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Deep Surface Reconstruction from Point Clouds with Visibility Information

Most current neural networks for reconstructing surfaces from point clouds ignore sensor poses and only operate on raw point locations. Sensor visibility, however, holds meaningful information regarding space occupancy and surface orientation. In this paper, we present two simple ways to augment raw point clouds with visibility information, so it can directly be leveraged by surface reconstruction networks with minimal adaptation. Our proposed modifications consistently improve the accuracy of generated surfaces as well as the generalization ability of the networks to unseen shape domains.

I. INTRODUCTION

The problem of reconstructing a watertight surface from a point cloud has recently been addressed by a variety of deep learning based methods. Compared to traditional approaches, deep surface reconstruction (DSR) can learn shape priors [START_REF] Park | DeepSDF: Learning continuous signed distance functions for shape representation[END_REF], [START_REF] Mescheder | Occupancy networks: Learning 3D reconstruction in function space[END_REF] and leverage shape similarities [START_REF] Hanocka | Point2Mesh: A self-prior for deformable meshes[END_REF] to complete missing parts [START_REF] Dai | SG-NN: Sparse generative neural networks for self-supervised scene completion of RGB-D scans[END_REF], filter outliers, or smoothen noise in defect-laden point clouds. DSR methods, however, often derive priors from training datasets with few shape classes, generalizing poorly to unseen categories or datasets. Learning more local priors improves consistency across different objects or scenes [START_REF] Jiang | Local implicit grid representations for 3D scenes[END_REF], [START_REF] Sulzer | Scalable surface reconstruction with delaunay-graph neural networks[END_REF] but may result in higher sensitivity to noise or other defects. Besides, lack of global context complicates surface orientation.

For real world point clouds, usually acquired via active or passive methods such as LiDAR scanning or multi-view stereo (MVS), the sensor position can be known and used to relate each observed point with a line of sight. Such visibility information can then help to orient surface normals [START_REF] Schertler | Towards globally optimal normal orientations for large point clouds[END_REF] or predict occupancy [START_REF] Labatut | Robust and efficient surface reconstruction from range data[END_REF], [START_REF] Vu | High accuracy and visibility-consistent dense multiview stereo[END_REF], [START_REF] Jancosek | Multi-view reconstruction preserving weakly-supported surfaces[END_REF]. While visibility is key for MVS, it has largely been ignored by DSR methods. In fact, sensor positions are usually not given in reconstruction benchmarks from point clouds. To remedy this, we consider virtual scanning rather than uniform sampling, and we show that many DSR methods can easily be adapted to benefit from visibility (cf. Figure 1). Our main contributions are as follows:

• We propose two simple ways to add visibility information to 3D point clouds, and we detail how to adapt DSR methods to utilize them, with very little changes.

• Using synthetic and real data, at object and scene level, we show for a wide range of state-of-the-art DSR methods that models leveraging visibility reconstruct higherquality surfaces and are more robust to domain shifts. Incidentally, our benchmarks also allow us to compare a range of recent state-of-the-art DSR methods on the same ground. Fig. 1. Surface Reconstruction with Visibility Information. We augment each 3D point with a sightline vector pointing towards the sensor observing it. Additionally, two auxiliary points are placed before and after the observed point along the sightline. This allows DSR networks, with very little modification, to reconstruct a significantly more accurate surface.

II. RELATED WORK

Many traditional surface reconstruction methods use visibility information [START_REF] Labatut | Robust and efficient surface reconstruction from range data[END_REF], [START_REF] Vu | High accuracy and visibility-consistent dense multiview stereo[END_REF], [START_REF] Jancosek | Multi-view reconstruction preserving weakly-supported surfaces[END_REF], [START_REF] Caraffa | 3D watertight mesh generation with uncertainties from ubiquitous data[END_REF], [START_REF] Bódis-Szomorú | Efficient volumetric fusion of airborne and street-side data for urban reconstruction[END_REF], [START_REF] Jancosek | Exploiting visibility information in surface reconstruction to preserve weakly supported surfaces[END_REF], [START_REF] Zhou | Detail preserved surface reconstruction from point cloud[END_REF]. They are usually based on a 3D Delaunay tetrahedralization, which is intersected with lines of sight to attribute visibility features to Delaunay cells. While such methods can scale to billions of points [START_REF] Caraffa | Efficiently distributed watertight surface reconstruction[END_REF] and are robust to moderate levels of noise and outliers, they do not incorporate learned shape priors.

