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Abstract—Most current neural networks for reconstructing
surfaces from point clouds ignore sensor poses and only op-
erate on raw point locations. Sensor visibility, however, holds
meaningful information regarding space occupancy and surface
orientation. In this paper, we present two simple ways to augment
raw point clouds with visibility information, so it can directly
be leveraged by surface reconstruction networks with minimal
adaptation. Our proposed modifications consistently improve the
accuracy of generated surfaces as well as the generalization
ability of the networks to unseen shape domains.

I. INTRODUCTION

The problem of reconstructing a watertight surface from a
point cloud has recently been addressed by a variety of deep
learning based methods. Compared to traditional approaches,
deep surface reconstruction (DSR) can learn shape priors [1],
[2] and leverage shape similarities [3] to complete missing
parts [4], filter outliers, or smoothen noise in defect-laden
point clouds. DSR methods, however, often derive priors from
training datasets with few shape classes, generalizing poorly
to unseen categories or datasets. Learning more local priors
improves consistency across different objects or scenes [5], [6]
but may result in higher sensitivity to noise or other defects.
Besides, lack of global context complicates surface orientation.

For real world point clouds, usually acquired via active
or passive methods such as LiDAR scanning or multi-view
stereo (MVS), the sensor position can be known and used
to relate each observed point with a line of sight. Such
visibility information can then help to orient surface normals
[7] or predict occupancy [8], [9], [10]. While visibility is key
for MVS, it has largely been ignored by DSR methods. In
fact, sensor positions are usually not given in reconstruction
benchmarks from point clouds. To remedy this, we consider
virtual scanning rather than uniform sampling, and we show
that many DSR methods can easily be adapted to benefit from
visibility (cf. Figure 1). Our main contributions are as follows:
• We propose two simple ways to add visibility information

to 3D point clouds, and we detail how to adapt DSR
methods to utilize them, with very little changes.

• Using synthetic and real data, at object and scene level,
we show for a wide range of state-of-the-art DSR meth-
ods that models leveraging visibility reconstruct higher-
quality surfaces and are more robust to domain shifts.

Incidentally, our benchmarks also allow us to compare a range
of recent state-of-the-art DSR methods on the same ground.

(a) Reconstruction using only the points position.

(b) Reconstruction with visibility augmented point cloud.

Fig. 1. Surface Reconstruction with Visibility Information. We augment
each 3D point with a sightline vector pointing towards the sensor
observing it. Additionally, two auxiliary points are placed before and after

the observed point along the sightline. This allows DSR networks, with
very little modification, to reconstruct a significantly more accurate surface.

II. RELATED WORK

Many traditional surface reconstruction methods use visibi-
lity information [8], [9], [10], [11], [12], [13], [14]. They are
usually based on a 3D Delaunay tetrahedralization, which is
intersected with lines of sight to attribute visibility features
to Delaunay cells. While such methods can scale to billions
of points [15] and are robust to moderate levels of noise and
outliers, they do not incorporate learned shape priors.

In contrast, recent DSR methods have shown to produce
more accurate surfaces than traditional approaches, especially
for shape categories encountered during training. Many DSR
methods use an implicit surface representation, either based
on occupancy [2], [16], [17], or on the distance to the surface,
whether it is signed [1], [17], [18], [19] or unsigned [20],
[21], [22], [23]. To integrate local information, different forms
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Fig. 2. Visibility-Augmented Point Cloud. Each observed point is associated
to a sightline unit vector pointing towards its sensor. Two new points before
and after each point are added. They help to disambiguate occupancy.

of convolutions are used, either on regular grids [4], [5],
[24], [25], [26], directly on points [27], [28] or via an MLP
instead [29]. Other methods rather use an explicit surface
representation such as a mesh, which is deformed [3] or whose
elements classified [6], [30].

A key issue is to get a sense of surface point orientation,
to choose between reconstructing a thin volume (two main
opposite orientations) or a thicker one (one main orientation at
void-matter interface). Some methods dismiss the orientation
issue by requiring oriented normals as input [5], [27], [31],
[32], albeit producing such normals is a challenging task in
itself [7], [33], [34]. We show that oriented normals can be
advantageously replaced by visibility information.

