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ABSTRACT

Numerous network and whole brain modeling approaches make use of mean-field models. Their relative simplicity allows
studying network dynamics at a large scale. They correspond to lumped descriptions of neuronal assemblies connected
via synapses. mean-field models do not consider the ionic composition of the extracellular space, which can change in
physiological and pathological conditions, with strong effects on neuron activity. Here we derive a mean-field model of a
population of Hodgkin–Huxley type neurons, which links the neuronal intra- and extra-cellular ion concentrations to the mean
membrane potential and the mean synaptic input in terms of the synaptic conductance. The model can generate various
physiological brain activities including multi-stability at resting states, as well as pathological spiking and bursting behaviors,
and depolarization block. The results from the analytical solution of the mean-field model agree with the mean behavior of
numerical simulations of large-scale networks of neurons. The mean-field model is analytically exact for non-autonomous
ion concentration variables and provides a mean-field approximation in the thermodynamic limit, for locally homogeneous
mesoscopic networks of biophysical neurons driven by an ion-exchange mechanism. These results may provide the missing
link between high-level neural mass approaches which are used in the brain network modeling and physiological parameters
that drive the neuronal dynamics.

Key words: Hodgkin–Huxley type neurons, Mean-field, Resting state, Epilepsy, Lorentzian ansatz

Significance Statement: In this study, we applied mathematical formalism to estimate the mean-field behaviors of a
large neuronal ensemble taking into account the ion-exchange between the intracellular and extracellular space. The
model demonstrates different brain activities including resting state, spiking behavior, and seizure, as a function of
the extracellular ion concentration. The relevant parameter regime for different brain activities is extracted mainly in
terms of ion concentration and heterogeneity of individual neurons in the network. This neural mass model enables
studying the influence of changes in extracellular ionic conditions on whole brain dynamics in health and disease.
The effect of external stimulus current and conductance-based coupling of neural masses are also analyzed.

Introduction
Large-scale brain dynamics can be studied in silico with network models (Deco et al., 2011). Local activity can be represented
by neuronal mass models (Deco et al., 2008), which coupled together through synapses, time delays and noise (Deco and Jirsa,
2012, Petkoski and Jirsa, 2019) allow the emergence of whole brain activity that can be linked to empirical neuroimaging data
(Sanz-Leon et al., 2015). The observable properties (variables) in the population level of a large-scale ensemble are generally
explained by statistical physics formalism of mean-field theory (Wilson and Cowan, 1972, David and Friston, 2003, Moran
et al., 2007, Wong and Wang, 2006). The models demonstrated a predictive value for resting state activity (Melozzi et al.,
2019, Courtiol et al., 2020), or for seizure genesis and propagation in epilepsy (Proix et al., 2017). Neural mass models have a
low enough number of parameters to be tractable and provide general intuitions regarding mechanisms (Jirsa et al., 2014, Jirsa
et al., 2017, Deco et al., 2021, Amunts et al., 2020). Although it is not practical to include all known biophysical parameters, it
may be important to include parameters that can have widespread and general effects on neuronal activity (Amunts et al., 2020).

The concentration of Na+ , K+, Ca2+, and Cl− ions in the extracellular space is a key parameter to consider. Extracellular
ion concentrations change dynamically in vivo as a function of the brain state, for example between arousal and sleep (Ding et
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2 Biophysical neural mass model of ion-exchange

al., 2016). Changes in extracellular ion concentrations can switch one brain state to another (Ding et al., 2016). Extracellular
potassium concentration ([K+]o) plays a central role. Transient changes in ([K+]o) can have large effects on cell excitability and
spontaneous neuronal activity (Amzica et al., 2002, Ransom et al., 2000, Cressman et al., 2009), a result consistently reported in
modeling studies (Bazhenov et al., 2004,Park and Durand, 2006,Fröhlich et al., 2008). Increases in [K+]o are tightly controlled
by astrocytes, which can efficiently pump [K+]o and distribute it via their syncytium to prevent hyperexcitability (Breslin et
al., 2018, Nwaobi et al., 2016, Crunelli et al., 2015, Hansson et al., 2000, Bedner and Steinhäuser, 2013). Saturation or lack of
efficiency of this buffering mechanisms is often linked to a pathological state. Detailed single neuron models demonstrate that
continuous increases in [K+]o can lead to different firing states, from tonic, to bursting, to seizure-like events and depolarization
block (Cressman et al., 2009, Depannemaecker et al., 2021). In such detailed models, the buffering action of astrocytes is
represented by a parameter named [K+]bath (Cressman et al., 2009, Breslin et al., 2018, Ullah et al., 2009, Nwaobi et al.,
2016,Depannemaecker et al., 2021). Our goal is to use a similar approach but at the neural mass model level, to be incorporated
to study whole brain dynamics.

Phenomenological neuron models have been studied to understand the macroscopic dynamics of neuronal populations
(Izhikevich and Edelman, 2008) or to provide statistical descriptions of neuronal networks (Wilson and Cowan, 1972, Deco et
al., 2008,Montbrió et al., 2015,Montbrió and Pazó, 2020). Statistical population measures, such as the firing rate, can be used to
assess macroscopic dynamics (Shriki et al., 2003, Deco et al., 2011, Roxin et al., 2005, Luke et al., 2013, Jirsa et al., 2014, Proix
et al., 2014,Sanz-Leon et al., 2015,Wendling et al., 2016,Ashwin et al., 2016). Recent studies combine local neuronal dynamics
with statistical descriptions in terms of the mean membrane potential and the firing rate in quadratic integrate-and-fire (QIF)
neurons (Montbrió et al., 2015, Devalle et al., 2018, Montbrió and Pazó, 2020). Neural mass models and large scale brain
dynamics models are also used for analyzing and identification of chaos in brain signal (Baladron et al., 2012, Bandyopadhyay
and Kar, 2018), epileptic seizure transmission (Spiegler et al., 2011,Touboul et al., 2011,Nevado-Holgado et al., 2012,Hocepied
et al., 2013, El Houssaini et al., 2015a), phase oscillation (Laing, 2017, Byrne et al., 2017, Petkoski and Stefanovska, 2012),
evolution of network synchrony (Bandyopadhyay and Kar, 2018, Petkoski and Stefanovska, 2012) and several other problems.
Here we approximate ion-exchange dynamics by a step-wise QIF model with two slow timescale biophysical variables.
We demonstrate that the distribution of the neurons’ membrane potentials can be described by a Lorentzian ansatz (LA).
The continuity equation is solved to give rise to a mean-field model with the same probability distribution of membrane
potentials as the LA. The mean-field model is exact for non-autonomous ion concentration variables and provides a mean-field
approximation within the thermodynamic limit, i.e., for a locally homogeneous mesoscopic network. We thus demonstrate a
mean-field approximation for an all-to-all coupled network of heterogeneous neurons to approximately capture the behavior
of ion-exchange-driven neuronal dynamics. Considering different distributions of heterogeneous input current, we obtain a
mean-field approximation, described as a set of ordinary differential equations that fully described the macroscopic states of the
recurrently connected spiking neurons, in various dynamical regimes that can be linked to different healthy and pathological
states.

