Yt−1.

(i) When the dictionary is not updated Zt = Zt−1. For the matrix Γt we can perform the update Γt+1 ←
Γt + rtKZt(st) which requires mt kernel evaluations. As for the matrix Λt we can use the first rank Shermann-
Morrison formula on it by adding updates on st in O(m2

t ) operations where Λt+1 = (KZtStKStZt + λKZtZt)
−1.

Here we only store K−1
ZtZt and do not update it.

(ii) When the dictionary is updated Zt 6= Zt−1 and we can write Zt = Zt−1 ∪ {zmt},

Regarding Γt, we do two updates, one on the state st by adding rtKZt−1
(st) and a second on the new anchor

point zmt so that we have
Γt+1 ← [Γt + rtKZt−1(st),KSt(zmt)

>Yt]
> .

The first update is performed in O(mt) kernel evaluations as in the (i) case, and the second update requires O(t)
kernel evaluations and then O(t) computations. Note that the (ii) is only visited at most m times which is the
size of the dictionary at t = T .

Regarding Λt, we note that we can write KZtStKStZt + λKZtZt as[
KZt−1StKStZt−1

+ λKZt−1Zt−1
KZt−1StKSt(z) + λKZt−1

(z)
KSt(z)

>KStZt−1
+ λKZt−1

(z)> KSt(z)
>KSt(z) + λk(z, z)

]
.

We perform the update in two stages by first computing the inverse (KZt−1StKStZt−1 + λKZt−1Zt−1)−1 by using
a first-rank Sherman Morrison on the state update st, as if the dictionary did not change, and we then perform a
Schur complement update using the latter inverse. Both updates are done in O(m2

t ) operations.
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As for the inverse of the projection gram matrix, we use a Schur complement update in O(m2
t ) operations that

we detail here for K−1
Zt+1Zt+1

:

K−1
ZtZt =

[
K−1
Zt−1Zt−1

+ 1
ωwtw

>
t − 1

ωwt
− 1
ωw
>
t

1
ω

]

where ω = k(zmt , zmt)−KZt−1(zmt)
>K−1
Zt−1Zt−1

kZt−1
(zmt) and with wt = K−1

Zt−1Zt−1
kZt−1

(zmt).

E.3 Kernel Online Row Sampling (KORS) Subroutine

As in Calandriello et al. (2017b), let us define a projection dictionary Zt as a collection of indexed anchor points
{(zti}1≤i≤mt where mt = |Zt| as well as the rescaling diagonal matrix SZt with 1/

√
p̃zs corresponding to the

past sampling probabilities of points z ∈ Zt, this matrix is of size mt×mt. At each time step, KORS temporarily
adds t with weight 1 to the temporary dictionary Z∗t and accordingly augments the corresponding matrix SZ∗t .
The augmented dictionary is then used to compute the ridge leverage score (RLS) estimator:

τ̃t =
1 + ε

µ

(
k(st, st)−KZ∗t (st)

>SZ∗t (S>Z∗tKZ
∗
t Z∗t SZ∗t + µI)−1S>Z∗tKZ

∗
t
(st)

)
. (41)

Afterward, it draws a Bernoulli random variable zt proportionally to τ̃t, if it succeeds, (zt = 1) the point is
deemed relevant and added to the dictionary, otherwise it is discarded and never added.

Algorithm 5: Incremental Kernel Online Row Sampling (KORS) subroutine
Input: Time t, past dictionary Z, context-action st, regularization µ, accuracy ε, budget γ
Compute the leverage score τ̃t from Z, st, µ, ε ;
Compute p̃t = min{γτ̃t, 1} ;
Draw zt ∼ B(p̃t) and if zt = 1, add st to Z;
Result: Dictionary Z

Here, all rows and columns for which St,∗ is zero (all points outside the temporary dictionary It,∗) do not influence
the estimator, so they can be excluded from the computation. As a consequence, the RLS score τ̃t can be
computed efficiently in O((mt + 1)2) space and O((mt + 1)2) time, using an incremental update in Eq. (41).

As a side note, the quantity τ̃ is an estimator of the exact RLS quantity τt (see Calandriello et al. (2017b)):

τt = ϕ>t (Kt + µI)−1ϕt . (42)

Here, leverage scores are used to measure the correlation between the new point ϕt w.r.t. the previous t − 1
points {ϕi}i≤t−1, and therefore how essential it is in characterizing the dataset. In particular, if ϕt is completely
orthogonal to the other points, its RLS is maximized, while in the opposite case it would be minimal. In the
incremental strategy of the Nyström dictionary building, we use the RLS estimates to add anchor points that are
as informative as possible.

F Experiment details

In this section we provide further details as well as additional discussions and numerical results on our proposed
method.

F.1 Reproducibility and Implementations

We provide code that is accessible at the link https://github.com/criteo-research/Efficient-Kernel-UCB.
All experiments were run on a single CPU core (2 x Intel(R) Xeon(R) Gold 6146 CPU@ 3.20GHz).

Baseline implementations We implemented the BKB and BBKB algorithms in (Calandriello et al., 2019) and
(Calandriello et al., 2020) by introducing modifications in their implementation to handle contextual information.

https://github.com/criteo-research/Efficient-Kernel-UCB
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For both methods, in the contextual variant, each update involves the computation of a new covariance matrix
KZSKSZ while the original algorithms do not involve contexts and consider a finite set of actions, allowing
to compute the covariance matrix on the finite set of actions (which is done for computational efficiency and
is impossible in the joint context-action space). The baselines were carefully optimized using the Jax library
(https://github.com/google/jax) to allow for just in time compilations of similar blocks in every methods.