Only few deep-learning methods make use of visibility
information, typically from multiple views with camera pose
information. RayNet [35] aggregates features from pixels of
different views that intersect in the same voxel, but it outputs
a dense point cloud, not a watertight surface mesh. Neural
radiance fields [36], [37] somehow also model the free space
between a point and its sensor. They, however, generally
assume numerous and dense views (i.e., images), and leverage
little or no shape priors. We argue that DGNN [6], that classi-
fies Delaunay cells with a graph neural network, currently is
the only general DSR method from point clouds with visibility.
However, DGNN relies on handcrafted visibility features re-
quiring substantial geometry processing, while, we propose to
directly augment the input point clouds. For point clouds for
which visibility information is not available, Vis2Mesh [38]
shows that rendering virtual views and learning point sensor
visibility can significantly improve the reconstruction quality
of a traditional method.

III. METHOD

We consider a 3D point cloud P where each point p∈P
has some coordinates Xp ∈R3 and knows the position Sp ∈ R3

of a sensor observing it. Instead of only using the raw point
coordinates (Xp)p∈P as the input (Ip)p∈P of a DSR network,
we propose two simple ways to augment point cloud P with
visibility information, and adapt DSR methods accordingly.

A. Sightline Vector (SV)

For each p ∈ P , we define a unit vector vp pointing from the
observation Xp to the sensor Sp: vp =(Sp−Xp)/‖Sp−Xp‖.

This contains useful information for surface orientation. We
normalize the vector as the distance to the sensor is not as
relevant as the viewing angle.

B. Auxiliary Points (AP)

To help the network predict empty and full space immedi-
ately in front of and behind the observed surface, we consider
two auxiliary points to each point p: a before-point pb and an
after-point pa, located along the sightline on each side of p:
Xpb

= Xp+dvp, Xpa = Xp−dvp, where d is a characteristic
distance in the point cloud P , e.g., the average distance from
a point to its nearest neighbor. By construction, pb is likely
outside the scanned object or scene (modulo sensing noise and
outliers), and pa, likely inside (modulo object thickness too).

C. Visibility-Augmented Point Cloud

We use sightline vectors and auxiliary points to add visibi-
lity information to an input point cloud, separately or together.
(SV) To use sightline information only, we simply concatenate

the sightline vector channelwise to the point coordinates to
form the network input: Ip = (Xp ⊕ vp) ∈ R6.

(AP) To use auxiliary points only, we add before-points pb and
after-points pa to P , with tags t ∈ R2 concatenated to point
coordinates to identify the point type, i.e., Iq =(Xq ⊕ tq) ∈
R5 with q ∈ {p, pb, pa}, where tp = [0 0] (observed point),
tpb

= [1 0] (before-point), or tpa = [0 1] (after-point).
(SV+AP) When combining both kinds of visibility informa-

tion, before-points pb and after-points pa are given the same
sightline vector as their reference point, i.e., vpb

= vpa
=

vp, and we take as input Ip = (Xp ⊕ vp ⊕ tp) ∈ R8.
While holding a similar kind of information, no augmentation
can be reduced to the other one. SVs alone are not enough to
place APs, and APs alone, as they are not associated to their
observed point in P , cannot determine SVs (cf. Figure 2).

D. Modifying an Existing Architecture

We can adapt most DSR networks to handle visibility-
augmented point clouds with only few modifications:
• We change the input size (number of channels) of the first

layer of the network (generally an encoder), increasing it
by 2, 3 or 5, depending on the augmentation.

• We directly add auxiliary points to the point cloud, thus
tripling the number of input points. For methods based
on neighboring point sampling, we add auxiliary points
after sampling for more efficiency.

The batch size may need to be adjusted to fit a larger point
cloud in memory, but the rest of the network stays unchanged.
Its size is mostly unaltered (e.g., +0.005% for ConvONet [25]).