Materials and Methods
Single neuron model
The membrane potential of a single neuron in the brain is generally driven by an ion-exchange mechanism in intracellular and
extracellular space. The concentrations of potassium, sodium, and chlorine in the intracellular and extracellular space along
with the active transport pump (Na+/K+ pump) in the cell membrane of neurons generate input currents to a neuron cell that
drive the electrical behavior of a single neuron in terms of its membrane potential. The ion-exchange mechanism in the cellular
microenvironment, including local diffusion, glial buffering, ion pumps, and ion channels, has been mathematically modeled
based on conductance-based ion dynamics to reflect the resting state and seizure behaviors in single neurons (Hodgkin and
Huxley, 1952, Cressman et al., 2009, Ullah et al., 2009, Depannemaecker et al., 2021). The mechanism of ion-exchange in
the intracellular and extracellular space of the neuronal membrane is represented schematically in Fig. 1. This biophysical
interaction and ion-exchange mechanism across the membrane of a neuron cell can be described as a Hodgkin–Huxley type
dynamical process, represented by the following dynamical system.

dV
dt

= − 1
Cm

(JCl + JNa + JK + Jpump) (1)

dn
dt

=
n∞(V )−n

τn
(2)

d∆[K+]i
dt

= − γ

wi
(Jk −2Jpump) (3)

d[K+]g
dt

= ε([K+]bath +β∆[K+]i −{[K+]0,o +[K+]g}) (4)
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Biophysical neural mass model of ion-exchange 3

Figure 1. Schematic diagram of the ion channel mechanism in extracellular and intracellular space in the brain: (a) a single
neuron highlighting intracellular (yellow) and extracellular (cyan) space, (shown in the soma for simplicity of drawing). (b)
ion-exchange mechanism through the membrane in the cellular space: Na+ gets inside the intra-cellular space and K+ gets out,
flow of Cl− is bidirectional; for the pump, Na+ get out and K+ gets into the intra-cellular space, and the cell membrane is
shown by gray. (c) A population of interacting neurons (top) and point neurons (bottom). (d) Brain network model with activity
of each brain region (centers of masses shown by red circles) represented by neural masses.

This model represents the ion-exchange mechanism of a single conductance-based neuron in terms of membrane potential
(V ), the potassium conductance gating variable (n), intracellular potassium concentration variation (∆[K+]i) and extracellular
potassium buffering by the external bath ([K+]g). This mechanism considers ion-exchange through the sodium, potassium,
calcium-gated potassium, intracellular sodium, and extracellular potassium concentration gradients and leak currents. The
intrinsic ionic currents of the neuron along with the sodium–potassium pump current and potassium diffusion regulate the
concentrations of the different ion concentrations. The Nernst equation was used to couple the membrane potential of the
neuron with the concentrations of the ionic currents. This mechanism gives rise to a slow-fast dynamical system in which the
membrane potential (V ) and potassium conductance gating variable (n) constitute the fast subsystem and the slow subsystem is
represented in terms of the variation in the intracellular potassium concentration (∆[K+]i) and extracellular potassium buffering
by the external bath ([K+]g) (in Eq. (1)); where input currents due to different ionic substances and pump are represented as
follows (Cressman et al., 2009, Depannemaecker et al., 2021):

JNa = (gNa,l +gNam∞(V )h(n))(V −26.64log(
[Na+]o
[Na+]i

))

JK = (gK,l +gKn)(V −26.64log(
[K+]o
[K+]i

))

JCl = gCl(V +26.64log(
[Cl−]o
[Cl−]i

))

Jpump = ρ
1

1+ exp( 21−[Na+]i
2 )

1
1+ exp(5.5− [K+]o)

(5)

The conductance functions are represented as follows:

n∞(V ) =
1

1+ exp(−19−V
18 )

m∞(V ) =
1

1+ exp(−24−V
12 )

h(n) = 1.1− 1
1+ exp(−8(n−0.4))

(6)

In this model the concentration of chloride ion is invariant and the extracellular and intracellular concentrations of potassium,
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sodium, and chlorine ions are represented in terms of these state variables as follows:

∆[Na+]i =−∆[K+]i

∆[Na+]o =−β∆[Na+]i
∆[K+]o =−β∆[K+]i

[Na+]i = [Na+]0,i +∆[Na+]i
[Na+]o = [Na+]0,o +∆[Na+]o
[K+]o = [K+]0,o +∆[K+]o +[K]g

[Cl−]o = [Cl−]0,o, [Cl−]i = [Cl−]0,i

(7)

The biophysically relevant values of the parameters could be obtained from several previous studies and from in vivo and in
vitro experiments (Cressman et al., 2009, Depannemaecker et al., 2021). Those that we used for the simulation are shown in
Table-1.

Parameters symbols values
Membrane capacitance Cm 1nF
Gating time constant τn 4S−1

Chloride conductance gCl 7.5nS
Maximal potassium conductance gK 22nS

Maximal sodium conductance gNa 40nS
Potassium leak conductance gK,l 0.12nS
Sodium leak conductance gNa,l 0.02nS

Intracellular volume ωi 2160µ m
Extracellular volume ωo 720µ m

Intra/extra cellular volume ratio β = ωi
ωo

3
Concentration changes time constant γ 0.04S−1

Diffusion time constant ε 0.001S−1

Maximal Na/K pump current ρ 250pA
External bath of K [K+]bath 8mM

Initial concentration of Extracellular K [K+]0,o 4.8 mM
Initial concentration of Intracellular K [K+]0,i 130 mM

Initial concentration of Extracellular Na [Na+]0,o 138 mM
Initial concentration of Intracellular Na [Na+]0,i 16 mM

concentration of Extracellular Cl [Cl−]0,o 112 mM
concentration of Intracellular Cl [Cl−]0,i 5 mM

Table 1. List of parameters and their values used for the simulation

Mean-field approximation of coupled neurons
The next aim was to develop a mean-field model for a heterogeneous population of the all-to-all coupled biophysical neurons
described by Eq. (1) within the thermodynamic limit, i.e., when the number of neurons N → ∞. To consider the impact of
other spiking neurons in a network on a single neuron through the synaptic input current, first the synaptic kinetics needed to
be modeled. The basic mechanism of synaptic transmission can be described as the mechanism by which a neurotransmitter
is released into the synaptic cleft as a result of an influx of calcium through presynaptic calcium channels as the presynaptic
pulse (spike) depolarizes the synaptic terminal. The neurotransmitter plays a crucial role in opening the postsynaptic channels,
which causes the flow of the ionic current across the membrane. This mechanism is often represented by phenomenological
models, which assume that the normalized synaptic conductance gsyn(t) from 0 to 1 rises instantaneously at the time of the kth
pulse (spike), tk and consequently undergoes an exponential decay with some rate constant τ . This mechanism is traditionally
modeled by the following differential equation

τ
dgsyn(t)

dt
=

N

∑
j=1

[−gsyn(t)+δ (tk
j − t)(1−gsyn(t))] (8)
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The solution can be written as gsyn(t) = ∑
N
j=1[

t−tk
j

τ
e

t−tkj
τ ] (Destexhe et al., 1994, Baroni et al., 2014). Here, δ (t) is the Dirac

delta function, and tk
j represents the time of the kth pulse (spike) of the jth neuron. Then, the synaptic input current is given as

follows:

Isyn = kgsyn(t)(V −E) (9)

where V is the postsynaptic potential; E is the potential, termed the synaptic reversal potential, at which the direction of
the net current flow reverses; and represents the maximum conductance of the synapse. At this point we approximated the
four-dimensional dynamics in Eq. (1) to a three-dimensional system in order to represent the fast subsystem in terms of
membrane potential alone. This allowed us to represent the probability distribution of V in terms of a single fast variable V and
to use consequent mathematical formalism to solve the mean-field behavior of the large network of neurons. This was done
by eliminating the second fast variable from the system by averaging dV

dt over n, i.e., replacing dV
dt = f (V,n,∆[K+]i, [K+]g)

with dV
dt = 1

limsupn−liminfn
∫ limsupn

liminfn f (V,n,∆[K+]i, [K+]g)dn, where f (V,n,∆[K+]i, [K+]g) represents the right-hand side of the
V dynamics in Eq. (1). We modeled the average of n as