In contrast, recent DSR methods have shown to produce more accurate surfaces than traditional approaches, especially for shape categories encountered during training. Many DSR methods use an implicit surface representation, either based on occupancy [START_REF] Mescheder | Occupancy networks: Learning 3D reconstruction in function space[END_REF], [START_REF] Chen | Learning implicit fields for generative shape modeling[END_REF], [START_REF] Chabra | Deep local shapes: Learning local SDF priors for detailed 3D reconstruction[END_REF], or on the distance to the surface, whether it is signed [START_REF] Park | DeepSDF: Learning continuous signed distance functions for shape representation[END_REF], [START_REF] Chabra | Deep local shapes: Learning local SDF priors for detailed 3D reconstruction[END_REF], [START_REF] Michalkiewicz | Implicit surface representations as layers in neural networks[END_REF], [START_REF] Gropp | Implicit geometric regularization for learning shapes[END_REF] or unsigned [START_REF] Atzmon | SAL: Sign agnostic learning of shapes from raw data[END_REF], [START_REF] Chibane | Implicit functions in feature space for 3D shape reconstruction and completion[END_REF], [START_REF] Atzmon | SALD: sign agnostic learning with derivatives[END_REF], [START_REF] Zhao | Sign-agnostic implicit learning of surface self-similarities for shape modeling and reconstruction from raw point clouds[END_REF] of convolutions are used, either on regular grids [START_REF] Dai | SG-NN: Sparse generative neural networks for self-supervised scene completion of RGB-D scans[END_REF], [START_REF] Jiang | Local implicit grid representations for 3D scenes[END_REF], [START_REF] Chibane | Neural unsigned distance fields for implicit function learning[END_REF], [START_REF] Peng | Convolutional occupancy networks[END_REF], [START_REF] Tang | SA-ConvONet: Sign-agnostic optimization of convolutional occupancy networks[END_REF], directly on points [START_REF] Ummenhofer | Adaptive surface reconstruction with multiscale convolutional kernels[END_REF], [START_REF] Boulch | POCO: Point convolution for surface reconstruction[END_REF] or via an MLP instead [START_REF] Erler | Points2Surf: Learning implicit surfaces from point clouds[END_REF]. Other methods rather use an explicit surface representation such as a mesh, which is deformed [START_REF] Hanocka | Point2Mesh: A self-prior for deformable meshes[END_REF] or whose elements classified [START_REF] Sulzer | Scalable surface reconstruction with delaunay-graph neural networks[END_REF], [START_REF] Sharp | pointtrinet: Learned triangulation of 3d point sets[END_REF].

A key issue is to get a sense of surface point orientation, to choose between reconstructing a thin volume (two main opposite orientations) or a thicker one (one main orientation at void-matter interface). Some methods dismiss the orientation issue by requiring oriented normals as input [START_REF] Jiang | Local implicit grid representations for 3D scenes[END_REF], [START_REF] Ummenhofer | Adaptive surface reconstruction with multiscale convolutional kernels[END_REF], [START_REF] Kazhdan | Screened Poisson surface reconstruction[END_REF], [START_REF] Williams | Neural splines: Fitting 3d surfaces with infinitely-wide neural networks[END_REF], albeit producing such normals is a challenging task in itself [START_REF] Schertler | Towards globally optimal normal orientations for large point clouds[END_REF], [START_REF] König | Consistent propagation of normal orientations in point clouds[END_REF], [START_REF] Metzer | Orienting point clouds with dipole propagation[END_REF]. We show that oriented normals can be advantageously replaced by visibility information.

Only few deep-learning methods make use of visibility information, typically from multiple views with camera pose information. RayNet [START_REF] Paschalidou | Raynet: Learning volumetric 3d reconstruction with ray potentials[END_REF] aggregates features from pixels of different views that intersect in the same voxel, but it outputs a dense point cloud, not a watertight surface mesh. Neural radiance fields [START_REF] Mildenhall | NeRF: Representing scenes as neural radiance fields for view synthesis[END_REF], [START_REF] Oechsle | Unisurf: Unifying neural implicit surfaces and radiance fields for multi-view reconstruction[END_REF] somehow also model the free space between a point and its sensor. They, however, generally assume numerous and dense views (i.e., images), and leverage little or no shape priors. We argue that DGNN [START_REF] Sulzer | Scalable surface reconstruction with delaunay-graph neural networks[END_REF], that classifies Delaunay cells with a graph neural network, currently is the only general DSR method from point clouds with visibility. However, DGNN relies on handcrafted visibility features requiring substantial geometry processing, while, we propose to directly augment the input point clouds. For point clouds for which visibility information is not available, Vis2Mesh [START_REF] Song | Vis2mesh: Efficient mesh reconstruction from unstructured point clouds of large scenes with learned virtual view visibility[END_REF] shows that rendering virtual views and learning point sensor visibility can significantly improve the reconstruction quality of a traditional method.

