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Abstract

This paper focuses on one-shot aggregation of statistical estimations made across
disjoint data sources for federated learning, in the context of empirical risk mini-
mization. We exploit the role of each local sample size for this problem to develop
a new weighting scheme for one-shot federated learning. First, we provide upper
bounds on the local errors and biases from which we derive an upper bound for the
plain federated learning parameter. Then, by casting an optimization problem based
on the bias-variance decomposition of the MSE, we develop a simple weighting
scheme based only on the local sample sizes. The proposed procedure can be
embedded in a wide variety of algorithms used for federated learning. Finally, we
evaluate our procedure in the context of large-scale estimation of linear models
with ridge regression and compare it to the typical choice of weights in federated
learning. We observe that, due to unbalanced sample sizes across the data sources,
the proposed weighting scheme outperforms the standard one and converges faster
to the performance of a centralized estimator.

1 Introduction

To handle the rapidly increasing amount of data produced possibly from a very large number of
sources, researchers study alternatives to centralized architectures. Distributed learning has recently
emerged as an important approach to efficiently process very large datasets. Distributed optimization
algorithms generally alternate local improvement steps with communication steps in order to optimize
the computation time and the efficiency of the final output. The communication step involves a central
server and a chosen number of compute nodes, called ”machines”. In this setting, the full sample
of size N , first held by the central server, is equally split among the m machines. Therefore, each
machine holds n “ tNm u independent identically distributed (i.i.d.) observations. Since the centralized
data are evenly distributed across machines, in distributed learning, there was no need to study the
effect of varying sample sizes as they are identical throughout the machines. The output computed by
the machines is, most of the time, a gradient, a prediction, or a parameter value. These outputs are
computed locally and then aggregated by the central server to provide a global outcome. We point out
that for such a distributed estimator, the aggregation step may combine the computations performed
on the m machines over one round (one-shot setting) or over several rounds of communications
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(multi-round setting). More recently, federated learning [6; 7] has stood out as a promising field
of growing emphasis, also advocating for an alternative to centralized learning. Federated learning
relies on both local data storage and local model training. Indeed, the primary specificity of this
setting, and where it differs from distributed learning — in which the samples are first centralized and
then distributed among several compute nodes — is that data are never shared and are only stored
locally. Above and beyond the computational gains this can lead to, the benefit of keeping the samples
locally is twofold. On the one hand, it preserves privacy, which is often critical as its endangerment
entails potentially insidious societal effects such as self-censorship [9].1 On the other hand, it enables
to collaboratively learn when sharing data is impractical - if not illegal. In the federated learning
literature, the compute and storage nodes are often called devices or clients. In an attempt to be
representative of the diversity of applications where the choice of a federated architecture could
be promising, we will use the term of "nodes" in the federated setting (instead of "machines" for
the distributed setting). Thus, each of the m nodes owns ni observations, with the distribution of
those sample sizes possibly being unbalanced across the nodes, i.e., ni with considerable ranges of
variation. This entails also that the distribution of the sample sizes is no longer uniform and raises
new statistical challenges.

In this paper, we focus on one-shot federated learning — meaning, only one round of communication
between the nodes and the central server — when the nodes deliver a parameter varying in a Euclidean
space (as it is the case of linear regression models for instance). One-shot federated learning is yet
an under-exploited topic especially since the multi-round setting is subject to many challenges and
limitations, the first one arising from costs and limitations of communications. If there is a significant
number of nodes, communications between the nodes and the server can be expensive, including
possible security breaches or bottlenecks due to bandwidth limitations. Moreover, recent work
indicates that even sharing of model parameters (not the raw data) can leak private information [10].
Thus, the fewer rounds of communication there are, the less information is shared and the more
privacy-preserving the overall system is. The benefits of reducing communication rounds also appear
to be crucial at a time when the community is becoming aware of the environmental impacts of
machine learning, particularly in terms of energy consumption and carbon footprint. To take just
one recent glimpse, Strubell et al. [13] estimated CO2 emissions of the training phase of some NLP
algorithms on which one emits more than 300 trans-American flights. This is why we advocate for
more sober and responsible models, while being aware that the emphasis on privacy and environmental
friendly models can be double edged. It can lead to ethic-washing and invisibilize other broader
ethical issues that are societal choices (see the notion of "small ethics" defended by the philosopher
Mark Hunyadi). Despite these limitations, there is currently only a limited body of work delving into
one-shot federated learning. This may be because one-shot aggregation of estimations suffers from
an important limiting factor: the local sample size, n, must be larger than the number of machines,
m, to ensure similar behavior to the centralized estimator, the one with full access to all samples. In
the distributed setting, the samples are first gathered at the central server level and then distributed, so
n and m can be controlled and this constraint can be handled by choosing an appropriate number
of machines, m. However, we recall that in the federated setting, the samples are only kept at the
node level, allowing no control over ni. In order to address this possible limitation, Guha et al.
[4] browse through ensemble learning methods like selecting nodes whose sample size exceeds a
certain threshold to participate in the training — which shows similarities with the results presented
in this article. Zhou et al. [17] consider a rather heteroclite approach where the training operates on
a centralized server which collects synthetic data distilled by the nodes. Salehkaleybar et al. [12]
consider a setting, closer to distributed learning, where the sample sizes are the same across the nodes
and investigate the effect of the number of bits of the message that a node is allowed to transmit to
the central server. They propose an algorithm were each node sends an approximation of derivatives
of the global objective function over a neighborhood of the sought parameter.