⟨n⟩=

{
n∞(V ),∆[K+]i > α

2.0+0.02⟨V ⟩,∆[K+]i ≤ α

where α = kα +µ1([K+]bath −k0)+µ2([K+]bath −k0)
2 with kα =−0.8825,µ1 =−0.3965,µ2 = 0.0075,k0 = 11.5. Applying

this averaging method and substituting ⟨n⟩ into the current terms

INa = (gNa,l +gNam∞(V )h(⟨n⟩))(V −26.64log(
[Na+]o
[Na+]i

))

IK = (gK,l +gK⟨n⟩)(V −26.64log(
[K+]o
[K+]i

))

ICl = JCl = gCl(V +26.64log(
[Cl−]o
[Cl−]i

))

Ipump = Jpump = ρ
1

1+ exp( 21−[Na+]i
2 )

1
1+ exp(5.5− [K+]o)

we obtained the 3-dimensional averaged dynamical model for Eq. (1) as follows

dV
dt

=− 1
Cm

(ICl + INa + IK + Ipump)

d∆[K+]i
dt

=− γ

wi
(Ik −2Ipump)

d[K+]g
dt

= ε([K+]bath +β∆[K+]i −{[K+]0,o +[K+]g})

(10)

In this way we obtained the system of the following set of ordinary differential equations to describe the microscopic
population state of the ion-exchange driven network of biophysical neurons:

dVj

dt
=− 1

Cm
(I j

Cl + I j
Na + I j

K + I j
pump)+ Jgsyn(t)(Vj −E j)+η j; j = 1,2, ...,N

d∆[K+]i
dt

=− γ

wi
(Ik −2Ipump)

d[K+]g
dt

= ε([K+]bath +β∆[K+]i −{[K+]0,o +[K+]g})

(11)

where J is the global coupling coefficient, η j is the heterogeneous quenched external input, and E j is the synaptic reversal
potential of jth neuron. For the thermodynamic limit N → ∞, is the heterogeneous quenched external input could be considered
as a random variable η which reduces Eq. (11) to the following form

dV
dt

=− 1
Cm

(ICl + INa + IK + Ipump)+ Jgsyn(t)(V −E)+η

d∆[K+]i
dt

=− γ

wi
(Ik −2Ipump)

d[K+]g
dt

= ε([K+]bath +β∆[K+]i −{[K+]0,o +[K+]g})

(12)
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6 Biophysical neural mass model of ion-exchange

The dV
dt equation in Eq. (12) is modeled as a step wise quadratic function based on the nullcline geometry of the microscopic

state of the membrane potential V and the dynamics of the biophysical population of neurons {Vj} : j = 1,2, ...,N is hence
represented as the following step wise quadratic function of {Vj}.

dVj

dt
=

{
b1{(Vj −d1, j)

2 + I1, j + Jgsyn(t)(Vj −E j)}; ∀Vj ≥ s
b2{(Vj −d2, j)

2 + I2, j + Jgsyn(t)(Vj −E j)}; ∀Vj < s
; j = 1,2, ...,N

For a homogeneous population within the thermodynamic limit N → ∞ this can be represented by removing the index as
follows:

dV
dt

=

{
b1{(V −d1)

2 + I1 + Jgsyn(t)(V −E)}; ∀V ≥ s
b2{(V −d2)

2 + I2 + Jgsyn(t)(V −E)}; ∀V < s
(13)

Here the terms I1 and I2 are functions of ∆[K+]i and [K+]bath but are independent of V and are given as follows:

I1 =
ψ1

b1
(∆[K+]i − k0)+

a1

b1
+η ,

I2 =
ψ2

b2
(∆[K+]i − k0)+

a2

b2
+η

(14)

Here d1, d2 and a2 are functions of [K+]bath and a1 which, in turn, is function of ∆[K+]i and [K+]bath. The parameters b1, b2,
and s, are constants estimated from the nullclines geometry of system Eq. (1) as follows:

d1 = q1 + r11([K+]bath − k0)++r12([K+]bath − k0)
2,

d2 = q2 + r21([K+]bath − k0)+ r22([K+]bath − k0)
2,

a2 = q3 +λ1([K+]bath − k0)+λ2([K+]bath − k0)
2,

a1 = a2 +(ψ2 −ψ1)(∆[K+]i − k0)−b1(s−d1)
2 +b2(s−d2)

2

with the following parameter values s = −37,b1 = −0.50,b2 = 0.11,k0 = 11.5,r11 = 0.45,r12 = −0.50,r21 = 2.5,r22 =
−0.1,λ1 = 30.0,λ2 =−0.05,q1 =−25.2,q2 =−56.0,q3 =−72.5,ψ1 = 50.0,ψ2 = 112.5.
The validity of the fit of these parameters is shown in Fig. 2.

Also, η in the Eq. (14) refers to the heterogeneous quenched component, which represents the heterogeneity in the network
of neurons and is distributed according to some probability distribution, say g(η). For the mean-field approximation in the
thermodynamic limit N → ∞, let us denote ρ(V,∆[K+]i, [K+]bath,η , t)dV as the fraction of neurons with a membrane potential
between V and V +dV where η is the random variable heterogeneity parameter (heterogeneous input current), which could be
considered to be distributed according to the probability distribution g(η). Then, the total voltage density can be written as∫

∞

−∞
ρ(V,∆[K+]i, [K+]bath,η , t)g(η)dη . This setup leads to the continuity equation

δtρ +δV [
dV
dt

ρ] = 0 (15)

It should be noted here that the approximation of Eq. (1) by Eq. (10) by removing n from the system through the averaging
method is an intermediate approximation, which ensures the integrability of the ρ and allowed us to solve the continuity
equation Eq. (15). However, we reused the functional forms in the mean-field equation as in Eq. (1) and continued this
through the solution of the continuity equation. This resulted in retaining the original dynamic behavior of the system, and
the intermediate approximation allowed us to derive the mean-field equation analytically. At this point adiabatic reduction
was applied to the slow variables, and the differential equation representing the V dynamics along with the coupling term was
considered to be involved with only the V,η , and t variables. This reduced the V dynamics ( dV

dt equation) in Eq. (12) to a
function of V and t only for each value of η . Consequently, we could consider ρ as a function of only V,η , and t (as similar
methodologies were applied in different literature like (Kuramoto, 1991, Petkoski and Stefanovska, 2012)). Therefore, we
denoted the right-hand side of the V dynamics as a function f (t,V,η) and represent it as follows:
dV
dt =− 1

Cm
(ICl + INa + IK + Ipump)+ Jgsyn(t)(V −E)+η = f (t,V,η)

That reduces Eq. (15) to δρ

δ t + f (t,V ) δρ

δV = − fV (t,V )ρ which is a first order quasi-linear PDE that can be solved by the
Lagrange method using the Lagrange subsidiary equation

dt
1

=
dV

f (t,V )
=

dρ

− fV (t,V )ρ
(16)
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Figure 2. Dependence of dV
dt [mV] on n: (a) dV

dt [mV] for different values of n in cyan and the average trajectory in red. (b)
Approximation of dV

dt [mV] for different values of ∆[K+]i [mol\m3]: original functions in red and approximations in blue. (c)
Approximation of dV

dt [mV] for different values of [K+]bath [mol\m3]: original functions in red and approximations in blue.
(d-e) Simulation of the dynamics: time series of V [mV] (in red), n (in blue), ∆[K+]i [mol\m3] (in green), and [K]g [mol\m3]
(in black): from the left original 4D system (1st column), 3D approximation (2nd column), 3D stepwise QIF approximation
(3rd column); for (d) [K+]bath = 6.5, (e) [K+]bath = 26.5. (f) Frequency of oscillation: for the original 4D model in red; for the
reduced 3D model in green; for the stepwise QIF approximation in blue.

where fV (t,V ) represents the derivative of f with respect to V . Integrating from last two ratios we got an independent solution
in which ρ is proportional to 1

f (t,V ) , i.e., ρ ∝ 1
f (t,V ) . Hence, the trivial solution of the continuity equation Eq. (15) has the

functional form ρ0(V,∆[K+]i, [K+]bath,η , t)∝ ( dV
dt )

−1 that is inversely proportional to their time derivative for each value of η .