III. METHOD

We consider a 3D point cloud P where each point p ∈ P has some coordinates X p ∈ R 3 and knows the position S p ∈ R 3 of a sensor observing it. Instead of only using the raw point coordinates (X p ) p∈P as the input (I p ) p∈P of a DSR network, we propose two simple ways to augment point cloud P with visibility information, and adapt DSR methods accordingly.

A. Sightline Vector (SV)

For each p ∈ P , we define a unit vector v p pointing from the observation X p to the sensor S p : v p = (S p -X p )/ S p -X p . This contains useful information for surface orientation. We normalize the vector as the distance to the sensor is not as relevant as the viewing angle.

B. Auxiliary Points (AP)

To help the network predict empty and full space immediately in front of and behind the observed surface, we consider two auxiliary points to each point p: a before-point p b and an after-point p a , located along the sightline on each side of p: X p b = X p +dv p , X pa = X p -dv p , where d is a characteristic distance in the point cloud P , e.g., the average distance from a point to its nearest neighbor. By construction, p b is likely outside the scanned object or scene (modulo sensing noise and outliers), and p a , likely inside (modulo object thickness too).

C. Visibility-Augmented Point Cloud

We use sightline vectors and auxiliary points to add visibility information to an input point cloud, separately or together. (SV) To use sightline information only, we simply concatenate the sightline vector channelwise to the point coordinates to form the network input:

I p = (X p ⊕ v p ) ∈ R 6 .
(AP) To use auxiliary points only, we add before-points p b and after-points p a to P , with tags t ∈ R 2 concatenated to point coordinates to identify the point type, i.e., I q = (X q ⊕ t q ) ∈ R 5 with q ∈ {p, p b , p a }, where t p = [0 0] (observed point),

t p b = [1 0] (before-point), or t pa = [0 1] (after-point).
(SV+AP) When combining both kinds of visibility information, before-points p b and after-points p a are given the same sightline vector as their reference point, i.e., v p b = v pa = v p , and we take as input I p = (X p ⊕ v p ⊕ t p ) ∈ R 8 . While holding a similar kind of information, no augmentation can be reduced to the other one. SVs alone are not enough to place APs, and APs alone, as they are not associated to their observed point in P , cannot determine SVs (cf. Figure 2).

D. Modifying an Existing Architecture

We can adapt most DSR networks to handle visibilityaugmented point clouds with only few modifications:

• We change the input size (number of channels) of the first layer of the network (generally an encoder), increasing it by 2, 3 or 5, depending on the augmentation.

• We directly add auxiliary points to the point cloud, thus tripling the number of input points. For methods based on neighboring point sampling, we add auxiliary points after sampling for more efficiency. The batch size may need to be adjusted to fit a larger point cloud in memory, but the rest of the network stays unchanged. Its size is mostly unaltered (e.g., +0.005% for ConvONet [START_REF] Peng | Convolutional occupancy networks[END_REF]).

IV. EXPERIMENTS

To assess our proposal, we first detail our simple adaptation of six different DSR baseline networks to leverage our visibility information, then compare the quality of the reconstructed surfaces and analyze the generalization ability of the networks. A. DSR Baselines 1) ConvONet [START_REF] Peng | Convolutional occupancy networks[END_REF]: This method first extracts point features and projects them on three 2D grids, or one 3D grid (variant). 2D or 3D grid convolutions then create features capturing local occupancy. Last, the occupancy of a query-point is estimated after interpolating grid features. We consider the 3 × 64 2 2Dplane encoder and the 64 3 3D-volume variant. To adapt them, we change the input size of the point encoder's first layer.

2) Points2Surf [START_REF] Erler | Points2Surf: Learning implicit surfaces from point clouds[END_REF]: This method predicts both the occupancy of a query point and its unsigned distance to the surface. It uses both a local query-point neighborhood and a global point-cloud sampling. We use the best-performing variant (uniform global sampling, no spatial transformer). To adapt it, we increase the input size of the first layer of both the local and global encoders, and when a point is sampled, locally or globally, we add its two auxiliary points on the fly.

3) Shape As Points [START_REF] Peng | Shape as points: A differentiable poisson solver[END_REF]: For each input point, the method estimates its normal as well as k point offsets that are used to correct and densify the point cloud. The resulting point cloud of size k|P | is then fed to a differentiable Poisson solver [START_REF] Kazhdan | Screened Poisson surface reconstruction[END_REF]. To adapt the method, we change the input size of the first layer of the encoder, and of the normal and offset decoders as they also input the point cloud. We directly add auxiliary points as input, whose normal and offsets will thus be computed too.

