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Abstract
Chlordecone (CD; Kepone™) is a carcinogenic organochlorine insecticide with neurological, reproductive, and developmen-
tal toxicity that was widely used in the French West Indies (FWI) from 1973 to 1993 to fight banana weevils. Although CD 
has not been used there for more than 25 years, it still persists in the environment and has polluted the waterways and soil 
of current and older banana fields. Today, human exposure to CD in the FWI mainly arises from consuming contaminated 
foodstuffs. The aims of this study were to develop a physiologically based pharmacokinetic (PBPK) model in the rat and 
extrapolate it to humans based on available pharmacokinetic data in the literature. A comparison of simulations using the 
rat model with published experimental datasets showed reasonable predictability for single and repetitive doses, and, thus, 
it was extrapolated to humans. The human PBPK model, which has seven compartments, is able to simulate the blood con-
centrations of CD in human populations and estimate the corresponding external dose using the reverse dosimetry approach. 
The human PBPK model will make it possible to improve quantitative health risk assessments for CD contamination and 
reassess the current chronic toxicological reference values to protect the FWI population.
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Abbreviations
acslX  Advanced continuous simulation 

language
ANSES  French Agency for Food, Environmen-

tal and Occupational Health & Safety 
(Agence Nationale de Sécurité Sanitaire 
de l'Alimentation, de l'Environnement et 
du Travail)

CAS  Chemical abstracts service
CD  Chlordecone
CDBP I and II  Chlordecone-binding proteins I and II
CD-OH  Chlordecone alcohol or chlordecol
CD-OH-G  Chlordecone alcohol glucuronide
d  Day

FWI  French West Indies
GIT  Gastrointestinal tract
HED  Human equivalent dose
PBPK  Physiologically based pharmacokinetic
RE  Rest of the body
SA  Sensitivity analysis
SS  Steady state
T1/2  Half-life

Introduction

Chlordecone (CD) (CAS: 143.50.0), also known as 
Kepone™ or  Curlone®, is an organochlorine insecticide that 
was used in the French West Indies (FWI) from 1973 to 1993 
to fight banana weevils (Multigner et al. 2016). Although 
CD has not been used in the FWI for more than 25 years, it 
is still present in the soil due to its very slow degradation in 
the environment (Cabidoche 2009). Such pollution affects 
approximately one-third of the agricultural land in the FWI 
(Anses 2017), thus contaminating drinking water resources 
and vegetal and animal foodstuffs (Bocquene and Franco 
2005; Dubuisson et al. 2007) and, consequently, most of the 
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human population (Dereumeaux et al. 2019; Guldner et al. 
2010; Kadhel 2008).

Many in vivo and/or in vitro experimental studies have 
found that CD is a neurotoxic, reproductive, and develop-
mental toxicant and carcinogen in rodents and an endocrine 
disruptor (ATSDR 2020). The toxicity of CD in humans 
was first observed in 1975 after a poisoning episode involv-
ing CD manufacturing plant workers in Hopewell, VA, 
USA (Cannon et al. 1978). Workers were exposed to high 
CD concentration through oral, respiratory, and cutaneous 
routes. Such exposure resulted in several health disorders 
involving the central nervous system (tremors of the limbs), 
liver (hepatomegaly), and testes (reduced sperm production) 
(Cannon et al. 1978; Taylor et al. 1978). These clinical obser-
vations were regrouped under the term “Kepone syndrome” 
and mostly observed at plasma concentrations > 1 mg/L.

In the FWI, the general population is still continuously 
exposed through food contamination at lower CD concen-
trations than those to which the Hopewell workers were 
exposed. Epidemiological studies conducted in the FWI 
since 1999 have shown blood concentrations < 0.1 mg/L 
(Multigner et al. 2016). These studies showed that such lev-
els of CD exposure are associated with long-term health dis-
orders, including prostate cancer, prematurity, cognitive or 
motor development and epigenetic reprogramming in utero 
(Boucher et al. 2013; Kadhel et al. 2014; Legoff et al. 2021a; 
Multigner et al. 2010).