ρ(V,∆[K+]i, [K+]bath,η , t) =

{ K1
b1{(V−d1)2+I1}

; ∀V ≥ s
K2

b2{(V−d2)2+I2}
; ∀V < s

(17)

Here k1 and k2 are constants, so that the integral becomes one. Since I1, I2,d1 and d2 are functions of [K+]bath and ∆[K+]i
within the thermodynamic limit N → ∞, the differential equation for the membrane potential can be represented as

dV
dt

=

{
b1{[V − y(η ,∆[K+]i, [K+]bath, t)]2 +[x(η ,∆[K+]i, [K+]bath, t)]2}; ∀V ≥ s
b2{[V − y(η ,∆[K+]i, [K+]bath, t)]2 +[x(η ,∆[K+]i, [K+]bath, t)]2}; ∀V < s

(18)

And the probability density function ρ can be written as

ρ(V,∆[K+]i, [K+]bath,η , t) =

{ K1
b1{[V−y(η ,∆[K+]i,[K+]bath,t)]2+[x(η ,∆[K+]i,[K+]bath,t)]2}

; ∀V ≥ s
K2

b2{[V−y(η ,∆[K+]i,[K+]bath,t)]2+[x(η ,∆[K+]i,[K+]bath,t)]2}
; ∀V < s

(19)

Since for each values of η ,
∫

∞

−∞
ρdV = 1, we found solutions for constants k1 =

b1x
π

and k2 =
b2x
π

which reduces the relevant
dynamics to a lower dimensional space and the solution of Eq. (15) converges to some Lorentzian type function independently
of the initial condition. Then, the corresponding conditional probability can be expressed as a Lorentzian ansatz (LA) (Montbrió
et al., 2015, Montbrió and Pazó, 2020), as follows:

ρ(V,∆[K+]i, [K+]bath,η , t) =
1
π

x(η ,∆[K+]i, [K+]bath, t)
[V − y(η ,∆[K+]i, [K+]bath, t)]2 +[x(η ,∆[K+]i, [K+]bath, t)]2

(20)
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8 Biophysical neural mass model of ion-exchange

Here, y(η ,∆[K+]i, [K+]bath, t) is related to the mean membrane potential of each value of η .

⟨V (η ,∆[K+]i, [K+]bath, t)⟩=
∫

∞

−∞

ρ(V,η ,∆[K+]i, [K+]bath, t)V dV = v(η ,∆[K+]i, [K+]bath, t)(say)

=
∫

∞

−∞

1
π

x(η ,∆[K+]i, [K+]bath, t)
[V − y(η ,∆[K+]i, [K+]bath, t)]2 +[x(η ,∆[K+]i, [K+]bath, t)]2

V dV

=
x
π

∫
∞

−∞

V − y+ y
(V − y)2 + x2 dV =

x
π

∫
∞

−∞

[
V − y

(V − y)2 + x2 dV +
y

(V − y)2 + x2 dV ]

=
x
π

lim
R→∞

[
1
2

log(
[R− y]2 + x2

[−R− y]2 + x2 )+
y
x
[tan−1(R)− tan−1(−R)]]

Taking the principal value of the Cauchy integral we can write the following:

v(η ,∆[K+]i, [K+]bath, t) = y(η ,∆[K+]i, [K+]bath, t); and v(t) =
∫

∞

−∞

y(η ,∆[K+]i, [K+]bath, t)g(η)dη (21)

Now, we solved the continuity equation Eq. (15) with LA (Eq. (20))

δtρ =
1
π

[(V − y)2 + x2]ẋ− x[−2(V − y)+2xẋ]
[(V − y)2 + x2]2

=
1
π

ẋV 2 −2(yẋ+ xẏ)V +([y2 − x2]ẋ−2xyẏ)
[(V − y)2 + x2]2

(22)

Here overdot represents the derivative with respect to time. We took the rate of change of the membrane potential as Eq. (13)
and obtained

δV (V̇ ρ) = V̈ ρ +V̇ δV (ρ) =


1
π

(2b1(V−d1)+Jgsyn)x
[(V−y)2+x2]

− 2xV̇ (V−y)
π[(V−y)2+x2]2

; ∀V ≥ s
1
π

(2b2(V−d2)+Jgsyn)x
[(V−y)2+x2]

− 2xV̇ (V−y)
π[(V−y)2+x2]2

; ∀V < s
=


[2b1d1x−2b1xy−Jgsynx]V 2+2[b1x3+b1xy2−b1d2

1 x−b1I1x+JgsynEx]V+[(Jgsyn−2b1d1)(x2+y2)x+2(b1d2
1+b1I1−JgsynE)xy+(y2−x2)ẋ−2xyẏ]

π[(V−y)2+x2]2
; ∀V ≥ s

[2b2d2x−2b2xy−Jgsynx]V 2+2[b2x3+b2xy2−b2d2
2 x−b2I2x+JgsynEx]V+[(Jgsyn−2b2d2)(x2+y2)x+2(b2d2

2+b2I2−JgsynE)xy+(y2−x2)ẋ−2xyẏ]
π[(V−y)2+x2]2

; ∀V < s

Hence, equating continuity equation Eq. (15) for being an identity, that is only if all the coefficients of the powers of V are
zero, we get (from the coefficient of V 2 = 0)

ẋ =

{
[2b1(y−d1)+ Jgsyn]x; ∀V ≥ s
[2b2(y−d2)+ Jgsyn]x; ∀V < s

(23)

From the coefficient of V = 0 we get{
b1x3 +b1xy2 −b1d2

1x−b1I1x+ JgsynEx− yẋ+ xẏ = 0; ∀V ≥ s
b2x3 +b2xy2 −b2d2

2x−b2I2x+ JgsynEx− yẋ+ xẏ = 0; ∀V < s

⇒ ẏ =

{
b1[(y−d1)

2 + I1 − x2]+ Jgsyn(y−E); ∀V ≥ s
b2[(y−d2)

2 + I2 − x2]+ Jgsyn(y−E); ∀V < s
(24)

This leads to the constant term to be zero and we obtained the mean-field model, as follows:

ẋ =

{
[2b1(y−d1)+ Jgsyn]x; ∀V ≥ s
[2b2(y−d2)+ Jgsyn]x; ∀V < s

ẏ =

{
b1[(y−d1)

2 + I1 − x2]+ Jgsyn(y−E); ∀V ≥ s
ẏ = b2[(y−d2)

2 + I2 − x2]+ Jgsyn(y−E); ∀V < s

This pair of equations can be represented by a single complex valued equation, as follows:

δtω(η ,∆[K+]i, [K+]bath, t) =

{
ib1[(iω +d1)

2 + I1]+ Jgsyn[iω +2y−E]; ∀V ≥ s
ib2[(iω +d2)