4) Local Implicit Grids (LIG) [START_REF] Jiang | Local implicit grid representations for 3D scenes[END_REF]: This method trains an auto-encoder from dense point cloud patches. For inference, a given sparse patch with oriented normals is first augmented, close to our idea, with 10 new points along each normal; then reconstruction uses latent vectors minimizing a decoder-based training loss, and a post-processing removes falsely-enclosed volumes. As training code is unavailable, we use the model pretrained on ShapeNet (without noise). For oriented normals, we use Jets [START_REF] Cazals | Estimating differential quantities using polynomial fitting of osculating jets[END_REF] oriented with a minimum spanning tree [START_REF] Schertler | Towards globally optimal normal orientations for large point clouds[END_REF], as in [START_REF] Zhao | Sign-agnostic implicit learning of surface self-similarities for shape modeling and reconstruction from raw point clouds[END_REF]. To exploit visibility, we replace normals with sightline vectors; we do not add (more) auxiliary points.

5) POCO [START_REF] Boulch | POCO: Point convolution for surface reconstruction[END_REF]: This method extracts point features using point cloud convolution [START_REF] Boulch | Convpoint: Continuous convolutions for point cloud processing[END_REF], then estimates the occupancy of a query point with a learning-based interpolation on nearest neighbors. To adapt it, we increase the input size of the first layer and add auxiliary points on the fly only in the first layer.

6) DGNN [START_REF] Sulzer | Scalable surface reconstruction with delaunay-graph neural networks[END_REF]: This method uses a graph neural network to estimate the occupancy of Delaunay cells in a point cloud tetrahedralization. A graph-cut-based optimization then reinforces global consistency. The method, which already uses visibility, outperforms other traditional reconstruction methods that use visibility information. As it already exploits visibility, we do not alter it, but use it as baseline for comparison.

For all methods, unless otherwise stated, training and evaluation are unchanged; we keep the value of the hyperparameters used in the original papers. When Marching cubes [START_REF] Lorensen | Marching cubes: A high resolution 3D surface construction algorithm[END_REF] are needed for surface extraction, we use a grid resolution of 128 3 .

B. Datasets

We consider a variety of object and scene datasets, both synthetic and real, to show the versatility of our approach.

1) ModelNet10: We use the official train/test splits of all 10 object classes of ModelNet10 [START_REF] Wu | 3d shapenets: A deep representation for volumetric shapes[END_REF]. We hold out 10% of the train set for validation. We synthetically scan the models by placing 10 random range scanners in two bounding spheres around the objects and shooting random rays to a sphere inscribed within the convex hull of the object. We sample 3 000 points per object and add Gaussian noise with zero mean and standard deviation 0.005 as in [START_REF] Peng | Convolutional occupancy networks[END_REF].

2) ShapeNet: We study the generalizability of models trained on ModelNet10 by testing on 100 shapes per class from the ShapeNet [START_REF] Chang | ShapeNet: an information-rich 3D model repository[END_REF] test set of Choy et al. [START_REF] Choy | 3D-R2N2: A unified approach for single and multi-view 3D object reconstruction[END_REF] (9 out of 13 classes are not represented in ModelNet10). We use the same scanning procedure as for ModelNet10.

3) Synthetic Room: We use the train/val/test splits of Synthetic Rooms [START_REF] Peng | Convolutional occupancy networks[END_REF]. For virtual scanning, we only place sensors in the upper hemispheres, and scan 10 000 points as in [START_REF] Peng | Convolutional occupancy networks[END_REF].

4) SceneNet: We test on a few synthetic scenes of SceneNet [START_REF] Handa | SceneNet: An annotated model generator for indoor scene understanding[END_REF] using the given virtual scans, voxel-decimated to 1 cm.

5) ScanNet:

We test on a few real scenes of ScanNet [47] using the provided real RGB-D scans, voxel-decimated to 2 cm.

6) Tanks and Temples: We use the real LiDAR point cloud of the Ignatius statue from the Tanks and Temples dataset [START_REF] Knapitsch | Tanks and Temples[END_REF].

7) Middlebury: We use an MVS point cloud of the Temp-leRing from Middlebury [START_REF] Seitz | A comparison and evaluation of multi-view stereo reconstruction algorithms[END_REF], made with OpenMVS [START_REF] Cernea | OpenMVS: Multi-view stereo reconstruction library[END_REF].

C. Metrics

We report volumetric intersection over union (IoU), mean Chamfer distance ×100 (CD) and normal consistency (NC).

D. Ablation Study

To validate our design, we compare in Table I various ways to add visibility information to the vanilla model of ConvONet.