IV. EXPERIMENTS

To assess our proposal, we first detail our simple adaptation
of six different DSR baseline networks to leverage our visibi-
lity information, then compare the quality of the reconstructed
surfaces and analyze the generalization ability of the networks.
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Input ConvONet-2D [25] Points2Surf [29] Shape As Points [39] POCO [28] Ground Truth

Fig. 3. Object-Level Reconstruction. Reconstructed shapes from the ModelNet10 test set using four different DSR methods trained on ModelNet10. Top
rows of each object use the bare point cloud as input, and bottom rows use the point cloud augmented with visibility information.

A. DSR Baselines

1) ConvONet [25]: This method first extracts point features
and projects them on three 2D grids, or one 3D grid (variant).
2D or 3D grid convolutions then create features capturing local
occupancy. Last, the occupancy of a query-point is estimated
after interpolating grid features. We consider the 3× 642 2D-
plane encoder and the 643 3D-volume variant. To adapt them,
we change the input size of the point encoder’s first layer.

2) Points2Surf [29]: This method predicts both the oc-
cupancy of a query point and its unsigned distance to the
surface. It uses both a local query-point neighborhood and
a global point-cloud sampling. We use the best-performing
variant (uniform global sampling, no spatial transformer). To
adapt it, we increase the input size of the first layer of both
the local and global encoders, and when a point is sampled,
locally or globally, we add its two auxiliary points on the fly.

3) Shape As Points [39]: For each input point, the method
estimates its normal as well as k point offsets that are used to
correct and densify the point cloud. The resulting point cloud
of size k|P | is then fed to a differentiable Poisson solver [31].
To adapt the method, we change the input size of the first layer
of the encoder, and of the normal and offset decoders as they
also input the point cloud. We directly add auxiliary points as
input, whose normal and offsets will thus be computed too.

4) Local Implicit Grids (LIG) [5]: This method trains an
auto-encoder from dense point cloud patches. For inference, a
given sparse patch with oriented normals is first augmented,
close to our idea, with 10 new points along each normal; then
reconstruction uses latent vectors minimizing a decoder-based
training loss, and a post-processing removes falsely-enclosed

volumes. As training code is unavailable, we use the model
pretrained on ShapeNet (without noise). For oriented normals,
we use Jets [40] oriented with a minimum spanning tree [7], as
in [23]. To exploit visibility, we replace normals with sightline
vectors; we do not add (more) auxiliary points.

5) POCO [28]: This method extracts point features using
point cloud convolution [41], then estimates the occupancy of
a query point with a learning-based interpolation on nearest
neighbors. To adapt it, we increase the input size of the first
layer and add auxiliary points on the fly only in the first layer.

6) DGNN [6]: This method uses a graph neural network
to estimate the occupancy of Delaunay cells in a point cloud
tetrahedralization. A graph-cut-based optimization then rein-
forces global consistency. The method, which already uses
visibility, outperforms other traditional reconstruction methods
that use visibility information. As it already exploits visibility,
we do not alter it, but use it as baseline for comparison.

For all methods, unless otherwise stated, training and evalu-
ation are unchanged; we keep the value of the hyperparameters
used in the original papers. When Marching cubes [42] are
needed for surface extraction, we use a grid resolution of 1283.

B. Datasets
We consider a variety of object and scene datasets, both

synthetic and real, to show the versatility of our approach.
1) ModelNet10: We use the official train/test splits of all

10 object classes of ModelNet10 [43]. We hold out 10% of the
train set for validation. We synthetically scan the models by
placing 10 random range scanners in two bounding spheres
around the objects and shooting random rays to a sphere
inscribed within the convex hull of the object. We sample 3 000



TABLE I
ABLATION STUDY.

The vanilla model of ConvONet trained and tested on ModelNet10 with
different ways to add visibility or normal information.