2 + I2]+ Jgsyn[iω +2y−E]; ∀V < s
(25)
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Biophysical neural mass model of ion-exchange 9

where ω(η ,∆[K+]i, [K+]bath, t) = x(η ,∆[K+]i, [K+]bath, t)+ iy(η ,∆[K+]i, [K+]bath, t) and real and complex components of Eq.
(25) represent the dynamics of y and x respectively. Moreover, if we consider the distribution of the heterogeneous input current
η to be a Lorentzian distribution with half-width ∆ and location of the center be η , i.e. :

g(η) =
1
π

∆

(η −η)2 −∆2 (26)

Then, the residue theorem can be applied to compute the integral in Eq. (21) over the closed contour in the complex η-plane.
It should be noted that the assumption of g(η) as a Lorentzian distribution leads to the conclusion that v(t) and x(t) could be
computed by Cauchy residue theorem with the value of ω at η = η − i∆, i.e., at the pole of the Lorentzian distribution Eq. (26)
in the lower half of η-plane: x(∆[K+]i, [K+]bath, t)+ iy(∆[K+]i, [K+]bath, t) = ω(η − i∆,∆[K+]i, [K+]bath, t). Thus evaluating
Eq. (26) at η = η − i∆ we obtained the mean-field model of membrane potential in terms of two coupled differential equations
considering non-autonomous slow variables, as follows:

ẋ =

{
b1(∆+2x(v−d1))+ Jgsynx; ∀v ≥ s
b2(∆+2x(v−d2))+ Jgsynx; ∀v < s

v̇ =

{
b1[(v−d1)

2 +η + I1 − x2]+ Jgsyn(v−E); ∀v ≥ s
b2[(v−d2)

2 +η + I2 − x2]+ Jgsyn(v−E); ∀v < s

Hence, the 4-dimensional mean-field equation considering the dynamics for the slow variables ∆[K+]i and [K+]g becomes the
following:

dx
dt

=

{
[b1(∆+2x(v−d1))+ Jgsynx; ∀V ≥ s
[b2(∆+2x(v−d2))+ Jgsynx; ∀V < s

dv
dt

=

{
b1[(v−d1)

2 +η + I1 − x2]+ Jgsyn(v−E); ∀V ≥ s
b2[(v−d2)

2 +η + I2 − x2]+ Jgsyn(v−E); ∀V < s

d∆[K+]i
dt

=− γ

wi
(Ik(v)−2Ipump)

d[K+]g
dt

= ε([K+]bath +β∆[K+]i −{[K+]0,o +[K+]g})

(27)

Here v denotes the mean membrane potential, x is a phenomenological variable, and intracellular potassium concentration
variation and extracellular potassium buffering by the external bath are denoted by ∆[K+]i and [K]g respectively. It should be
noted that x and its dynamics only depend upon v by construction, so technically, the dynamical system in Eq. (27) could be
characterized by only one fast variable v. Consequently, with only one fast variable the dynamics cannot demonstrate fast
oscillations but only the envelope of the oscillations, as demonstrated in Fig. 3. Therefore, the spike train and tonic spike
features in the corresponding regime of the dynamics, which are characterized by sharp oscillations in the v and n dimensions
alone, are lost through averaging out n from the system Eq. (1).

Moreover, the variable n represents the probability of channel opening, and in principle, the expected probability of channel
opening is proportional to the synaptic conductance gsyn (i.e. gsyn ∝ n). Therefore, at this point we defined the normalized
synaptic conductance gsyn as c n (c being the normalized constant of proportionality) within the thermodynamic limit. This also
allowed us to replace the step-wise QIF approximation by the original functional forms in the mean-field model, as Eq. (13)
is an approximation of Eq. (12) in the first place. Here we can replace the step-wise quadratic functions in Eq. (13) by the
original function from Eq. (12), including the synaptic conductance variable n. Hence, the final mean-field approximation is a
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10 Biophysical neural mass model of ion-exchange

Figure 3. Simulation of the dynamics: (a) Time series of V [mV] (1st row), n (2nd row), ∆[K+]i [mol\m3] (3rd row), and [K]g
[mol\m3] (4th row): from the left original 4D system (in black), 3D approximation (in blue), 3D stepwise QIF approximation
(in red); (b) 3D Phase space with V [mV], n, and ∆[K+]i [mol\m3] for three models with the original 4D model in black, for
the reduced 3D model in blue, and for the stepwise QIF approximation in red; for [K+]bath = 11.5.

five-dimensional dynamical system as follows:

dx
dt

=

{
b1(∆+2x(v−d1))+ cJnx; ∀V ≥ s
b2(∆+2x(v−d2))+ cJnx; ∀V < s

dv
dt

=

{
− 1

Cm
(JCl + JNa + JK + Jpump)−b1x2 +η + cJn(v−E); ∀V ≥ s

− 1
Cm

(JCl + JNa + JK + Jpump)−b2x2 +η + cJn(v−E); ∀V < s

dn
dt

=
1
τn
(

1
1+ exp −19−V

18

−n)

d∆[K+]i
dt

=− γ

wi
(Ik(v)−2Ipump)

d[K+]g
dt

= ε([K+]bath +β∆[K+]i −{[K+]0,o +[K+]g})

(28)

If we consider the inhibitory and excitatory group of neurons, the corresponding mean-field approximation can be written as

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.10.29.466427doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466427
http://creativecommons.org/licenses/by-nc-nd/4.0/


Biophysical neural mass model of ion-exchange 11

follows:

dx
dt

=

{
b1(∆+2x(v−d1))+(ci + ce)Jnx; ∀V ≥ s
b2(∆+2x(v−d2))+(ci + ce)Jnx; ∀V < s

dv
dt

=

{
− 1

Cm
(JCl + JNa + JK + Jpump)−b1x2 +η + ciJn(v−Ei)+ ceJn(v−Ee); ∀V ≥ s

− 1
Cm

(JCl + JNa + JK + Jpump)−b2x2 +η + ciJn(v−Ei)+ ceJn(v−Ee); ∀V < s

dn
dt

=
1
τn
(

1
1+ exp −19−V

18

−n)

d∆[K+]i
dt

=− γ

wi
(Ik(v)−2Ipump)

d[K+]g
dt

= ε([K+]bath +β∆[K+]i −{[K+]0,o +[K+]g})

(29)

Where Ee and Ei are the synaptic reversal potentials of the excitatory and inhibitory groups of neurons.

Results

In this paper we have derived a mean-field approximation of locally homogeneous network of Hodgkin–Huxley type neurons
(HH neuron) with heterogeneous quenched external input η (Eq. (28), and Eq. (29)). The appropriateness of mean-field
approximation is validated by comparing the simulation results of the large network of coupled HH neurons with the mean-field
model Eq. (29) which appears to be quite robust under stochasticity and different type of distribution of heterogeneous quenched
external input η (Fig. 4). Our model demonstrates different types of spiking and bursting behavior as well as resting-state
(Fig. 6) and multistability in the distinct regime of external potassium bath ([K+]bath). These kinds of neuronal activities are
quite observable in large-scale brain dynamics which by the means of this novel mean-field model get connected with the
ion-exchange mechanism and the ion concentration states in the cellular space. The bifurcation analysis of the mean-field model
is carried out to identify relevant parameter regime which is responsible for different types of spiking and bursting behavior,
resting-state, and multistability features in the mean-field model (Fig. 5). Moreover, it is observed that even if in the resting
state (healthy) network certain kinds of external stimulus current could generate transient neuronal bursts (in terms of transition
between upstate and downstate) which are validated by parallel simulation of the large network of coupled HH neurons and the
mean-field model (Fig. 7). This result could be quite significant in terms of explaining the neuronal activities during brain
stimulation. Furthermore, the behavior of two of such mean-field representations under the aforementioned conductance-based
coupling (Eq. (9)) are demonstrated (Fig. 8) and validated with the simulation of two groups of neuron with different parameter.
It could serve as a baseline to explain how epileptic seizures could propagate through some healthy brain regions as a result of
their coupling with epileptogenic regions.