Our objectives in the present work are to address the following two questions: piq what are the
consequences of the distribution of the sample sizes?, and piiq how can we overcome this issue by
optimizing the weighting scheme of the federated learning models across all nodes? Another major
issue in federated learning is to deal with non-i.i.d. sampling. However, as this paper focuses on
the effect of the distribution of sample sizes, the framework is restricted to an i.i.d. hypothesis in
order to derive initial results and provide some insights. Our main contributions are as follows. We

1It is well-known that pseudonymization is far from being a solid guarantee for preserving privacy, indeed
the re-identification of de-identified data is often within reach [14].
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answer to the first question piq by providing, in Section 3, upper bounds on the local errors and
biases from which we derive an upper bound on the mean-squared error (MSE) of the one-shot
federated parameter in a very general setting of empirical risk minimization (ERM). This analysis
is the first one, to the best of our knowledge, to formally highlight the crucial role of the sample
sizes in the federated learning setting. Our work is motivated by the work of Zhang et al. [16], thus,
our assumptions are quite similar to theirs, although alleviated - another contribution of our work is
the improved readability of their proof and the reduction of their Assumption 2.4. We also translate
the minimum sample size constraint encountered in distributed learning to federated learning setup.
Our next contribution is to address the other issue piiq by proposing a procedure to aggregate the
local estimations based on a minimization of an upper bound of the MSE, resulting in a closed-form
formula. However, the obtained weights are theoretical and cannot be computed. We therefore
propose an approximation of those weights, derived from the previous theoretical results, depending
only on the local sample size. This simple and communication-efficient weighting scheme relies
upon a water-filling structure, implying that only a fraction — the nodes with the largest sample sizes
— participate to the final aggregated parameter. We note that the resulting procedure is consistent with
the data selection strategy of ensemble learning, where a node participates if its sample size exceeds
a predetermined baseline value [4]. Even though this weighting scheme is developed in a one-shot
setting, we believe that the proposed practice can be embedded in a wide variety of algorithms used
in federated learning - instead of the standard averaging scheme.

2 Setup and main assumptions

2.1 One-shot aggregation

The distribution of the computations driven by the widening of parallel, distributed and federated
approaches raises questions on the behaviour of the resulting statistical estimation. Focusing on the
one-shot setting — allowing only one round of communication — one crucial issue is the one of the
aggregation of the local outputs. In the parallel and distributed literature, the aggregation procedure
of the majority of works lies on considering the average of the local outputs — a uniform weighting
scheme. As the considered setting is typically i.i.d. with the local sample sizes uniformly allocated,
this choice seems appropriate, although other combination patterns are explored [3]. In the federated
literature, the aggregation procedure systematically consists in the following: each local output is
weighted proportionally to its sample size. As a rule, the canonical aggregation procedure thus
consists in generating a convex combination of these local outputs. Mann et al. [8] proposed one of
the first theoretical analysis of the averaged parameter in the distributed setting, named mixture weight
method, in a statistical learning perspective. The work by Zhang et al. [16] was the first to formally
prove that this averaged parameter, termed average mixture (AVGM) by the authors, generally works
better than the parameter obtained on a single machine. The authors provide, under some regularity
assumptions, a bound on the MSE decaying as O

`

1
N ` 1

n2

˘

in a very general setting of empirical risk
minimization. We recall that, under some classical regularity assumptions, the MSE of the centralized
estimator decays as Op 1

N q. Then, the distributed estimator reaches the performance of the centralized
one when n “ Ωpmq, meaning that each machine must hold, at least, as many observations as
there are machines. We highlight this fundamental limit faced by one-shot distributed learning on
synthetic data by plotting the MSE of the distributed and the centralized estimator on Figure 2 in
the appendix. The centralized estimator refers to the one learned with access to the full sample of
N observations. An interesting development can be found in Rosenblatt and Nadler [11], both on
the theoretical and interpretative levels, where the authors provide asymptotically exact expressions
for the estimation error in the low and high-dimensional regimes, notably highlighting two different
behaviors. Moreover, they deliver a noticeable interpretation regarding the effect of averaging: it
reduces the variance, but not the bias. This clarification enables, at a later stage, the interpretation of
the weights derived from the minimization of an upper bound of the MSE.

2.2 Aggregated estimation in federated learning

Setup of federated learning. We consider the following general statistical setting: in this work,
the class of model is reduced to a set of functions parameterized by θ P Θ with Θ Ă Rd, with d,
the dimension of the parameter space. The regime considered here is low-dimensional. We remind
that our focus lies on the effect of the distribution of sample sizes, thus the framework is restricted to
an i.i.d. hypothesis in order to derive initial results, i.e. all nodes are sampled according to the same
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distribution. Let Z be a random variable, defined on an instance space Z . All along this work, the
letter C stands for a constant. Indeed, the same letter is used to refer to different constants for the
sake of readability.
Definition 2.1 (Federated setting). For a set of m nodes, the federated setting is defined as follows.
Each node i P rms owns an i.i.d. sample of size ni of the random variable Z, tzij P Z : j P rnisu.
Given a loss function ℓ : Θ ˆ Z Ñ R`, the risk is defined as Rpθq :“ Erℓpθ;Zqs. Lastly, we set
θ˚ P arg min

θPΘ
Rpθq.

Empirical risk minimization. In this work, we aim at estimating θ˚. Since we do not have access
to the distribution of the random variable Z, we use the empirical risk defined, in the centralized
setting, as R̂pθq :“ 1

N

řN
j ℓpθ; zjq. A widespread approach to solve this problem is the empirical

risk minimization (ERM) and can be reformulated as follows, with θ̂c being the centralized parameter:
θ̂c P arg min

θPΘ
R̂pθq. In one-shot federated learning, each node i estimates its local parameter θ̂i P

arg min
θPΘ

R̂ipθq, defining the local empirical risk as the following: R̂ipθq :“ 1
ni

řni

j ℓpθ; zijq. The

final aggregated parameter is usually a convex combination of the local estimates: θ̂w :“
řm

i“1 wiθ̂i.
This general definition embraces both the averaging scheme, i.e. wi “ 1

m , and the plain federated
weighting scheme, i.e. wi “ ni

N . We denote the federated parameter by θ̂s :“
ř

i
ni

N θ̂i.

Main result of the paper: weighting scheme for one-shot federated learning. The proposed
weighting scheme relies both on the minimization of an upper bound of the MSE and on one key
result of this work, Theorem 3.1. Our result, admitting an informative closed-form formula, implies
that only a portion K out of the m nodes — the nodes with the largest sample sizes — participates to
the final aggregated parameter. The proposed weighting scheme, is the following:

ŵpiq “

$

&

%

npiq

2

2`
řK

j
1

npjq
řK

j npjq
´ 1

2npiq
, @i ď K

0, @i ą K,

where npiq are the reordered ni, i.e., np1q ě ¨ ¨ ¨ ě npmq with ŵpiq, the corresponding value for npiq,
i.e., if npiq “ np, then ŵpiq “ ŵp. We define

K “ arg max
kPrms

$

&

%

1

n2
pkq

ď
2 `

řk
j

1
npjq

řk
j npjq

,

.