Model SV AP IoU ↑

ConvONet-2D (3× 642) [25] 0.853
+ sightline vectors (SV) only X 0.871
+ auxiliairy points (AP) only X 0.881
+ both SV and AP X X 0.886

+ sensor position Sp 0.870
+ unnormalized SV Sp −Xp 0.870

+ estim. normals / estim. orientation Jets [40] / MST [7] 0.853
+ estim. normals / sensor orientation Jets [40] / sensor-based [7] 0.868
+ true normals GT normals 0.879

points per object and add Gaussian noise with zero mean and
standard deviation 0.005 as in [25].

2) ShapeNet: We study the generalizability of models
trained on ModelNet10 by testing on 100 shapes per class
from the ShapeNet [44] test set of Choy et al. [45] (9 out of
13 classes are not represented in ModelNet10). We use the
same scanning procedure as for ModelNet10.

3) Synthetic Room: We use the train/val/test splits of Syn-
thetic Rooms [25]. For virtual scanning, we only place sensors
in the upper hemispheres, and scan 10 000 points as in [25].

4) SceneNet: We test on a few synthetic scenes of SceneNet
[46] using the given virtual scans, voxel-decimated to 1 cm.

5) ScanNet: We test on a few real scenes of ScanNet [47]
using the provided real RGB-D scans, voxel-decimated to 2 cm.

6) Tanks and Temples: We use the real LiDAR point cloud
of the Ignatius statue from the Tanks and Temples dataset [48].

7) Middlebury: We use an MVS point cloud of the Temp-
leRing from Middlebury [49], made with OpenMVS [50].

C. Metrics

We report volumetric intersection over union (IoU), mean
Chamfer distance ×100 (CD) and normal consistency (NC).

D. Ablation Study

To validate our design, we compare in Table I various ways
to add visibility information to the vanilla model of ConvONet.

Independently, SVs and APs significantly improve perfor-
mance (+1.8 and +2.8 IoU pts). A reason why APs are
more profitable could be that the network is tailored for
points, not points with sightline features. While SVs and
APs capture a similar kind of information, they are, however,
complementary: combining them is even more beneficial (+3.5
IoU pts). Our general interpretation is that SVs help to decide
whether a locally “thin” point cloud is to be considered as
a noisy scan of a single surface, or as a (less noisy) scan
on both sides of a thin surface. They thus have an impact on
local shape topology, which can bring a notable gain. Auxiliary
points convey similar information, but also contribute more
directly to refine the surface position. Replacing SVs by the
sensor position or by the unnormalized point-sensor vector
gives essentially the same performance than our unit vector.

TABLE II
OBJECT-LEVEL RECONSTRUCTION.

DSR methods trained and tested on ModelNet10, with and without sightline
vectors (SV) or auxiliary points (AP). † Trained on ShapeNet.

Model SV AP IoU ↑ CD ↓ NC ↑

ConvONet-2D [25] 0.853 0.618 0.934
ConvONet-2D [25] X 0.871 0.557 0.936
ConvONet-2D [25] X X 0.886 0.518 0.943

ConvONet-3D [25] 0.885 0.493 0.949
ConvONet-3D [25] X 0.911 0.424 0.956
ConvONet-3D [25] X X 0.913 0.423 0.957

Points2Surf [29] 0.842 0.590 0.890
Points2Surf [29] X 0.859 0.544 0.896
Points2Surf [29] X X 0.856 0.548 0.897

Shape As Points [39] 0.903 0.438 0.948
Shape As Points [39] X 0.907 0.430 0.950
Shape As Points [39] X X 0.913 0.414 0.953

POCO [28] 0.907 0.422 0.945
POCO [28] X 0.915 0.408 0.950
POCO [28] X X 0.917 0.406 0.950
† LIG [5] – 0.974 0.849
† LIG [5] X – 0.880 0.882

DGNN [6] X 0.866 0.543 0.884

This can be explained by the fact that our scanning procedure
does not introduce significant variation in terms of distance to
the sensor. Yet, for real world acquistions, with a larger range
of sensor distances, normalizing the SV ensures more stability.