Various approaches have been used to assess exposure 
of the FWI populations to CD. One was to collect blood to 
determine the internal concentrations of CD (Kadhel et al. 
2014; Multigner et al. 2010). Because of the long half-life 
(T1/2) in blood (between 63 and 165 days in humans) (Adir 
et al. 1978; Cohn et al. 1978), this approach covers all expo-
sure routes and represents a good surrogate of the body bur-
den at steady state (SS). Another approach was based on 
the estimation of dietary intake, combining food contami-
nation with food consumption habits (Guldner et al. 2010; 
Seurin et al. 2012). However, both approaches have their 
limitations, which represent a challenge for human health 
risk assessments.

The chronic threshold limit value (TLV) currently used 
for CD risk assessment (0.50 µg/kg bw/day) is based on the 
most sensitive measurements of adverse effects observed 
in rats (Larson et al. 1979). Recently, The French Agency 
for Food, Environmental, and Occupational Health Safety 
(ANSES) revised the chronic external CD TLV  (TLVexternal) 
using new available data (Gely-Pernot et al. 2018; Kadhel 
et al. 2014; Legoff et al. 2019). As a result, the chronic 
 TLVexternal was reduced to 0.17 µg CD/kg bw/day based 
on Human Equivalent Dose (HED) and uncertainty fac-
tors (Anses 2021). In addition, two chronic internal TLVs 
 (TLVinternal) were determined, one (0.47  µg/L plasma) 
based on the animal study of Larson et al. (1979) and the 

other (0.40 µL/L plasma) using the epidemiological study 
data during pregnancy of Kadhel et al. (2014) and Anses 
(2021). To obtain the chronic  TLVexternal, the ANSES added 
an uncertainty factor for the  TLVinternal from animal studies 
because of the absence of a human physiologically based 
pharmacokinetic (PBPK) model. Nonetheless, the two 
 TLVinternal values are relatively close but do not consider the 
same approach or the same endpoint. A better alternative 
would be to develop a PBPK model for humans to obtain 
a better estimate of the external dose from internal doses 
by reverse dosimetry or appraise a predictive internal dose 
based on the ingestion of CD in food. The objective of this 
work was to develop a mathematical PBPK model in rats and 
extrapolate it to humans.

In the present study, we constructed PBPK models start-
ing with a rat model and then extrapolated it to humans. 
Indeed, PBPK models are frequently developed from ani-
mal data because experimentation provides an opportunity 
to control and measure various pharmacokinetic parameters. 
Such models are then extrapolated to predict human tissue 
concentrations. Classical examples of successful scale-up 
from animals to humans have been reported in the litera-
ture, such as for styrene, dioxin, and methylene chloride 
(Andersen and Clewell 1987; Emond et al. 2016; Ramsey 
and Andersen 1984). For this study, all available publica-
tions concerning the pharmacokinetics of CD were reviewed 
to obtain the best hypothesis or assumptions possible.

Materials and methods

Pharmacokinetics of chlordecone in rats 
and humans

All mammals show similar CD pharmacokinetics, with 
some disparity (Guzelian 1982b). CD can be absorbed by 
inhalation, orally, and through the skin (ATSDR 2020). 
Occupational exposure involved the respiratory, oral, and 
dermal routes, whereas oral exposure via food consumption 
is the main route for the general population in FWI (ATSDR 
2020). Most in vivo studies have explored the pharmacoki-
netics and toxicity of CD following oral exposure.