Empirical setting In our empirical setting we aimed at showing the regret/computational complexity com-
promise that is achieved by each method. In particular, both the CBBKB method (Calandriello et al., 2020)
and our EK-UCB algorithm use additional hyperparameters than the CBKB. As a matter of fact, CBBKB uses
an accumulation threshold C and is used for the ’resparsification’ step, with dictionary updates based on all
historical states. EK-UCB also uses the hyperparameter µ in KORS that is set to λ for optimal regret-time
compromise (see Theorem 4.1). The KORS algorithm uses a budget parameter γ, for which we found empirically
good performances when γ ≈ λ. We tried our method with a grid on hyperparameters and discuss their influence
in the next subsection.

F.2 Additional Results

In this section we provide additional numerical experiment discussions.

F.2.1 Additional discussions on the setting of Section 5

We present additional results on the synthetic setting presented in Section 5 that we call ’Bump’ in Figures 3, 4,
5. Here we fix λ = µ for EK-UCB and report the performances of the baselines with the same hyperparameters
and make the accumulation threshold C of CBBKB vary through the Figures 3, 4, 5. We provide more discussion
on the methods we evaluated.
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Figure 3: ’Bump’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with T = 2000 and
λ = µ (see Corollary 3.1 and 4.1) with varying λ and C = 3 for CBBKB. EK-UCB matches the best regret-time
compromise.

More dictionary updates lead to better regret but a higher computational complexity We note
that the CBKB baseline achieves satisfactory regret but with a drastically higher computational time. This is
due to the fact that it resamples the dictionary at each step and therefore resamples a dictionary at the price
of a higher time complexity. As for CBBKB, throughout the Figures 3, 4, 5, we can see that the accumulation
threshold C that controls the anchor point update frequency determines the regret-time compromise. The lower
C, the better is the regret but the higher is the computational time. We can see through the figures that for all
values of C, our EK-UCB method achieves similar or better (especially when C = 30) regret than CBBKB while
always being both faster than CBBKB but more importantly faster than K-UCB. Overall, EK-UCB proposes the
most satisfactory regret-time compromise. Moreover, we see that the SupK-UCB method also performs poorly
even with different parameters λ and that the optimized K-UCB method also performs better than efficient
strategies when the computational overheads of dictionary buildings overtake the efficient kernel approximations.

https://github.com/google/jax
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Figure 4: ’Bump’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with T = 2000 and λ = µ
with varying λ and C = 10 for CBBKB. EK-UCB matches the best regret-time compromise.
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Figure 5: ’Bump’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with T = 2000 and λ = µ
with varying λ and C = 30 for CBBKB. EK-UCB matches the best regret-time compromise

The regularization parameter controls the regret-time comprise in EK-UCB In our method, we can
see that the higher λ (with λ = µ) the faster the algorithm is but the worse is its regret. As discussed in
Corollary 3.1 and 4.1, we use the heuristic to take λ ≈

√
T and set µ = λ afterwards to enjoy the optimal

guarantees of our algorithm.

F.2.2 Additional synthetic settings

In this section we introduce additional settings that we call the ’Chessboard’ setting as well as the ’Step Diagonal’
setting. The two settings lead to similar numerical conclusions as the previous one. We provide more discussions
here.

Chessboard and Step Diagonal synthetic setups. The ’Chessboard’ synthetic setup is a contextual
environment with a piecewise reward function over the joint context-action space X ×A = [0, 1]× [0, 1]. More
precisely, the joint 2D space is cut into a grid where the values are either 1, 0.5 or 0 according to the part of the
grid. Results are shown in Figures 7, 8, 9. The ’Step diagonal’ synthetic setup is a contextual environment with a
diagonal reward function over the joint context-action space X ×A = [0, 1]× [0, 1]. More precisely, the joint 2D
space has values of 0 everywhere except along two bands along the diagonal where the action and context values
are identical with values 0.5 and 1 respectively on the sub diagonal and the above diagonal. Results are shown in
Figures 10, 11, 12. See the code for more details and an illustration of the settings in Fig 6.

Regret-time compromise for CBBKB and EK-UCB. The two settings show what both algorithms
CBBKB and EK-UCB achieve as a regret-time compromise. In cases where C is lower (note that CBKB
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Figure 6: Chessboard (left) and Step Diagonal (right) synthetic setups.
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Figure 7: ’Chessboard’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with T = 2000 and
λ = µ with varying λ and C = 3 for CBBKB.
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Figure 8: ’Chessboard’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with T = 2000 and
λ = µ with varying λ and C = 10 for CBBKB.

corresponds to CBBKB with C = 1) the regret often decreases at the price of higher computational time
complexity. Similarly, we can notice that our method has better regrets when λ is low, but with higher
computational times, while still providing a benefit over to the K-UCB method, unlike CBBKB. We therefore
note again that in practice, dictionary building computational overheads may influence the global computational
complexity. Overall, our method with its incremental dictionary building strategy achieves the best satisfactory
time-regret compromises in the Chessboard and Step Diagonal settings compared to both K-UCB and the efficient
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Figure 9: ’Chessboard’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with T = 2000 and
λ = µ with varying λ and C = 30 for CBBKB.

algorithms CBKB and CBBKB.
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Figure 10: ’Step Diagonal’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with T = 2000
and λ = µ with varying λ and C = 3 for CBBKB.
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Figure 11: ’Step Diagonal’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with T = 2000
and λ = µ with varying λ and C = 10 for CBBKB.
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Figure 12: ’Step Diagonal’ setting: Regret and running times of EK-UCB, CBBKB and CBKB, with T = 2000
and λ = µ with varying λ and C = 30 for CBBKB.
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