Adding SVs outperforms estimated normals [40] with esti-
mated orientation [7], and even estimated normals with sensor-
based orientation. While using ground-truth normals is slightly
more beneficial than SVs, combining SV+AP yields the best
overall performance, which highlights the richness of our
visibility information.

We also experiment with adding more than two auxiliary
points: (i) at distance 0.5d or 2d, (ii) at the midpoint between
sensor and point, or (iii) as grazing points, estimated by
densely sampling the sightlines with auxiliary points and
keeping the ones close to an input point. None of these
strategies brought significant improvements over adding two
points at distance d on both sides of the real point.

E. Object-Level Reconstruction

Table II reports the performance on ModelNet10 of various
models, with and without sightline vectors or auxiliary points.

ConvONet (both planar and volumetric) gains about +3 IoU
pts with visibility information. The resulting surface is more
accurate, especially in concave parts, as illustrated in Figure 3.

Points2Surf improves with sightline vectors, but auxiliary
points do not improve further: the sensor vectors are enough to
resolve ambiguities for the occupancy estimation, but distance
estimation does not further benefit from auxiliary points.

Shape As Points benefits from sightline vectors, although
not as much as other methods, probably because the model
also estimates normals which provide a similar information
as visibility. Still, adding auxiliary points further gains +0.6
IoU pts, yielding more complete and smoother surfaces.



TABLE III
SCENE-LEVEL RECONSTRUCTION.

ConvONet trained and tested in sliding-window mode on Synthetic Rooms.

Model SV AP IoU ↑ CD ↓ NC ↑

ConvONet-3D [25] 0.805 0.598 0.906
ConvONet-3D [25] X X 0.832 0.569 0.911

TABLE IV
OUT-OF-DOMAIN OBJECT-LEVEL RECONSTRUCTION.

DSR methods trained on ModelNet10 and tested on ShapeNet, with and with-
out sightline vectors (SV) or auxiliary points (AP). † Trained on ShapeNet.

Model SV AP IoU ↑ CD ↓ NC ↑
† ConvONet-2D [25] 0.852 0.560 0.929

ConvONet-2D [25] 0.685 0.979 0.878
ConvONet-2D [25] X 0.667 1.042 0.833
ConvONet-2D [25] X X 0.750 0.891 0.878

ConvONet-3D [25] 0.628 0.972 0.885
ConvONet-3D [25] X 0.759 0.724 0.905
ConvONet-3D [25] X X 0.854 0.554 0.925

Points2Surf [29] 0.807 0.561 0.876
Points2Surf [29] X 0.836 0.516 0.886
Points2Surf [29] X X 0.833 0.522 0.887
† Shape As Points [39] 0.838 0.577 0.923

Shape As Points [39] 0.494 0.997 0.859
Shape As Points [39] X 0.749 0.843 0.881
Shape As Points [39] X X 0.821 0.617 0.919

POCO [28] 0.391 1.119 0.839
POCO [28] X 0.832 0.618 0.901
POCO [28] X X 0.815 0.635 0.887

DGNN [6] X 0.844 0.549 0.854

POCO similarly benefits +1 IoU pts from sightline vectors
but not much from the further addition of auxiliary points.
While sightline vectors help for surface orientation, POCO is
already accurate enough for APs to bring little refinement.

LIG produces poor results, likely because the only available
model is trained on ShapeNet, with uniform sampling, little
or no noise, and because oriented normals are only estimated.
We cannot report IoU because LIG’s post-processing creates
holes in some objects. Yet, replacing the estimated normals by
sightline vectors improves the predicted surface.

DGNN, which already exploits visibility and outperforms
ConvONet-2D and Points2Surf, is outdistanced on this dataset
by methods that use our augmented point clouds.

Running time is mostly unaffected when adding sightline
vectors. The effect of auxiliary points depends on the method.
For ConvONet and POCO, it is negligible (<+2%); running
time is × 2.25 for Points2Surf and × 1.25 for Shape As Points.