Independently, SVs and APs significantly improve performance (+1.8 and +2.8 IoU pts). A reason why APs are more profitable could be that the network is tailored for points, not points with sightline features. While SVs and APs capture a similar kind of information, they are, however, complementary: combining them is even more beneficial (+3.5 IoU pts). Our general interpretation is that SVs help to decide whether a locally "thin" point cloud is to be considered as a noisy scan of a single surface, or as a (less noisy) scan on both sides of a thin surface. They thus have an impact on local shape topology, which can bring a notable gain. Auxiliary points convey similar information, but also contribute more directly to refine the surface position. Replacing SVs by the sensor position or by the unnormalized point-sensor vector gives essentially the same performance than our unit vector. This can be explained by the fact that our scanning procedure does not introduce significant variation in terms of distance to the sensor. Yet, for real world acquistions, with a larger range of sensor distances, normalizing the SV ensures more stability. Adding SVs outperforms estimated normals [START_REF] Cazals | Estimating differential quantities using polynomial fitting of osculating jets[END_REF] with estimated orientation [START_REF] Schertler | Towards globally optimal normal orientations for large point clouds[END_REF], and even estimated normals with sensorbased orientation. While using ground-truth normals is slightly more beneficial than SVs, combining SV+AP yields the best overall performance, which highlights the richness of our visibility information.

We also experiment with adding more than two auxiliary points: (i) at distance 0.5d or 2d, (ii) at the midpoint between sensor and point, or (iii) as grazing points, estimated by densely sampling the sightlines with auxiliary points and keeping the ones close to an input point. None of these strategies brought significant improvements over adding two points at distance d on both sides of the real point.

E. Object-Level Reconstruction

Table II reports the performance on ModelNet10 of various models, with and without sightline vectors or auxiliary points.

ConvONet (both planar and volumetric) gains about +3 IoU pts with visibility information. The resulting surface is more accurate, especially in concave parts, as illustrated in Figure 3.

Points2Surf improves with sightline vectors, but auxiliary points do not improve further: the sensor vectors are enough to resolve ambiguities for the occupancy estimation, but distance estimation does not further benefit from auxiliary points.

Shape As Points benefits from sightline vectors, although not as much as other methods, probably because the model also estimates normals which provide a similar information as visibility. Still, adding auxiliary points further gains +0.6 IoU pts, yielding more complete and smoother surfaces. POCO similarly benefits +1 IoU pts from sightline vectors but not much from the further addition of auxiliary points. While sightline vectors help for surface orientation, POCO is already accurate enough for APs to bring little refinement.

LIG produces poor results, likely because the only available model is trained on ShapeNet, with uniform sampling, little or no noise, and because oriented normals are only estimated. We cannot report IoU because LIG's post-processing creates holes in some objects. Yet, replacing the estimated normals by sightline vectors improves the predicted surface.

DGNN, which already exploits visibility and outperforms ConvONet-2D and Points2Surf, is outdistanced on this dataset by methods that use our augmented point clouds.

Running time is mostly unaffected when adding sightline vectors. The effect of auxiliary points depends on the method. For ConvONet and POCO, it is negligible (< +2%); running time is × 2.25 for Points2Surf and × 1.25 for Shape As Points.

F. Scene-Level Reconstruction

To study the impact of visibility information at scene level, we train and test ConvONet on Synthetic Rooms, in slidingwindow mode [START_REF] Peng | Convolutional occupancy networks[END_REF]. We report quantitative results in Table III and qualitative results in the supplementary material. The model gains almost +3 IoU pts with visibility information, showing that benefits scale to scenes, not just objects. 

G. Generalization to New Domains

To evaluate the impact of added visibility on the generalization capability of DSR methods, we train on ModelNet10 and test on ShapeNet (Table IV).

We observe that ConvONet, Shape As Points and POCO trained with visibility information generalize much better on the new objects and classes, with a gain up to +44 IoU pts. For comparison, we also show the scores of official models trained on ShapeNet, although trained on uniformly sampled points rather than virtual scans, which explains the drop of performance compared to the numbers in the papers [START_REF] Peng | Convolutional occupancy networks[END_REF], [START_REF] Peng | Shape as points: A differentiable poisson solver[END_REF]. Points2Surf also improves by up to +3 IoU pts with added sightline vectors, but not further with APs.

The increased generalization capability of the models is also validated when reconstructing surfaces from real-world scans obtained with LiDAR or MVS. In Figures 4 and5, we show that networks using visibility information can reconstruct a more accurate and more complete surface. The reason for the largely improved volumetric IoU when using visibility information is illustrated in Figure 6. For out-of-domain reconstructions, the baseline methods often predict hollow shapes, i.e., empty space enclosed inside an object. This leads to backfaces behind the real surface and a poor volumetric IoU. On the contrary, our models, trained on visibility-augmented point clouds, learn to distinguish between empty and full space more reliably and do not produce such artifacts.