-

.

The federated estimate with statistical correction is then obtained as θ̂ŵ :“
řm

i“1 ŵpiqθ̂piq where the
θ̂piq are the corresponding value for npiq.

2.3 Regularity assumptions

An important step in this paper is to provide an upper bound on the MSE: Er}θ̂w ´ θ˚}2s.
Our attention was therefore drawn to similar works done in the context of distributed learning.
Following Zhang et al. [16] and Jordan et al. [5], we assume the following assumptions which are
classical in the framework of statistical analysis of M-estimators.

Assumption 2.2 (Unicity). There exists a unique parameter θ˚ P intpΘq such that
θ˚ “ arg min

θPΘ
Rpθq, with intpΘq, the interior of Θ.

Assumption 2.3 (Parameter space). The parameter space Θ Ď Rd is assumed to be compact and
convex. Moreover, the parameter space is bounded by R ą 0, i.e. R “ sup

θPΘ
}θ ´ θ˚}2.

The assumption below is considered for moments of order 8 in Zhang et al. [16] and of order 16
in Jordan et al. [5]. One of the contributions of this paper is the reduction of these assumptions to
order 4.
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Assumption 2.4 (Loss function smoothness). The loss function ℓ : Θ ˆ Z Ñ R` is assumed convex
and twice differentiable with respect to θ. There exist a function L : Z Ñ R` and a constant L P R`

such that, for all z P Z,∇2ℓp¨, zq is Lpzq-Lipschitz continuous within a Euclidean ball centered at
θ˚ and of radius ρ ą 0, Bρpθ˚q :“ tθ : }θ ´ θ˚} ď ρu, i.e. for all θ, θ

1

P Bρpθ˚q:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∇2ℓpθ1, zq ´ ∇2ℓpθ, zq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ ď Lpzq}θ
1

´ θ} (1)

with ErLpZq4s ď L4 and ErpLpZq ´ ErLpZqsq4s ď L4 (2)

Moreover, there exists G P R` such that Er}∇ℓpθ;Zq}4s ď G4 for all θ P Bρpθ˚q. (3)

Assumption 2.5 (Risk function smoothness). The global risk function R is twice differentiable and
there exists λ such that ∇2Rpθ˚q ľ λId. Moreover, there exists H ě 0 such that:

Er~∇2ℓpθ;Zq ´ ∇2Rpθq~4s ď H4 for all θ P Bρpθ˚q. (4)

3 Federated estimation with statistical correction

3.1 Upper bounds on local MSE and local bias

In order to decompose the global MSE, our attention is therefore focused on Er}θ̂i ´ θ˚}2s, the local
MSE and on }Erθ̂is ´ θ˚}2, the local bias. Drawing on the work of Zhang et al. [16] by alleviating
the assumptions and improving the readability of the proof, we reached the result above. Our final
result is somewhat different because we took a different approach regarding the control of the the
bias term. It is this part of the result that allows us to ease the proof (9 pages in total with the proofs
of the lemmas in the original paper) and to reduce the assumptions. We recall that all along this work,
the letter C stands for a constant and the same letter is used to refer to different constants.

Theorem 3.1. Under assumptions 1 to 4 and with θ̂i as previously defined, for any node i, we have
the following result:

Er}θ̂i ´ θ˚}2s ď
CG2

λ2ni
` Op

1

n2
i

q and

}Erθ̂is ´ θ˚}2 ď
1

n2
i

´C logp2dqH2G2

λ4
`

CL2G4

λ6
`

C logp4dqH4

λ4

¯

.

Returning to the MSE of the one-shot aggregated parameter, we consider the MSE bias-variance
decomposition. With tr(.) being the trace operator and V(.) denoting the variance matrix, by
independence and using that trpVpθ̂iqq “ Er}θ̂i ´ θ˚}2s ´ }Erθ̂is ´ θ˚}2, we get the following result:

Er}θ̂w ´ θ˚}2s “ Er}
ÿ

i

wiθ̂i ´ θ˚}2s

“
ÿ

i

w2
i trpVpθ̂iqq ` }

ÿ

i

wipErθ̂is ´ θ˚q}2

ď
ÿ

i

w2
i trpVpθ̂iqq ` m

ÿ

i

w2
i }Erθ̂is ´ θ˚}2 by Cauchy-Schwarz

ď
ÿ

i

w2
iEr}θ̂i ´ θ˚}2s ` pm ´ 1q

ÿ

i

w2
i }Erθ̂is ´ θ˚}2.

A direct application of Theorem 3.1 leads us to the following proposition:

Proposition 3.2. Under assumptions 1 to 4 and with θ̂i as previously defined, for any node i, we
have the following result:

Er}θ̂w ´ θ˚}2s ď
CG2

λ2

ÿ

i

w2
i

ni
`

´C logp2dqH2G2

λ4

`
CL2G4

λ6
`

C logp4dqH4

λ4

¯

m
ÿ

i

w2
i

n2
i

` O

˜

ÿ

i

w2
i

n2
i

¸

.
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Roughly, we can see that the MSE has a first term of order O
´

ř

i
w2

i

ni

¯

and a second one of order

O
´

m
ř

i
w2

i

n2
i

¯

. We remark that the first term, corresponding to the aggregation of the local variances
(or local MSE), is reduced by aggregation. The second one, corresponding to the aggregation of the
local biases, presents a factor m, is then not reduced. We would like to point out that it is on the basis
of this intuition that Zhang et al. [16] proposed the algorithm (SAVGM) based on the reduction of the
bias of each local estimator. Besides, this work focuses on the weighting of local estimators but does
not exclude that additional processing can be done on the estimators. For instance, it is possible to
couple the two approaches. Considering the standard federated parameter, i.e. with wi “ ni

N , we get
the following result:

Corollary 3.3. Under assumptions 1 to 4 and with θ̂i as previously defined, for any node i, we have
the following result:

Er}θ̂s ´ θ˚}2s ď
CG2

λ2

1

N
`

m2

N2

´C logp2dqH2G2

λ4
`

CL2G4

λ6

C logp4dqH4

λ4

¯

` O
´ m

N2

¯

.