F. Scene-Level Reconstruction

To study the impact of visibility information at scene level,
we train and test ConvONet on Synthetic Rooms, in sliding-
window mode [25]. We report quantitative results in Table III
and qualitative results in the supplementary material. The
model gains almost +3 IoU pts with visibility information,
showing that benefits scale to scenes, not just objects.

SceneNet ScanNet
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Fig. 4. Out-of-Domain Scene-Level Reconstruction. POCO trained on
ModelNet10, with and without visibility information, is run on scenes from
SceneNet (synthetic RGB-D scan) and ScanNet (real RGB-D scan).

G. Generalization to New Domains

To evaluate the impact of added visibility on the general-
ization capability of DSR methods, we train on ModelNet10
and test on ShapeNet (Table IV).

We observe that ConvONet, Shape As Points and POCO
trained with visibility information generalize much better on
the new objects and classes, with a gain up to +44 IoU pts.
For comparison, we also show the scores of official models
trained on ShapeNet, although trained on uniformly sampled
points rather than virtual scans, which explains the drop of
performance compared to the numbers in the papers [25],
[39]. Points2Surf also improves by up to +3 IoU pts with added
sightline vectors, but not further with APs.

The increased generalization capability of the models is also
validated when reconstructing surfaces from real-world scans
obtained with LiDAR or MVS. In Figures 4 and 5, we show
that networks using visibility information can reconstruct a
more accurate and more complete surface. The reason for
the largely improved volumetric IoU when using visibility
information is illustrated in Figure 6. For out-of-domain recon-
structions, the baseline methods often predict hollow shapes,
i.e., empty space enclosed inside an object. This leads to
backfaces behind the real surface and a poor volumetric IoU.
On the contrary, our models, trained on visibility-augmented
point clouds, learn to distinguish between empty and full space
more reliably and do not produce such artifacts.

V. LIMITATIONS AND PERSPECTIVES

The position of auxiliary points depends on parameter d,
which is the average distance, across the whole scene, from
a point to its nearest neighbor. To better handle point density
variations, it could be set locally rather than globally. Besides,
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Fig. 5. Out-of-Domain Object-Level Reconstruction. Reconstructed shapes from a LiDAR point cloud (top, Ignatius from Tanks And Temples) and a MVS
point cloud (bottom, TempleRing from Middlebury) using four different DSR methods trained on ModelNet10. Top rows of each object use the bare point
cloud as input, and bottom rows use the point cloud augmented with visibility information. HD Scan is a high-density point cloud.
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Fig. 6. Cut of Out-of-Domain Object Reconstruction. A cut (along the
green curve) of the reconstructed surface of Ignatius. The reconstructions from
the bare point cloud (top row) include empty space enclosed inside the object
with backfaces, leading to a poor volumetric IoU. The reconstructions from
the point cloud augmented with visibility information (bottom row) include
only one surface, close to the input points.

as this positioning is also sensitive to sampling noise, d could
also be directly adjusted after noise estimation.

Our current approach only associates each point with a
single sensor, while MVS points typically have several. A
more efficient and versatile approach than simply duplicating
sightlines is still an open issue.

Last, we resort to virtual scans because current 3D re-
construction benchmarks do not provide sensor positions.
While we show that using our augmented point clouds allows
common architectures to successfully generalize from virtual
to real scenes, our training set may fail to replicate some
challenging configurations encountered using actual sensors.

VI. CONCLUSION

The sensor poses are often ignored in point cloud process-
ing, even though available with most acquisition technologies.
We present two straightforward ways to exploit sensor po-
sitions to augment point clouds with visibility information.
Our experiments show that various deep surface reconstruc-
tion methods can be adapted with minimal effort to exploit
these visibility-augmented point clouds, resulting in improved
accuracy and completeness of reconstructed surfaces, as well
as a substantial increase in generalization capability.