The simulation of Hodgkin–Huxley type single neuron dynamics Eq. (1) driven by an ion-exchange mechanism, has
revealed that the parameter [K+]bath is the most important parameter for describing the dynamics. Previous studies showed that
changing the value of the concentration of the external potassium bath is responsible for qualitative changes in the dynamical
behavior of a single neuronal system (Depannemaecker et al., 2021), particularly discovering that in the parameter regime
[K+]bath = [6.01,6.875] multistability occurs.

Reproducing the bifurcation analysis by a numerical continuation revealed two stable fixed points and a stable focus in this
regime for [K+]bath. We also observed a Hopf bifurcation at [K+]bath = 7.68. At higher values of [K+]bath he stable fixed-point
behavior of the dynamics changes into limit cycle behavior and the dynamics shows the bursting characteristics of neurons.
The single neuron model was also shown to be able to produce different dynamic behaviors of single neuronal activity, such
as epileptic bursts, status epilepticus, resting state, etc. In this study we developed a mean-field dynamics system based on a
biophysical single neuron model Eq. (1) to describe the network behavior of biophysical neurons within the thermodynamic
limit.

To be able to apply convenient mathematical (analytical) methods in this study, the velocity of the membrane potential of a
single neuron described by Eq. (1) was approximated as a stepwise quadratic function because geometrically it resembles a
combination of two inverted parabolas. The validity of this approximation is shown in Fig. 2 where the time derivative of
V in Eq. (1) is compared with that of a stepwise quadratic approximation. The appropriateness of the approximation of the
membrane potential dynamics is represented for different values of the other state variables and parameters, such as n, ∆[K+]i,
and [K+]bath in Fig. 2(a), 2(b), and 2(c), respectively.
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12 Biophysical neural mass model of ion-exchange

Figure 4. Simulations of networks of neurons with the mean-field model: V [mV] for the network nodes in the first row (in
red); scatter of the firing neurons in the second row; v [mV] for the mean-field in the third row (in black); firing rate of the
mean-field model in the fourth row; n in the fifth row: network nodes in magenta and mean-field in black; ∆[K+]i [mol\m3] in
the sixth row: network nodes in blue and mean-field in black, and [K+]g [mol\m3] in the seventh row: network nodes in green
and mean-field in black, for [K+]bath = 12.5,J = 4: (a) Non-autonomous ∆[K+]i for ∆

J = 3.0, with ∆[K+]i as in Eq. (29); (c)
Lorentzian distribution of heterogeneity η for ∆

J = 1.0; (d) Gaussian distribution of heterogeneity η for ∆

J = 4.0, with
stochastic white noise η ; (e) ∆

J = 2.0 and (f) ∆

J = 3.0. (b) Frequencies (represented by the color code) of the network of
coupled HH neurons as a function of [K+]bath and relative half-width of heterogeneity ∆

J in the first row (b1), frequencies
(represented by the color code) of the mean-field model as a function of [K+]bath and relative half-width of heterogeneity ∆

J in
the second row (b2), difference between frequencies (represented by the color code) from the network of coupled HH neurons
and 5D-mean-field model in the third row: for (b3) J = 4.

Step-wise quadratic approximation for the nullcline
The approximation of the membrane potential dynamics as a stepwise quadratic function allowed us to apply analytical
approaches and to solve the corresponding continuity equation to derive the mean-field of a locally homogeneous mesoscopic
network of biophysical neurons. Fig. 2(d, e) and Fig. 3(a) demonstrate the validity of the stepwise QIF approximation
of the original dynamics for different values of [K+]bath in terms of the simulation of the corresponding dynamics. These
figures show that approximating the stepwise QIF captures the behavior of the original 4-dimensional dynamics for the entire
biophysical range of [K+]bath. Fig. 3(b) illustrates the method for averaging the variable in a 3-dimensional phase space
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Figure 5. Bifurcation diagram of the mean-field model: (a) v [mV] and ∆[K+]i [mol\m3] are represented against [K+]bath
[mol\m3], (b) v [mV] is represented against [K+]bath [mol\m3], the stable fixed points are shown by black lines whereas the
unstable fixed points are represented by dotted lines. The maximum and minimum values of the limit cycle are shown by black
dotted lines in between the two bifurcation values are shown by red marks. Multistability in the mean-field model at
[K+]bath = 7.65 (healthy regime): (c) time series for healthy state ([K+]bath = 7.65) demonstrating the up and down states, up
state in blue and down state in red. (d) Three-dimensional phase space in v,∆[K+]i, and [K+]g dimensions for the up and down
states: the black marks denote the fixed points in the up and down state. Multistability in the mean-field model at
[K+]bath = 11.5 and 18.5 (bursting regime): (e) time series for the up and down states: epileptic state in violet, bursting in blue,
up states in pink, and red for different values of [K+]bath. (f) Three-dimensional phase space in v,∆[K+]i, and [K+]g
dimensions for the up and down states (bursting): the black marks denote the fixed points up states, while the blue and violet
phase space trajectories shows the bursting, and epileptic state.

portrait and demonstrate that averaging the variable n Eq. (8) and the subsequent stepwise QIF approximation (Eq. (13) with no
coupling or J = 0) still preserve the slow dynamics is shown with 3-dimensional phase space portraits of each of the neurons for
[K+]bath = 11.5. In Fig. 2(f) the frequencies of these three dynamics are compared for entire range of [K+]bath to demonstrate
that, though there is a small frequency mismatch between these approximations, the overall stepwise QIF approximation
captured the slow dynamic behavior of the original complex biophysical process described in Eq. (1) qualitatively as well as
quantitatively. These allowed us to apply a Lorentzian distribution for the membrane potential and to develop the mean-field
approximation of a heterogeneous network of biophysical neurons driven by ion-exchange dynamics coupled all-to-all via
conductance-based coupling Eq. (11).

Limits of the approximation
When ∆[K+]i is non-autonomous, the mean-field model captures the exact frequency of the oscillation as it is analytically
derived by substituting the LA into the continuity equation (12). This is demonstrated in Fig. 4(a) for a non-autonomous
∆[K+]i taken as a sinusoidal function. When ∆[K+]i is autonomous (function of state variables only), the mean-field model is
a mean-field approximation, which encounters a frequency mismatch with the locally homogeneous mesoscopic network of
biophysical neurons described in Eq. (1). Fig. 4(c) illustrates the validity of the mean-field approximation by a simulated plot
from the network of biophysical neurons and the plot of the mean-field approximation described in Eq. (29). The frequencies
of the mean-field model and the network of biophysical neurons again encounter a slight mismatch, which is illustrated in Fig.
4(b) for different values of relative heterogeneity ∆/J. The frequency of oscillation of the network of neurons, the mean-field
approximation, and their relative differences are represented in Fig. 4(b1), 4(b2), 4(b3), respectively, with respect to [K+]bath

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.10.29.466427doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466427
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 Biophysical neural mass model of ion-exchange

Figure 6. Qualitative mode of behavior of the mean-field model: time series v [mV] (in red), n (in blue), ∆[K+]i [mol\m3] (in
green), and [K+]g [mol\m3] (in black) are demonstrated for the following patterns of activity: (a) Spike train at [K+]bath = 8.5,
(b) Tonic spiking (TS) at [K+]bath = 10.5, (c) Bursting at [K+]bath = 14.5, (d) Seizure-like event at [K+]bath = 18.5, (e) Status
epilepticus-like event at [K+]bath = 24.5, (f) Depolarization block at [K+]bath = 25.5.

and relative heterogeneity ∆/J. This provides evidence that the mean-field approximation can capture the network behavior of
the large network of neurons quite efficiently in that the relative difference between the frequency of the network of neurons
and the mean-field approximation is less than 10% for almost the entire regime of relative heterogeneity and [K+]bath.