V. LIMITATIONS AND PERSPECTIVES

The position of auxiliary points depends on parameter d, which is the average distance, across the whole scene, from a point to its nearest neighbor. To better handle point density variations, it could be set locally rather than globally. Besides, as this positioning is also sensitive to sampling noise, d could also be directly adjusted after noise estimation.

Our current approach only associates each point with a single sensor, while MVS points typically have several. A more efficient and versatile approach than simply duplicating sightlines is still an open issue.

Last, we resort to virtual scans because current 3D reconstruction benchmarks do not provide sensor positions. While we show that using our augmented point clouds allows common architectures to successfully generalize from virtual to real scenes, our training set may fail to replicate some challenging configurations encountered using actual sensors.

VI. CONCLUSION

The sensor poses are often ignored in point cloud processing, even though available with most acquisition technologies. We present two straightforward ways to exploit sensor positions to augment point clouds with visibility information. Our experiments show that various deep surface reconstruction methods can be adapted with minimal effort to exploit these visibility-augmented point clouds, resulting in improved accuracy and completeness of reconstructed surfaces, as well as a substantial increase in generalization capability.

VIII. METRICS

We evaluate the quality of reconstructions with the volumetric IoU (IoU), symmetric Chamfer distance (CD) and normal consistency (NC).

Let M G be the ground truth mesh and M P be the reconstructed mesh. The volumetric IoU is defined as:

IoU (M G , M P ) = volume(M G ∩ M P ) volume(M G ∪ M P ) ,
We approximate volumetric IoU by sampling 100, 000 points in the union of the bounding boxes of M G and M P .

To compute the Chamfer distance and normal consistency, we sample a set of points S G on the ground-truth mesh and a set of points S P on the reconstructed mesh with |S G | = |S P | = 100, 000. We approximate the two-sided Chamfer distance between M G and M P as follows:

CD(M G , M P ) = 1 2|S G | x∈S G min y∈S P ||x -y|| 2 + 1 2|S P | y∈S P min x∈S G ||y -x|| 2
Let n(x) be the unit normal associated to a point x taken on a mesh, and •,• the Euclidean scalar product in R 3 . Normal consistency is defined as:

NC(M G , M P ) = 1 2|S G | x∈S G n(x), n argmin y∈S P ||x -y|| 2 + 1 2|S P | y∈S P n(y), n argmin x∈S G ||y -x|| 2

IX. ADDITIONAL RESULTS

A. Runtimes

In Table V, we report detailed runtimes for the tested methods, with and without visibility information.

Adding sightline vectors does not significantly increase the runtime for any of the tested methods. The effect of auxiliary points depends on the method. For ConvONet, most of the processing time is spent computing grid features. The encoding of 3d points is performed by a small PointNet network [START_REF] Qi | Pointnet: Deep learning on point sets for 3d classification and segmentation[END_REF], whose runtime is only a small fraction of the total time. As a consequence, adding APs does not incur significant changes in computation time. In contrast, Points2Surf uses a large point encoding network and is 2.2 times slower with APs. Shape As Points is 1.3 times slower due to the fact that we decode 3 times as many points as the baseline method. POCO is also essentially unaffected by the addition of auxiliary points as they only impact the first (small) layer of the point-convolution backbone. 

B. DTU Dataset

In Figure 8, we show the reconstruction of an MVS point cloud, generated with OpenMVS, of scan1 from the DTU dataset [START_REF] Jensen | Large scale multi-view stereopsis evaluation[END_REF]. The point cloud represents an open scene, while all methods were trained on the closed ModelNet10 objects. The methods using our augmented point clouds with visibility information cope much better with this domain shift.

C. ShapeNet

We show the results of object-level reconstruction on ShapeNet in Figure 9 from methods trained on ModelNet10. All methods benefit from added visibility information. In particular, ConvONet produces very accurate and complete surfaces of the unseen shape classes.

A common problem for most baseline methods is the false reconstruction of hollow shapes with enclosed outside space. Using visibility information can address this issue and the artifacts then do not occur.

D. ModelNet10

In Figure 10, we represent additional results of object-level reconstruction on ModelNet10. Concave parts of the objects are frequently reconstructed more accurately by methods using point clouds with visibility information. Surfaces also tend to be more complete when visibility information is used.