Acknowledgments: This work was partially funded by the
ANR-17-CE23-0003 BIOM grant.
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SUPPLEMENTARY MATERIAL
In this supplementary document, we first provide additional

information about the datasets that we use (Section VII),
formal definitions of the evaluation metrics (Section VIII)
and additional quantitative and qualitative results (Section IX).
Our code, data and pretrained models can be found online:
https://github.com/raphaelsulzer/dsrv-data .

VII. DATASETS

A. Scanning procedure
In Figure 7, we represent a visualization of our scanning

procedure. Viewpoints and ray target points are uniformly
sampled on the surface of the spheres.

Fig. 7. Scanning Procedure. We randomly place sensors on two spheres (red
and blue) around the object, and consider rays aiming at uniformly sampled
points on a sphere inscribed in the convex hull of the object (green).

B. ModelNet
We use the official ModelNet10 dataset and make the mod-

els watertight using ManifoldPlus [51]. We scan the watertight
models using the procedure described above.

C. ShapeNet
We use the watertight models provided1 by the authors

of Occupancy Networks [2] and scan the models using the
procedure described above. We apply a transformation to the
models (and scans) to match their orientation to the orientation
of the ModelNet10 objects (except for networks marked with †
in Table IV, which were trained with the original orientation).

D. Synthetic Rooms Dataset
We use the watertight scenes provided2 by the authors

of ConvONet [25]. We scan the scenes using the procedure
described above, limiting the sensors to lie in the upper
hemisphere only.

E. Tanks And Temples, Middlebury and DTU
For the reconstructions in Figure 5, 6 and Figure 8, we

downsample the input point clouds to 10,000 points.
1https://s3.eu-central-1.amazonaws.com/avg-projects/occupancy networks/

data/watertight.zip
2https://s3.eu-central-1.amazonaws.com/avg-projects/convolutional

occupancy networks/data/room watertight mesh.zip

VIII. METRICS

We evaluate the quality of reconstructions with the volumet-
ric IoU (IoU), symmetric Chamfer distance (CD) and normal
consistency (NC).

Let MG be the ground truth mesh and MP be the recon-
structed mesh. The volumetric IoU is defined as:

IoU (MG ,MP) =
volume(MG ∩MP)
volume(MG ∪MP)

,

We approximate volumetric IoU by sampling 100, 000 points
in the union of the bounding boxes of MG and MP .

To compute the Chamfer distance and normal consistency,
we sample a set of points SG on the ground-truth mesh
and a set of points SP on the reconstructed mesh with
|SG| = |SP | = 100, 000. We approximate the two-sided
Chamfer distance between MG and MP as follows:

CD(MG ,MP) =
1

2|SG|
∑
x∈SG

min
y∈SP

||x− y||2

+
1

2|SP |
∑
y∈SP

min
x∈SG

||y − x||2

Let n(x) be the unit normal associated to a point x taken on
a mesh, and 〈·,·〉 the Euclidean scalar product in R3. Normal
consistency is defined as:

NC(MG ,MP) =
1

2|SG|
∑
x∈SG

〈
n(x), n

(
argmin
y∈SP

||x− y||2

)〉
+

1

2|SP |
∑
y∈SP

〈
n(y), n

(
argmin
x∈SG

||y − x||2

)〉
IX. ADDITIONAL RESULTS

A. Runtimes

In Table V, we report detailed runtimes for the tested
methods, with and without visibility information.

Adding sightline vectors does not significantly increase the
runtime for any of the tested methods. The effect of auxiliary
points depends on the method. For ConvONet, most of the
processing time is spent computing grid features. The encoding
of 3d points is performed by a small PointNet network [52],
whose runtime is only a small fraction of the total time. As a
consequence, adding APs does not incur significant changes in
computation time. In contrast, Points2Surf uses a large point
encoding network and is 2.2 times slower with APs. Shape
As Points is 1.3 times slower due to the fact that we decode
3 times as many points as the baseline method. POCO is also
essentially unaffected by the addition of auxiliary points as
they only impact the first (small) layer of the point-convolution
backbone.