We observe that the main term is the one of order O
´

m2

N2

¯

and corresponds to the non-reduced
variance (or equivalently MSE) term.

3.2 Optimization of the weights

In this work, we aim at aggregate each local parameter θ̂i through a weighting scheme minimizing
the upper bound on the global MSE. We start from the MSE bias-variance decomposition and apply
Jensen’s inequality:

Er}
ÿ

i

wiθ̂i ´ θ˚}2s “
ÿ

i

w2
i trpVpθ̂iqq ` }

ÿ

i

wipErθ̂is ´ θ˚q}2

ď
ÿ

i

w2
i trpVpθ̂iqq `

ÿ

i

wi}Erθ̂is ´ θ˚}2.

Therefore, we want to solve the following optimization problem:

arg min
wľ0, wT 1“1

#

m
ÿ

i“1

w2
i trpVpθ̂iqq `

m
ÿ

i“1

wi}Erθ̂is ´ θ˚}2

+

. (5)

The following proposition gives the form of the optimal solution of the problem, bringing us to a water-
filling structure. Further explanations on the water-filling problem are detailed in Subsection 3.4.

3.3 Solving the optimization problem

We solve this optimization problem through the Lagrangian operator and KKT conditions. We want
to minimize a function of the form

ř

i w
2
i ai ` wibi with the inequality constraint being w ľ 0

(non-negative weights) and the equality constraint being wT1 “ 1 (the weights sum to 1).

Proposition 3.4. Assuming ai ą 0 for all i P rms, the optimal solution of the following convex
optimization problem arg min

wľ0, wT 1“1

␣
řm

i w2
i ai ` wibi

(

is

w˚
piq “

$

&

%

1
2apiq

2`
řK

j

bpjq

apjq
řK

j
1

apjq

´
bpiq

2apiq
, @i ď K

0, @i ą K,

where bpiq are the reordered bi, i.e., bp1q ď ¨ ¨ ¨ ď bpmq with apiq, w
˚
piq, the corresponding values for

bpiq, and where we define

K “ arg max
kPrms

$

&

%

bpkq ď
2 `

řk
j

bpjq

apjq

řk
j

1
apjq

,

.

-

.
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The theoretical weighting scheme obtained can be interpreted as follows: only the nodes admitting
the lowest local biases participate to the final aggregated parameter. This interpretation is consistent
with the previous observation. Since the global variance is reduced by aggregation but not the global
bias, the aggregation scheme focuses on reducing the bias through the selection of participating
nodes, keeping only the nodes with the lowest bias. We obtain a closed-form solution enabling the
computation of the theoretical weights w˚

i with ai “ trpVpθ̂iqq and bi “ }Erθ̂is ´ θ˚}2. This result
leads to the oracle federated parameter with statistical correction θ̂w˚ .

Since these two quantities are not known, they must be estimated. To this end, we use the behavior of
the upper bound in terms of sample size of the local MSE and local bias derived from Theorem 3.1.
We propose to take ai “ 1

ni
and bi “ 1

n2
i

for all node i. The choice to leave out the constants is
heuristic and is not supported with mathematical arguments but rather on an experimental validation.
From Proposition 3.4, we get that the optimal solution of the estimated optimization problem
arg min

wľ0, wT 1“1

!

řm
i

w2
i

ni
` wi

n2
i

)

is the following:

ŵpiq “

$

&

%

npiq

2

2`
řK

j
1

npjq
řK

j npjq
´ 1

2npiq
, @i ď K

0, @i ą K,

where npiq are the reordered ni, i.e., np1q ě ¨ ¨ ¨ ě npmq with ŵpiq, the corresponding value for npiq,
and where we define

K “ arg max
kPrms

$

&

%

1

n2
pkq

ď
2 `

řk
j

1
npjq

řk
j npjq

,

.

-

.

We thus propose the following algorithm:

Algorithm 1 Federated Estimation with Statistical Correction (FESC)

Require: m the number of nodes
for i P rms do

node i sends to the server ni and θ̂i
end for
the server derives wpiq from Proposition 3.4 with ai “ 1

ni
and bi “ 1

n2
i

the server computes θ̂ŵ :“
ř

i ŵpiqθ̂piq

Return θ̂ŵ

We define θ̂piq as the parameter estimated on the node with a sample size of rank i, i.e. npiq. The
resulting estimate is the federated parameter with statistical correction θ̂ŵ. Since the calculation of
the weights depends only on the sample sizes, it is also possible to proceed in two steps if the context
requires it (especially when d is large). First, the nodes send their sample size to the server, which
activates the nodes chosen by the weighting scheme. Then, the K selected nodes send their local
parameters to the server. In the end, only a portion K ă m will have sent their parameter, which can
reduce the number of expensive communication.

3.4 Discussion

3.4.1 Sample size constraint in federated learning

We recall that the main term of Corrolary 3.3 is of order O
´

m2

N2

¯

. We now consider the randomness
with respect to the sample size of the nodes. Assuming that the sample size of the nodes are sampled
according to η, a random variable with values in N, 1

m

ř

i ni can be seen as the empirical mean of η,
denoted by ηm. Thus, regarding the condition on the sample size of the nodes, we immediately have
the following result:

Corollary 3.5. The federated estimator θ̂s reaches the behavior of the centralized one when ηm “

Ωpmq.
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Thus, we find a result corresponding, in a way, to the distributed setting, requiring at least as many
observations per node as there are nodes. The difference here is that this condition is required on
average. One key message of this article is that, in the one-shot federated learning, the sample
size constraint is still effective, this is why it can be relevant to select the nodes participating in the
learning. This selection can be made through ensemble learning methods [4] , weighting schemes or
handcrafter rules for instance.

3.4.2 Water-filling problem

We observe that the optimization problem (5) is part of the following set of convex optimization:

arg max
wľ0, wT 1ďP

#

m
ÿ

i

fipwiq

+

where P ą 0 and the functions fi are real-valued, increasing, strictly concave and with continuous
first order derivative. This kind of optimization problem is typical of the ones faced in the literature
of wireless communications and is related to resource allocation problems. It is well known that the
solution of such problem has a water-filling structure [15]. The canonical problem being the one with
P “ 1 and fipwiq “ logp1 ` αiwiq, referred to as water filling problem, comes from information
theory. It models the problem of allocating power to a set of communication channel and admits this
nice interpretation: we have a total quantity of water equal to one, to pour over a pool with fluctuating
bottom, see Figure 3. The development of the resolution of the water filling problem can be found
page 245 of Boyd et al. [1]. Remarkably, we note that the resulting procedure is consistent with the
data selection strategy of ensemble learning, where a node participates if its sample size exceed a
predetermined baseline value [4].