E. Synthetic Rooms Dataset

In Figure 11, we show the reconstruction results of Conv-ONet on Synthetic Rooms, with and without visibility information. In contrast to [START_REF] Peng | Convolutional occupancy networks[END_REF], we evaluate in sliding window mode, which explains the difference with figures in [START_REF] Peng | Convolutional occupancy networks[END_REF]. Improvements here are visually not as obvious as with other datasets. ConvONet [START_REF] Peng | Convolutional occupancy networks[END_REF] (+SV+AP) 

  (a) Reconstruction using only the points position. (b) Reconstruction with visibility augmented point cloud.

Fig. 2 .

 2 Fig. 2. Visibility-Augmented Point Cloud. Each observed point is associated to a sightline unit vector pointing towards its sensor. Two new points before and after each point are added. They help to disambiguate occupancy.

Fig. 3 .

 3 Fig. 3. Object-Level Reconstruction. Reconstructed shapes from the ModelNet10 test set using four different DSR methods trained on ModelNet10. Top rows of each object use the bare point cloud as input, and bottom rows use the point cloud augmented with visibility information.

Fig. 4 .

 4 Fig. 4. Out-of-Domain Scene-Level Reconstruction. POCO trained on ModelNet10, with and without visibility information, is run on scenes from SceneNet (synthetic RGB-D scan) and ScanNet (real RGB-D scan).
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 56 Fig. 5. Out-of-Domain Object-Level Reconstruction. Reconstructed shapes from a LiDAR point cloud (top, Ignatius from Tanks And Temples) and a MVS point cloud (bottom, TempleRing from Middlebury) using four different DSR methods trained on ModelNet10. Top rows of each object use the bare point cloud as input, and bottom rows use the point cloud augmented with visibility information. HD Scan is a high-density point cloud.

Fig. 8 .

 8 Fig. 8. Out-of-Domain Object-Level Reconstruction. Reconstructed shape from a MVS point cloud of scan1 from DTU, using four different DSR methods trained on ModelNet10. The top row uses the bare point cloud as input, and the bottom row uses the point cloud augmented with visibility information. HD Scan is a high-density point cloud.
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 910 Fig. 9. Object-Level Reconstruction on ShapeNet. Reconstructed shapes from the ShapeNet test set using four different DSR methods trained on ModelNet10. Top rows of each object use the bare point cloud as input, and bottom rows use the point cloud augmented with visibility information. The last two rows show a cut of the reconstructions that are shown on the two other rows immediately above.

Fig. 11 .

 11 Fig.11. Scene-Level Reconstruction on Synthetic Rooms. Reconstructed scenes of the synthetic room dataset using ConvONet[START_REF] Peng | Convolutional occupancy networks[END_REF] in sliding-window mode, with and without visibility information.

TABLE I

 I ABLATION STUDY. The vanilla model of ConvONet trained and tested on ModelNet10 with different ways to add visibility or normal information.

	Model	SV	AP IoU ↑
	ConvONet-2D (3 × 64 2 ) [25]		0.853
	+ sightline vectors (SV) only		0.871
	+ auxiliairy points (AP) only		0.881
	+ both SV and AP		0.886
	+ sensor position	Sp	0.870
	+ unnormalized SV	Sp -Xp	0.870
	+ estim. normals / estim. orientation Jets [40] / MST [7]	0.853
	+ estim. normals / sensor orientation Jets [40] / sensor-based [7] 0.868
	+ true normals	GT normals	0.879

TABLE II

 II OBJECT-LEVEL RECONSTRUCTION. DSR methods trained and tested on ModelNet10, with and without sightline vectors (SV) or auxiliary points (AP). † Trained on ShapeNet.

	Model	SV AP IoU ↑ CD ↓	NC ↑
	ConvONet-2D [25]	0.853	0.618	0.934
	ConvONet-2D [25]	0.871	0.557	0.936
	ConvONet-2D [25]	0.886	0.518	0.943
	ConvONet-3D [25]	0.885	0.493	0.949
	ConvONet-3D [25]	0.911	0.424	0.956
	ConvONet-3D [25]	0.913	0.423	0.957
	Points2Surf [29]	0.842	0.590	0.890
	Points2Surf [29]	0.859	0.544	0.896
	Points2Surf [29]	0.856	0.548	0.897
	Shape As Points [39]	0.903	0.438	0.948
	Shape As Points [39]	0.907	0.430	0.950
	Shape As Points [39]	0.913	0.414	0.953
	POCO [28]	0.907	0.422	0.945
	POCO [28]	0.915	0.408	0.950
	POCO [28]	0.917	0.406	0.950
	† LIG [5]	-	0.974	0.849
	† LIG [5]	-	0.880	0.882
	DGNN [6]	0.866	0.543	0.884

TABLE III SCENE

 III -LEVEL RECONSTRUCTION. ConvONet trained and tested in sliding-window mode on Synthetic Rooms.