https://github.com/raphaelsulzer/dsrv-data
https://s3.eu-central-1.amazonaws.com/avg-projects/occupancy_networks/data/watertight.zip
https://s3.eu-central-1.amazonaws.com/avg-projects/occupancy_networks/data/watertight.zip
https://s3.eu-central-1.amazonaws.com/avg-projects/convolutional_occupancy_networks/data/room_watertight_mesh.zip
https://s3.eu-central-1.amazonaws.com/avg-projects/convolutional_occupancy_networks/data/room_watertight_mesh.zip
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Fig. 8. Out-of-Domain Object-Level Reconstruction. Reconstructed shape from a MVS point cloud of scan1 from DTU, using four different DSR methods
trained on ModelNet10. The top row uses the bare point cloud as input, and the bottom row uses the point cloud augmented with visibility information. HD
Scan is a high-density point cloud.

TABLE V
RUNTIMES FOR OBJECT-LEVEL RECONSTRUCTION.

Average times (in seconds) for reconstructing one object from a point cloud
of 3 000 points with and without sightline vectors (SV) or auxiliary points
(AP). MC is marching cubes. Times are averaged over the ModelNet10 test
set.

Model SV AP Encoding Decoding MC Total

ConvONet-2D [25] 0.016 0.25 0.17 0.44
ConvONet-2D [25] X 0.016 0.27 0.17 0.47
ConvONet-2D [25] X X 0.016 0.26 0.17 0.45

Points2Surf [29] 69.06 11.51 80.57
Points2Surf [29] X 71.92 11.35 83.27
Points2Surf [29] X X 173.2 11.41 184.7

Shape As Points [39] 0.022 0.017 0.047 0.088
Shape As Points [39] X 0.023 0.017 0.046 0.086
Shape As Points [39] X X 0.024 0.041 0.047 0.114

POCO [28] 0.088 13.72 0.33 15.74
POCO [28] X 0.091 13.68 0.33 15.66
POCO [28] X X 0.093 13.70 0.33 15.67

B. DTU Dataset

In Figure 8, we show the reconstruction of an MVS point
cloud, generated with OpenMVS, of scan1 from the DTU
dataset [53]. The point cloud represents an open scene, while
all methods were trained on the closed ModelNet10 objects.
The methods using our augmented point clouds with visibility
information cope much better with this domain shift.

C. ShapeNet

We show the results of object-level reconstruction on
ShapeNet in Figure 9 from methods trained on ModelNet10.
All methods benefit from added visibility information. In
particular, ConvONet produces very accurate and complete
surfaces of the unseen shape classes.

A common problem for most baseline methods is the false
reconstruction of hollow shapes with enclosed outside space.
Using visibility information can address this issue and the
artifacts then do not occur.

D. ModelNet10

In Figure 10, we represent additional results of object-level
reconstruction on ModelNet10. Concave parts of the objects
are frequently reconstructed more accurately by methods using
point clouds with visibility information. Surfaces also tend to
be more complete when visibility information is used.

E. Synthetic Rooms Dataset

In Figure 11, we show the reconstruction results of Conv-
ONet on Synthetic Rooms, with and without visibility infor-
mation. In contrast to [25], we evaluate in sliding window
mode, which explains the difference with figures in [25].
Improvements here are visually not as obvious as with other
datasets.
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Fig. 9. Object-Level Reconstruction on ShapeNet. Reconstructed shapes from the ShapeNet test set using four different DSR methods trained on
ModelNet10. Top rows of each object use the bare point cloud as input, and bottom rows use the point cloud augmented with visibility information. The last
two rows show a cut of the reconstructions that are shown on the two other rows immediately above.
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Fig. 10. Object-Level Reconstruction On ModelNet10. Reconstructed shapes from the ModelNet10 test set using four different DSR methods trained on
ModelNet10. Top rows of each object use the bare point cloud as input, and bottom rows use the point cloud augmented with visibility information.
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Fig. 11. Scene-Level Reconstruction on Synthetic Rooms. Reconstructed scenes of the synthetic room dataset using ConvONet [25] in sliding-window
mode, with and without visibility information.
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