3.5 Limitations

One crucial limitation of this work is the i.i.d. sampling process hypothesis. We hope that now that
we have addressed the i.i.d. case, further studies will build on this work to examine the non-i.i.d.
case. Indeed, the main difficulty is that if the sampling is non identically distributed, θ˚ is different
across the nodes. However, we mention that under the following two conditions, all the results
of this paper remains valid: piq the non identically distributed assumption is embodied in a label
and/or feature distribution skew, meaning that the conditional distribution between feature and label
is shared among nodes (see Kairouz et al. (2019) section 3.1); piiq the model is well-specified, i.e.
the Bayes predictor belongs to the class of functions of interest, parametric functions in this work for
instance. Indeed, in that case, the local oracle minimizers are the same across the nodes. Hence part
of the arguments developed in our paper could be relevant as a partial argument to address non-i.i.d.
sampling processes. The second limitation of this work lies in the choice based on heuristics regarding
the estimation of ai and bi. The estimated weighting was crafted thanks to empirical calibration in
order to have a consistent weighting. As the experiments were conducted on a well-specified problem
(ridge regression on a linear model, see Section 4), it is possible that this preliminary estimation may
be limited in a misspecified setting. For more complex models, we encourage the exploration of
methods for estimating these local quantities such as bootstrap procedures.

4 Numerical experiments

We report here the experiments realized on synthetic data. We compare the MSE of the 4 following
parameters: the centralized θ̂c, the federated θ̂s, the oracle federated with statistical correction θ̂w˚

and the federated with statistical correction θ̂ŵ. For each of our experiments, we set a fixed number of
nodes m “ 500. We recall that our work aim to highlight the key role of the local sample sizes. We
denote by η the random variable associated to their distribution and express the mean of η according
to powers of m, i.e. Erηs “ mγ . Experiments are realized in a supervised setting, i.e. Z “ pX,Y q,
with X a random variable with values in Rd and Y with values in R. We assume a linear model:
Y “ XT θ˚ ` ϵ, with ϵ sampled according to a standard normal distribution.

Specifically, we generate the synthetic data, with d “ 50, as follows. θ˚ is sampled according to a
multivariate uniform distribution with support r0, 1sd, X according to a multivariate standard normal
distribution. η is generated by taking the integer value of a lognormal random variable, such that

8



Figure 1: MSE variation of the 4 parameters according to γ such that each node holds ni observations
sampled from a distribution with mean mγ . Ridge regression with m “ 500 and d “ 50 over 50
runs.

logpηq has variance σ2 “ 1. For each of the 50 runs and for all γ between 0.2 and 1.2, with a step
size of 0.1, we perform the following. First, we generate the m samples sizes and the associated
samples. We then estimate the central and the local parameters through a ridge regression, with the
regularization parameter equal to the inverse of the squared root of the sample size. We derive the
local variances and MSE from the known closed-form formulas of bias and variance of the ridge
estimate, using the knowledge of θ˚. Using the closed-form expression of the optimization problem,
we compute the oracle weights and the approximated weights. Finally, by aggregation, we get the
different parameters. Using the exact value of θ˚, we derive the corresponding MSE.

Here, we can define an asymptotic regime corresponding to γ Ñ 8. We observe that the parameter
obtained with FESC outperforms the standard federated one for all the observed value of γ and
converges faster to the centralized parameter. By testing different distribution for η, we observed that,
at fixed mean, the greater the variance of the distribution is, the more accurate θ̂w˚ and θ̂ŵ are. We
have developed an online demo based on the method presented in the paper. For a broad collection
of distributions on node-level sample size, the demo displays the MSE for the three estimators
considered (FESC, the plain federated one and the centralized one). For the sake of computation
time, the MSE are estimated only in one run ( unlike the article where the estimation is done on
50 runs). In this demo, we observe that indeed, when the chosen distribution has a high variance
(lognormal, pareto, weibull), FESC converges faster to the centralized estimator than the classical
federated estimator. An intuitive explanation for this phenomenon is that only the nodes with the
largest sample sizes are retained. So when the variance increases, the probability of observing large
sample sizes increases and so does the statistical power of the selected nodes. In the appendix, Figure
4, we can see that the fraction of activated node grows as the mean sample size increases. Node
selection enables artificially lowering the number of nodes to reduce the effects of the constraint
on the sample size observed in distributed learning. Finally, experimentations on FEMNIST can be
found in the appendix.

5 Conclusion

In this paper, we provide upper bounds on the local MSE and bias and derived the one of the plain
federated parameter in a very general setting of ERM. The key message of our work is the crucial
role of the sample sizes in the one-shot federated learning setting. We also translate the minimum
sample size constraint faced in distributed learning to federated learning. We propose a procedure to
aggregate the local estimations based on a minimization of an upper bound of the MSE, resulting in a
closed-form formula. This simple and communication-efficient weighting scheme implies that only a
fraction — the nodes with the largest sample sizes — participate to the final aggregated parameter.
Even though this weighting scheme is developed in a one-shot setting, we believe that the proposed
practice can be embedded in a wide variety of algorithms used in federated learning instead of the
standard averaging scheme.
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A Appendix

Figure 2: Illustration of the constraint on the sample size of the machines in distributed learning.
Each of the m “ 500 machines performs a ridge regression on n “ mγ observations of dimension
d “ 50, sampled according to a linear model, over 50 runs — y-axis: MSE of the centralized and the
distributed parameters on a logarithmic scale according to γ (x-axis).

Figure 3: Illustration of the interpretation of the water-filling structure solution. The pool is fooled to
a level ν, corresponding to a total quantity of water equal to one.

Figure 4: Variation of the fraction of nodes activated during the weighting scheme according to γ.