The simulation of the mean-field model along with the network of single neurons demonstrates that the mean-field
approximation is quite robust in terms of the distribution of heterogeneity, as illustrated in Fig. 4(d), with a Gaussian
distribution of heterogeneity rather than Lorentzian. Moreover, the simulations of a network of single neurons with stochastic
white noise reveal that the mean-field model (deterministic) was in agreement with and approximately matched the network
of stochastic single neurons for the small variances associated with white noise Fig. 4(e), but as the variance increased, the
agreement was reduced and eventually for higher variances the similarity was destroyed as the network simulations of stochastic
neurons became more and more noisy (Fig. 4(f)).

Bifurcation analysis of [K+]bath reveals healthy and epileptic-like regimes
The simulation of the mean-fields dynamics reveals that [K+]bath serves as a bifurcation parameter of the dynamics. Scanning
through its values in the biophysical range changes the behavior of the dynamics from a stable fixed point to an oscillatory
limit cycle type of behavior and back to a stable fixed point. To carry out the bifurcation analysis, numerical continuation
was applied, and we found that a Hopf bifurcation exists at [K+]bath = 7.68 and a reverse Hopf bifurcation could be found at
[K+]bath = 25.02. In between these two values of [K+]bath, the dynamics manifests an oscillatory limit cycle behavior, whereas
outside of this range the dynamics of the system shows a stable fixed-point behavior.

Fig. 5 presents the 3-dimensional bifurcation diagram (Fig. 5(a)) in v and ∆[K+]i with respect to [K+]bath, and the
2-dimensional projections (Fig. 5(b)) in the v dimension for the mean-fields model Eq. (29), indicating the Hopf bifurcation.
Multistable behavior of the mean-field was found in this model for [K+]bath > 5.971, as it is demonstrated in Fig. 5. Plots in Fig.
5(c), and Fig. 5(e) illustrates the time series of the dynamics for healthy ([K+]bath = 7.65), and bursting ([K+]bath = 11.5,18.5)
states respectively. whereas Fig. 5(d), and Fig. 5(f) represent the phase space trajectories for corresponding healthy, and
bursting states. Together, they indicate the up state, down state, and epileptic state for different values of [K+]bath. When
[K+]bath is smaller than the Hopf bifurcation, the downstate is found to be a stable fixed-point, which destabilizes into spiking,
and bursting behaviors and gradually into epileptic bursts at the bifurcation. On the other hand, the upstate emerges at
[K+]bath = 5.971, which is a stable fixed point of the five-dimensional system (Eq. (28), and Eq. (29)). However, if the fast
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Figure 7. Transition between up and down states with external stimulus current in fixed point (healthy) regime
[K+]bath = 6.75 [mol\m3]. Simulations of networks of neurons with the mean-field model: V [mV] for the network nodes in
the first row; scatter of the firing neurons in the second row; v [mV] for the mean-field in the third row; the external input
current [mA] (homogeneous for each node and the same external current is added to the mean-field model) in the fourth row; n
in the fifth row; ∆[K+]i [mol\m3] in the sixth row, and [K+]g [mol\m3] in the seventh row. The color of the variables in the
network of neuron are sorted according to the heterogeneous component η (shown in the color bar) and variables from the
mean-field model are plotted in black. Effect of addition of an external stimulus current is shown for (a) square wave type
external current, (b) sinusoidal type external current. V [mV] from some representative network nodes are plotted in last four
rows for external stimulus currents (c) square wave type external current, (d) sinusoidal type external current.

subsystem is decoupled and the slow variables are considered to be parameters, the fast subsystem in the upstate undergoes
bifurcation, demonstrating a limit cycle, a stable spiral, and a stable fixed point as the value of the slow variable decreases.

The model can also demonstrate different neural activities, as demonstrated in Fig. 6. For different regimes of [K+]bath the
mean-field model is capable of producing a large set of brain activities, such as a spike train (Fig. 6(a)), tonic spiking (Fig.
6(b)), bursting (Fig. 6(c)), a seizure-like event (Fig. 6(d)), a status epilepticus -like event (Fig. 6(e)), and a polarization block
(Fig. 6(f)).

External stimulus triggers transition between regimes of low and high firing rates

The effect of a external stimulus applied as homogeneous current for each network node is shown in Fig. 7 for network in fixed
point regime (healthy state) at [K+]bath = 6.75. All the relevant dynamics are shown for the microscopic network behavior,
which is well captured by the mean-field model. For better understanding of the link to the spiking neurons, the voltage V
for some of the network nodes sorted according to the heterogeneous component η is also presented. It is observed that due
to the external stimulus the electrical behavior of the neuronal network could switch between up and down states and could
emit transient bursts even in the healthy regime. These results are in agreement with experimental results of brain stimulation.
Emission of transient bursts are shown for external stimulus current with square wave type external current (Fig. 7(a)) and
sinusoidal type external current (Fig. 7(b)). The membrane potential from some representative network nodes are shown for
some external stimulus currents (square wave type external current Fig. 7(c), sinusoidal type external current Fig. 7(d)). These
represents different states in the network of homogeneous HH neurons and the agreement of the states in HH neuron with mean
input (η) and the mean-field model.
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Figure 8. Two coupled mean-field model with the corresponding networks of neurons: V [mV] for the network nodes in the
first row (in red); scatter of the firing neurons in the second row; v [mV] for the mean-field model in the third row (in black); n
in the fourth row: network nodes in magenta and mean-field in black; ∆[K+]i [mol\m3] in the fifth row: network nodes in blue
and mean-field in black, and [K+]g [mol\m3] in the sixth row: network nodes in green and mean-field in black, for (a) healthy
state (resting state): [K+]bath = 5.5, and (b) bursting state: [K+]bath = 11.5. Initially two populations were uncoupled and at
some point of time (denoted by the cyan dotted line) and onward the conducted based coupling was established between them
in order to demonstrate two different mode of behaviors, uncoupled and coupled.

Bursting propagation between coupled populations
The behavior of the mean-field model is demonstrated and validated with the corresponding networks of neurons for the case
of two populations coupled with conductance-based coupling, as shown in In Fig. 8. Prior to the coupling (denoted by the
cyan dotted line), both populations exhibit different dynamics due to the different values of [K+]bath. Once they are coupled,
we observed that an otherwise resting state population could be entrained into bursting due to its coupling with a bursting
population. This is a common scenario in modelling initiation and propagation of epileptic activity (Jirsa et al., 2017, Proix et
al., 2014, Proix et al., 2017, Olmi et al., 2019), and this result could serve as a baseline to explain how neural signals as well as
epileptic seizures could propagate between different brain regions.