	ConvONet-3D [25]	0.805 0.598 0.906
	ConvONet-3D [25]	0.832 0.569 0.911

Model

SV AP IoU ↑ CD ↓ NC ↑

TABLE IV OUT

 IV -OF-DOMAIN OBJECT-LEVEL RECONSTRUCTION. DSR methods trained on ModelNet10 and tested on ShapeNet, with and without sightline vectors (SV) or auxiliary points (AP). † Trained on ShapeNet.

	Model	SV AP IoU ↑ CD ↓ NC ↑
	† ConvONet-2D [25]	0.852	0.560	0.929
	ConvONet-2D [25]	0.685	0.979	0.878
	ConvONet-2D [25]	0.667	1.042	0.833
	ConvONet-2D [25]	0.750	0.891	0.878
	ConvONet-3D [25]	0.628	0.972	0.885
	ConvONet-3D [25]	0.759	0.724	0.905
	ConvONet-3D [25]	0.854	0.554	0.925
	Points2Surf [29]	0.807	0.561	0.876
	Points2Surf [29]	0.836	0.516	0.886
	Points2Surf [29]	0.833	0.522	0.887
	† Shape As Points [39]	0.838	0.577	0.923
	Shape As Points [39]	0.494	0.997	0.859
	Shape As Points [39]	0.749	0.843	0.881
	Shape As Points [39]	0.821	0.617	0.919
	POCO [28]	0.391	1.119	0.839
	POCO [28]	0.832	0.618	0.901
	POCO [28]	0.815	0.635	0.887
	DGNN [6]	0.844	0.549	0.854

TABLE V

 V RUNTIMES FOR OBJECT-LEVEL RECONSTRUCTION. Average times (in seconds) for reconstructing one object from a point cloud of 3 000 points with and without sightline vectors (SV) or auxiliary points (AP). MC is marching cubes. Times are averaged over the ModelNet10 test set.

	Model	SV AP Encoding Decoding	MC	Total
	ConvONet-2D [25]	0.016	0.25	0.17	0.44
	ConvONet-2D [25]	0.016	0.27	0.17	0.47
	ConvONet-2D [25]	0.016	0.26	0.17	0.45
	Points2Surf [29]	69.06		11.51	80.57
	Points2Surf [29]	71.92		11.35 83.27
	Points2Surf [29]	173.2		11.41 184.7
	Shape As Points [39]	0.022	0.017	0.047	0.088
	Shape As Points [39]	0.023	0.017	0.046 0.086
	Shape As Points [39]	0.024	0.041	0.047 0.114
	POCO [28]	0.088	13.72	0.33	15.74
	POCO [28]	0.091	13.68	0.33	15.66
	POCO [28]	0.093	13.70	0.33	15.67

https://s3.eu-central-1.amazonaws.com/avg-projects/occupancy networks/ data/watertight.zip

https://s3.eu-central-1.amazonaws.com/avg-projects/convolutional occupancy networks/data/room watertight mesh.zip
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SUPPLEMENTARY MATERIAL

In this supplementary document, we first provide additional information about the datasets that we use (Section VII), formal definitions of the evaluation metrics (Section VIII) and additional quantitative and qualitative results (Section IX). Our code, data and pretrained models can be found online: https://github.com/raphaelsulzer/dsrv-data .

VII. DATASETS A. Scanning procedure

In Figure 7, we represent a visualization of our scanning procedure. Viewpoints and ray target points are uniformly sampled on the surface of the spheres. Fig. 7. Scanning Procedure. We randomly place sensors on two spheres (red and blue) around the object, and consider rays aiming at uniformly sampled points on a sphere inscribed in the convex hull of the object (green).

B. ModelNet

We use the official ModelNet10 dataset and make the models watertight using ManifoldPlus [START_REF] Huang | Manifoldplus: A robust and scalable watertight manifold surface generation method for triangle soups[END_REF]. We scan the watertight models using the procedure described above.

C. ShapeNet

We use the watertight models provided 1 by the authors of Occupancy Networks [START_REF] Mescheder | Occupancy networks: Learning 3D reconstruction in function space[END_REF] and scan the models using the procedure described above. We apply a transformation to the models (and scans) to match their orientation to the orientation of the ModelNet10 objects (except for networks marked with † in Table IV, which were trained with the original orientation).

D. Synthetic Rooms Dataset

We use the watertight scenes provided 2 by the authors of ConvONet [START_REF] Peng | Convolutional occupancy networks[END_REF]. We scan the scenes using the procedure described above, limiting the sensors to lie in the upper hemisphere only.

E. Tanks And Temples, Middlebury and DTU

For the reconstructions in Figure 5, 6 and Figure 8, we downsample the input point clouds to 10,000 points.