We also tested FESC on the image classification federated dataset FEMNIST. In this dataset, data
are sorted out based on the writer of the digit/character (corresponding to a node) from the original
MNIST data [2]. After discarding the nodes that do not have at least one sample of each of the 10
digits, we then estimate the central and the local parameters through a ridge regression, with the
regularization parameter equal to the inverse of the squared root of the sample size. Then, from the
known sample sizes, we compute the weights of FESC and of the federated estimator to generate the
aggregated parameters. Finally, we simulate the error ratio of the classification task on the test set for
FESC, the federated estimator and the centralized estimator.
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Table 1: Error percentage of the 3 parameters on FEMNIST when performing ridge regression with
d “ 784 and m “ 3366 and an average of 101 samples per node.

FESC 0.6823
Federated 0.6789
Centralized 0.7713

B Appendix

In this appendix we prove Theorem 3.1:

Theorem 3.1. Under assumptions 1 to 4 and with θ̂i as previously defined, for any node i, we have
the following result:

Er}θ̂i ´ θ˚}2s ď
CG2

λ2ni
` Op

1

n2
i

q and

}Erθ̂is ´ θ˚}2 ď
1

n2
i

´C logp2dqH2G2

λ4
`

CL2G4

λ6
`

C logp4dqH4

λ4

¯

.

Proof. We begin by defining three good events that enable to bound the Lipschitz constant, the
gradient of the empirical risk at θ˚ and, finally, the distance between the empirical risk and the true
risk in θ˚. These events allow us to show that the local empirical risk minimizer θ̂i is within a ball of
radius smaller than ρ. Moreover, they guarantee the continuity of ∇R̂i between θ˚ and θ̂i, providing
the needed assumptions to perform a Taylor expansion under the Lagrange form. Let define

E0,i :“

#

1

ni

ÿ

j

LpZjq ď 2L

+

E1,i :“
"

~∇2R̂ipθ
˚q ´ ∇2Rpθ˚q~ ď

ρλ

2

*

E2,i :“
"

}∇R̂ipθ
˚q} ď

p1 ´ ρqλδρ
2

*

with δρ :“ min
´

ρ, ρλ
4L

¯

.

Defining Ei :“ E0,i
Ş

E1,i
Ş

E2,i, we then state the following lemma:

Lemma B.1. Under assumptions 1 to 4 and under Ei, R̂i is p1 ´ ρqλ-strongly convex over Bδρpθ˚q

and the minimizer θ̂i belongs to Bδρpθ˚q. In particular, it yields the following inequality:

}θ̂i ´ θ˚} ď
1

p1 ´ ρqλ
}∇R̂ipθ

˚q} under Ei. (6)

Then, we decompose the difference between θ˚ and θ̂i with the objective of carrying out a Taylor
expansion of ∇R̂i between θ˚ and θ̂i since θ̂i belongs to Bδρpθ˚q and hence to Bρpθ˚q under Ei:

θ̂i ´ θ˚ “ pθ̂i ´ θ˚q1Ei
` pθ̂i ´ θ˚q1Ei

. (7)
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Moreover, under Ei, there exists θ between θ̂i and θ˚ such that:

∇R̂ipθ̂iq “ ∇R̂ipθ
˚q ` ∇2R̂ipθqpθ̂i ´ θ˚q

0 “ ∇R̂ipθ
˚q ` p∇2R̂ipθq ´ ∇2R̂ipθ

˚qqpθ̂i ´ θ˚q

` p∇2R̂ipθ
˚q ´ ∇2Rpθ˚qqpθ̂i ´ θ˚q ` ∇2Rpθ˚qpθ̂i ´ θ˚q

θ̂i ´ θ˚ “ ´Ipθ˚q∇R̂ipθ
˚q ` Ipθ˚qp∇2R̂ipθ

˚q ´ ∇2R̂ipθqqpθ̂i ´ θ˚q

` Ipθ˚qp∇2R̂ipθ
˚q ´ ∇2Rpθ˚qqpθ̂i ´ θ˚q

θ̂i ´ θ˚ “ Ipθ˚qp´∇R̂ipθ
˚q ` pPi ` Qiqpθ̂i ´ θ˚qq (8)

with Ipθ˚q “
`

∇2Rpθ˚q
˘´1

, Pi “ ∇2R̂ipθ
˚q ´∇2Rpθ˚q and Qi “ ∇2R̂ipθ

˚q ´∇2R̂ipθq. Thus,

Er}θ̂i ´ θ˚}2s “ Er}θ̂i ´ θ˚}21Ei
s ` Er}θ̂i ´ θ˚}21Ei

s

“ Er}θ̂i ´ θ˚}21Eis ` Er}θ̂i ´ θ˚}2|EisPpEiq
ď Er}Ipθ˚qp´∇R̂ipθ

˚q ` pPi ` Qiqpθ̂i ´ θ˚qq}21Ei
s ` R2PpEiq

ď ~Ipθ˚q~2Er} ´ ∇R̂ipθ
˚q ` pPi ` Qiqpθ̂i ´ θ˚q}21Ei

s ` R2PpEiq
by submultiplicativity of the operator norm. Using twice that }a ` b}2 ď 2}a}2 ` 2}b}2, we get that

Er} ´ ∇R̂ipθ
˚q ` pPi ` Qiqpθ̂i ´ θ˚q}21Ei

s

ď2Er}∇R̂ipθ
˚q}21Eis ` 4Er}Pipθ̂i ´ θ˚q}21Eis ` 4Er}Qipθ̂i ´ θ˚q}21Eis. (9)

Therefore, we now focus on these three terms and bound them by means of two lemmas. The first
one is borrowed from Zhang et al. [16] (Lemma 7) and is thus not demonstrated.