Discussion
The general quest of modern neuroscience is understanding and explaining the mechanisms of different brain activities like
perception, memory and decision making; but also more generally how the brain functions for healthy individuals during rest,
and how it deviates from its healthy state in case of different diseases and disorders. Interestingly most of these brain activities
are accessed through measurements of brain dynamics that manifest the collective electrical activities of a huge population of
neurons demonstrating some inter-related electrical behavior in different brain regions. Therefore, the brain activities in general
can not be explained in microscopic level that is as the mechanism of a single neuron rather they emerge in macroscopic level
as a result of the interaction between large population of neurons. Also, besides the recent progress (Markram et al., 2015),it is
still not possible to compute the behavior of a few billions of such neurons (which comprises a mammalian brain), and even if it
was, it remains questionable what knowledge would we gain from such a complex system (Frégnac, 2017). Hence, the most
realistic way to model the brain activities is to group a number of neurons together and write the mathematical descriptions for
a group of neurons or large population (Sanz-Leon et al., 2015), using formalism from statistical physics and mathematics. In
this case we measure some property of the whole population, such as the mean membrane potential, rather than the activity of
an individual neuron. Some of these properties do not even exist for an individual component, for example temperature or
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pressure in case of molecular ensembles, order parameter (Kuramoto, 1984) and mean ensemble frequency (Petkoski et al.,
2013) for coupled oscillators, or more specifically the firing rate in case of neuronal population (Gerstner and Kistler, 2002).
However, to the best of our knowledge till the date there is no theory that can explain the behavior of large population of
neurons (brain areas) from the perspective of the driving mechanism of the neuronal activities, that is the ion-exchange and
transportation dynamics in the cellular level. Different pathological trials and experiments have already revealed that changes in
ion concentration in brain regions could result in different brain dysfunction but the pathway of these phenomena is still unclear.

In this study we developed a biophysically inspired mean-field model for a network of all-to-all connected, locally
homogeneous Hodgkin–Huxley type neurons which are characterized by ion-exchange mechanism across the cellular space.
The intermediate approximation into the step wise quadratic function allowed to apply analytical formalism to the complex
Hodgkin–Huxley type equations and derive the distribution of membrane potential as Lorentzian distribution. The Lorentzian
ansatz makes the mean-field approximation to be analytically tractable, and from the simulation of network behavior of such
neurons it is evident that the mean-field model captures the dynamic behavior of the network, while being quite robust for
different distributions of heterogeneity and even for noise of small magnitude. This model relates the mechanism of the
biophysical activity of ion-exchange and ion channel transportation to the phenomenology of the whole brain dynamics.
The major characteristic feature of this model is the analytical bridging between intracellular and extracellular potassium
concentrations which in principal act as an adaptation (a biophysical regulation that changes the electrical activity of neurons,
acting on a relatively slow time scale), and fast electrical activities in different brain region demonstrated via brain imaging
of different modalities. Specifically, the derived model relates the slow scale biophysical mechanism of ion-exchange and
transportation in the brain to the fast scale electrical activities of large neuronal ensembles in terms of mean-field formalism of
the membrane potential.

Analysing the model, we found the extra-cellular potassium concentration (potassium bath) and heterogeneity of individual
neurons in the population to be two significant determinants of the dynamics. Together they take care of the biophysical state
of neuronal population (brain region) in terms of ion concentration and structural diversity. In principle these two factors are
major drivers of the neuronal dynamics and brain activities and successfully emerged from our simulations. Moreover, the
developed model demonstrates the coexistence of resting state brain dynamics and epileptic seizures depends on different
states of biophysical quantities and parameters. This aforementioned analytical formalism demonstrates a class of different
neural activities, such as the existence of up and down states during the healthy parametric regimes, which is the hallmark of
many mean-field representations of linear (Di Volo et al., 2019, Zerlaut et al., 2018) or quadratic integrate and fire neurons
(Coombes and Byrne, 2019, Montbrió et al., 2015), and rate models (Wong and Wang, 2006). Increasing the excitability in
terms of ion concentration, on the other hand leads to appearance of spike trains, tonic spiking, bursting, seizure-like events,
status epilepticus -like events, and depolarization block, similarly as in the epileptor (Jirsa et al., 2014, El Houssaini et al.,
2015b, El Houssaini et al., 2020). The mean-field approximation model links the high and low firing rate states (so called up
and down state) as well as spiking and bursting behaviors of electrical excitability in neuronal dynamics with the biophysical
state of neuronal ensemble (brain regions) in terms of the ion concentrations across the cellular space. The effect of different
kind of stimulus current is also analyzed and it is observed that even within the healthy regime, several stimulation, which
could either be an external stimuli or some input from some other brain regions, could generate transient spiking and bursting
activity in different brain regions. This result is particularly interesting in case of brain stimulation. For example several kind
brain stimulation in epileptic patients have already been found to generate epileptic seizures in pathological practice (Fisher and
Velasco, 2014, Kahane and Depaulis, 2010). Our results demonstrate that these phenomena could be analytically reproduced
and tracked. Therefore, we assume the derived model could potentially be applied to improve predictive capacities in several
type of brain disorders, and particularly in epilepsy.

Using conductance-based coupling between two neuronal masses we also demonstrated that a bursting population of neurons
can propagate bursting and spiking behavior to an otherwise healthy population. This result is validated by the symmetry
in qualitative behavior found in the simulation of the mean-field model and the corresponding network of Hodgkin–Huxley
type neurons. This could lead the path to understand how brain signals propagates as a coordinated phenomena depending
on the distribution of biophysical quantities and structural as well as architectural heterogeneity on the complex network
structure of the connectome. It would also be very interesting to study how this signal propagation varies among healthy
subjects and compared with patients with neurological disorders. For an example this model could serve as a computational
base line to understand the core question of epilepsy research that is how epileptic seizures propagate from epileptogenic
zone to propagation zone and to precisely identify these brain regions in terms of their biophysical states characterized by the
distribution of the relevant biophysical and pathological markers as well as structural properties.

Until now, mean-field models used in large scale network simulations like the Virtual Brain did not take into consideration
the extracellular space. This model is a first step towards the integration of biophysical processes that may play a key role
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in controlling network behavior. We have started with K+, given its known role on neuronal activity. Changes in K+ occur
when the brain alternates between arousal and sleep (Ding et al., 2016). Our model, once integrated in a whole brain model,
will allow studying such physiological mechanisms. Although a causal relationship is not clearly established, seizures and
spreading depression, which is assumed to underlie certain forms of migraine (Tottene et al., 2009, Vinogradova, 2018), are
associated with large (>6 mM) and very large (>12 mM) concentrations of K+ (Tottene et al., 2009, Hertz and Chen, 2016).
The extracellular concentration of K+ is tightly controlled by astrocytes (Breslin et al., 2018,Nwaobi et al., 2016,Hansson et al.,
2000). Most large-scale simulations do not integrate astrocytes, which make half of brain cells (Hansson et al., 2000, Breslin
et al., 2018). Their functions are altered in most, if not all, brain disorders, in particular epilepsy (Bedner and Steinhäuser,
2013, Crunelli et al., 2015). Our approach allows formalizing the astrocytic control of extracellular K+. Other ion species
also vary during arousal/sleep and seizures, in particular Ca2+ (Ding et al., 2016, Pocock and Kettenmann, 2007, Auld and
Robitaille, 2003, Fernandez-Chacon et al., 2001). A decrease in Ca2+ will decrease neurotransmission and thus change cell to
cell communication (Pocock and Kettenmann, 2007, Auld and Robitaille, 2003, Fernandez-Chacon et al., 2001). Future studies
are needed to integrate Ca2+ in neural mass models (NMM).

Our mean-field derivation aggregates a large class of brain activities and behavior patterns into a single neural mass model,
with direct correspondence to biologically relevant parameters. This paves the road for brain network models with bottom-up
approach incorporating the regional heterogeneity that stems from the structural data features. We believe that mean-field
formalism addressing the biophysical information across neurons will tell us more interesting things about the relation of
different dynamics of the brain with its biophysical parameters. This would eventually lead to identifying pathologically
measurable bio-markers for large scale brain activities and consequently offering therapeutic targets for different brain
dysfunctions.
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