Lemma B.2. Under assumptions 1 to 4, there exist two constants both termed C such that:

Er}∇R̂ipθ
˚q}4s ď

CG4

n2
i

(10)

Er~Pi~
4s ď

C log2p2dqH4

n2
i

. (11)

Combining the first two lemmas, i.e., Equations 6 and 10, we obtain the following inequality:

Er}θ̂i ´ θ˚}41Ei
s ď

1

p1 ´ ρq4λ4
Er}∇R̂ipθ

˚q}41Ei
s

ď
1

p1 ´ ρq4λ4
Er}∇R̂ipθ

˚q}4s

ď
CG4

λ4n2
i

. (12)

The next lemma enables to control the term associated to Qi:

Lemma B.3. Under assumptions 1 to 4 and under Ei,
}Qipθ̂i ´ θ˚q}2 ď 4L2}θ̂i ´ θ˚}4. (13)

We can now go back to Equation 9. The first term is controlled by Equation 10 using Jensen’s
inequality. For the second one, we use Cauchy-Schwarz inequality and Equation 12. There exists a
constant C such that:

Er}Pipθ̂i ´ θ˚q}21Ei
s ď Er~Pi~

2}θ̂i ´ θ˚}21Ei
s

ď
a

Er~Pi~
4s

b

Er}θ̂i ´ θ˚}41Ei
s

ď
C logp2dqH2G2

λ2n2
i

. (14)
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Finally, the last term is given by Equations 12 and 13:

Er}Qipθ̂i ´ θ˚q}21Eis ď 4L2Er}θ̂i ´ θ˚}41Eis

ď
CL2G4

λ4n2
i

. (15)

Therefore, there exist constants termed C such that Equation 9 boils down to:

E
”

} ´ ∇R̂ipθ
˚q ` pPi ` Qiqpθ̂i ´ θ˚q}21Ei

ı

ď
CG2

ni
`

C logp2dqH2G2

λ2n2
i

`
CL2G4

λ4n2
i

ď
CG2

ni
` Op

1

n2
i

q.

It only remains to ensure that the event Ei occurs with a sufficiently low probability to conclude on
the local MSE term Er}θ̂i ´ θ˚}2s.

Lemma B.4. Under assumptions 1 to 4, there exist constants termed C such that

P
`

Ei
˘

ď
C

n2
i

`
C logp4dqH4

ρ4λ4n2
i

`
CG4

λ4δ4ρn
2
i

. (16)

Recalling that ~Ipθ˚q~2 ď 1
λ2 , we finally obtain

Er}θ̂i ´ θ˚}2s ď

ˆ

CG2

λ2ni
`

C logp2dqH2G2

λ4n2
i

`
CL2G4

λ6n2
i

˙

` R2

ˆ

C

n2
i

`
C logp4dqH4

ρ4λ4n2
i

`
CG4

λ4δ4ρn
2
i

˙

ď
CG2

λ2ni
` Op

1

n2
i

q.

Which proves the first part of Theorem 3.1. Lastly, we turn our attention to the local bias }Erθ̂is´θ˚}2.
We use that θ˚ is the minimizer of each local risk implying that ∇Ripθ

˚q “ 0. Moreover, under
the event E2,i, ∇R̂ipθ

˚q is bounded. Thus, we can interchange the derivative and the expectation
resulting to Er∇R̂ipθ

˚qs “ 0. Starting in a similar way to Equations 7 and 8:

θ̂i ´ θ˚ “ Ipθ˚qp´∇R̂ipθ
˚q ` pPi ` Qiqpθ̂i ´ θ˚qq1Ei

` pθ̂i ´ θ˚q1Ei

Erθ̂is ´ θ˚ “ Ipθ˚qErpPi ` Qiqpθ̂i ´ θ˚q1Ei
s ` Erpθ̂i ´ θ˚q1Ei

s

}Erθ̂is ´ θ˚}2 ď 2}Ipθ˚qErpPi ` Qiqpθ̂i ´ θ˚q1Eis}
2 ` 2}Erpθ̂i ´ θ˚q1Ei

s}2

ď 2~Ipθ˚q~2Er}pPi ` Qiqpθ̂i ´ θ˚q1Ei
}2s ` Er}θ̂i ´ θ˚}21Ei

s by Jensen’s inequality

ď 4~Ipθ˚q~2
´

Er}Pipθ̂i ´ θ˚q}21Ei
s ` Er}Qipθ̂i ´ θ˚q}21Ei

s

¯

` 2R2PpEiq

ď
C logp2dqH2G2

λ4n2
i

`
CL2G4

λ6n2
i

` R2

ˆ

C

n2
i

`
C logp4dqH4

ρ4λ4n2
i

`
CG4

λ4δ4ρn
2
i

˙

through Equations 14, 15, and 16 for the last line.

Embedding ρ, δρ and R in the constants for more readability, we can now conclude that:
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}Erθ̂is ´ θ˚}2 ď
1

n2
i

´C logp2dqH2G2

λ4
`

CL2G4

λ6
`

C logp4dqH4

λ4

¯

.

Which proves the second part of Theorem 3.1.

C Appendix

In this section, we prove the lemmas used in Appendix B.

Lemma B.1. Under assumptions 1 to 4 and under Ei, R̂i is
p1 ´ ρqλ-strongly convex over Bδρpθ˚q and the minimizer θ̂i belongs to Bδρpθ˚q. In particular, it
yields the following inequality:

}θ̂i ´ θ˚} ď
1

p1 ´ ρqλ
}∇R̂ipθ

˚q} under Ei.

Proof. The proof stating that R̂i is p1 ´ ρqλ-strongly convex is borrowed from Zhang et al. [16]: let
θ be in Bδρpθ˚q, we use the local strong convexity of R around θ˚, δρ being smaller than ρ. Starting
from the decomposition below, we just need to minimize the second term in term of matrix partial
order to obtain the strong convexity of R̂i.

∇2R̂ipθq “ ∇2Rpθ˚q ´

´

∇2Rpθ˚q ´ ∇2R̂ipθq

¯

~∇2Rpθ˚q ´ ∇2R̂ipθq~ ď ~∇2Rpθ˚q ´ ∇2R̂ipθ
˚q~ ` ~∇2R̂ipθ

˚q ´ ∇2R̂ipθq~

ď ~∇2Rpθ˚q ´ ∇2R̂ipθ
˚q~ `

1

ni

ÿ

j

LpZjq}θ˚ ´ θ}

ď
λρ

2
` 2L}θ˚ ´ θ} under Ei

ď λρ by the definition of δρ.

Thus, ∇2Rpθ˚q ´ ∇2R̂ipθq ĺ λρId with Id the identity

ñ ∇2R̂ipθq ľ p1 ´ ρqλId.

We can conclude that R̂i is strongly convex over Bδρpθ˚q. We now prove that θ̂i belongs to
Bδρpθ˚q through a proof by contradiction: let assume that }θ̂i ´ θ˚} ą δρ, setting θ “

δρ

}θ̂i´θ˚}
θ̂i `

´

1 ´
δρ

}θ̂i´θ˚}

¯

θ˚. We can observe that θ is a convex combination and that }θ ´ θ˚} “ δρ implying

that R̂i is strongly convex in θ. Thus,

R̂ipθq ď
δρ

}θ̂i ´ θ˚}
R̂ipθ̂iq `

´

1 ´
δρ

}θ̂i ´ θ˚}

¯

R̂ipθ
˚q by convexity.

R̂ipθq ě R̂ipθ
˚q ` x∇R̂ipθ

˚q; θ ´ θ˚y `
p1 ´ ρqλ

2
δ2ρ by strong convexity.

ñ
p1 ´ ρqλ

2
δ2ρ ď

δρ

}θ̂i ´ θ˚}

´

R̂ipθ̂iq ´ R̂ipθ
˚q ` }∇R̂ipθ

˚q}}θ˚ ´ θ̂i}
¯

by C-S

ñ
p1 ´ ρqλ

2
δ2ρ ă

δρ

}θ̂i ´ θ˚}
}∇R̂ipθ

˚q}}θ˚ ´ θ̂i} since R̂ipθ̂iq ă R̂ipθ
˚q

ñ δ2ρ ă δ2ρ by definition of E2,i.

Consequently, we can conclude that under Ei, θ̂i belongs to Bδρpθ˚q.
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Lemma B.2. Under assumptions 1 to 4, there exist two constants both termed C such that:

Er}∇R̂ipθ
˚q}4s ď

CG4

n2
i

Er~Pi~
4s ď

C log2p2dqH4

n2
i

.

Proof. See Zhang et al. [16].

Lemma B.3. Under assumptions 1 to 4 and under Ei,

}Qipθ̂i ´ θ˚q}2 ď 4L2}θ̂i ´ θ˚}4.

Proof.

}Qipθ̂i ´ θ˚q} “ }
1

ni

ÿ

j

`

∇2ℓpθ˚;Zjq ´ ∇2ℓpθ;Zjq
˘

pθ̂i ´ θ˚q}

ď ~
1

ni

ÿ

j

`

∇2ℓpθ˚;Zjq ´ ∇2ℓpθ;Zjq
˘

~}θ̂i ´ θ˚}

ď
1

ni

ÿ

j

~∇2ℓpθ˚;Zjq ´ ∇2ℓpθ;Zjq~}θ̂i ´ θ˚}

ď

´ 1

ni

ÿ

j

LpZjq

¯

}θ ´ θ˚}}θ̂i ´ θ˚}

ď 2L}θ̂i ´ θ˚}2 since we are under Ei.

Lemma B.4. Under assumptions 1 to 4, there exist constants termed C such that

P
`

Ei
˘

ď
C

n2
i

`
C logp4dqH4

ρ4λ4n2
i

`
CG4

λ4δ4ρn
2
i

.

Proof.

P
`

E0,i
˘

“ P

˜

1

ni

ÿ

j

LpZjq ď 2L

¸

“ P

˜

1

ni

ÿ

j

LpZjq ´ L ď L

¸

ď P

˜

1

ni

ÿ

j

LpZjq ´ ErLpZjqs ď L

¸

ď
E
”

| 1
ni

ř

j LpZjq ´ ErLpZjqs|4
ı

L4

ď
C

n2
i

.

PpEiq ď PpE0,iq ` PpE1,iq ` PpE2,iq

ď
C

n2
i

` 24
Er~Pi~

4s

ρ4λ4
` 24

Er}∇R̂ipθ
˚q}4s

p1 ´ ρq4λ4δ4ρ

ď
C

n2
i

`
C logp4dqH4

ρ4λ4n2
i

`
CG4

λ4δ4ρn
2
i

by Equations 10 and 11.
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D appendix

In this appendix, we prove Proposition 3.4.

Proposition 3.4. Assuming ai ą 0 for all i P rms, the optimal solution of the following convex
optimization problem arg min

wľ0, wT 1“1

␣
řm

i w2
i ai ` wibi

(

is

w˚
piq “

$

&

%

1
2apiq

2`
řK

j

bpjq

apjq
řK

j
1

apjq

´
bpiq

2apiq
, @i ď K

0, @i ą K,

where bpiq are the reordered bi, i.e., bp1q ď ¨ ¨ ¨ ď bpmq with apiq, w
˚
piq, the corresponding values for

bpiq, and where we define

K “ arg max
kPrms

$

&

%

bpkq ď
2 `

řk
j

bpjq

apjq

řk
j

1
apjq

,

.

-

.

Proof. We solve this optimization problem through the Lagrangian operator and KKT conditions.
We want to minimize a function of the form

ř

i w
2
i ai ` wibi with the inequality constraint being

w ľ 0 (non-negative weights) and the equality constraint being wT1 “ 1 (the weights sum to 1).

Lpw, λ, νq “
ÿ

i

w2
i ai ` wibi ´

ÿ

i

λiwi ` ν

˜

ÿ

i

wi ´ 1

¸

BL
Bwi

“ 2wiai ` bi ´ λi ` ν

BL
Bwi

“ 0 ô wi “
λi ´ bi ´ ν

2ai

λiw
˚
i “ 0 ô

"

if bi ď ´ν, λi “ 0, w˚
i “ ´bi´ν

2ai

else, w˚
i “ 0

ÿ

i

w˚
i “ 1 ô

ÿ

i

maxp0,
´bi ´ ν

2ai
q “ 1

ô ´
ν

2
“

1 `
řK

j
bpjq

2apjq

řK
j

1
apjq

ô w˚
piq “

$

&

%

1
2apiq

2`
řK

j

bpjq

apjq
řK

j
1

apjq

´
bpiq

2apiq
, @i ď K

0, @i ą K

where bpiq are the reordered bi, i.e., bp1q ď ¨ ¨ ¨ ď bpmq with apiq, w
˚
piq, the corresponding values for

bpiq, i.e., if bpiq “ bp, then apiq “ ap and w˚
piq “ w˚

p . We define

K “ arg max
kPrms

$

&

%

bpkq ď
2 `

řk
j

bpjq

apjq

řk
j

1
apjq

,

.

-

.
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