CD is readily absorbed (more than 90%) from the 
gastrointestinal tract (GIT) following oral exposure 
for all mammals studied. Due to its lipophilicity (Log 
Kow ~ 5.41), CD is then distributed between the portal 
vein and lymphatic circulation (De Winne 1979). The 
portal vein drains CD to the liver, where it undergoes the 
first passage. From the lymph, CD partially enters venous 
circulation. In the blood, CD is always found as the parent 
compound, which is largely carried by albumin and high-
density lipoproteins (HDL) (Soine et al. 1982). HDL in 
the blood and lymph is associated with reverse cholesterol 
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transport pathways (Reichl 1994; Skalsky et al. 1979a). 
In the liver, CD is partially reduced into the CD alco-
hol (CD-OH) by the chlordecone reductase (also called 
AKR1C4) present in humans, pigs, gerbils, and rabbits, 
but not significantly in rats, mice, or hamsters (Boylan 
et al. 1977, 1978; Guzelian 1982b; Molowa et al. 1986; 
Soine et al. 1983).

In rats, CD induces the microsomal enzymes of P-450, 
such as 7-ethoxyresorufin-O-deethylase and ethoxycou-
marin-O-dealkylase, 3  days after a single oral dose of 
15 mg CD/kg bw (Carpenter and Curtis 1991; Gilroy et al. 
1994). No induction has been observed below 1 ppm of 
dietary exposure (Fabacher and Hodgson 1976). The ratio 
of CD to CD-OH in the liver varies from 1:1.3 to 1:3.9 in 
humans, whereas it is > 100:1 in rats (Houston et al. 1981). 
In humans, CD, as CD-OH and its glucuronide conjugate 
(CD-O-G) formed in the liver, is then excreted into the bile 
(Soine et al. 1983).

CD is also bound to hepatic proteins, called chlordecone 
binding proteins (CDBP) (Fariss et al. 1980; Soine et al. 
1984). CDBPs concentrate the CD in the liver, resulting in 
an unusual apparent liver/fat ratio of 5 to 10 versus 0.3 based 
on theoretical calculations (GastroPlus 2018). This unusual 
ratio suggests that CD binds to cytosolic CDBP, which influ-
ences the elimination of CD through the bile, promoting the 
sequestration of CD in the liver (Soine et al. 1984).

The major route of elimination of CD for rats and humans 
is through the faeces (Guzelian 1982b). For rats, approxi-
mately 60% of CD is eliminated in faeces, versus 1.5% in 
the urine, 84 days after a single oral dose of 40 mg/kg bw 
(Egle et al. 1978). However, in humans, an estimated 10% of 
the CD in bile is expelled through faecal elimination (Cohn 
et al. 1976). Indeed, approximately 1% of the body burden 
is eliminated daily, but only 5% of the biliary elimination is 
accounted for in the faeces (Guzelian 1982a). This suggests 
that 95% of the CD is reabsorbed from the GIT (entero-
hepatic circulation) (Bungay et al. 1981). For humans, the 
CD-O-G excreted in bile is de-conjugated in the GIT and the 
resulting CD-OH mostly reduced to CD and then reabsorbed 
by the intestinal wall (Cohn et al. 1978; Scheline 1973). 
The literature also reports excretion from the blood to the 
GIT, increasing the elimination of CD in faeces for rats and 
humans (Boylan et al. 1979; Bungay et al. 1980). However, 
this enteric excretion fraction is not reabsorbed, suggesting 
that it takes place before the region of reabsorption. In rats, 
the blood T1/2 after a single oral dose of 40 mg CD/kg bw 
is 8.5 days (during the first 4 weeks), 24 days (from week 4 
through week 8), 45 days (for weeks 14 and beyond) (Egle 
et al. 1978) and 18 days from another publication (Matthews 
1979). In humans, the blood T1/2 reported in the literature is 
165 days (Cohn et al. 1978), 96 days, with a range between 
63 and 148 days (Adir et al. 1978), and 150 days (Guzelian 
et al. 1981).

Previous PBPK models developed for rodents

Five rat PBPK models relating exposure to CD have been 
published (for more complete descriptions, see Supplemen-
tary Materials). These PBPK models do not allow simu-
lations in terms of lifetime exposure or the enterohepatic 
cycle, which are essential pharmacokinetic components.

Structural rationale, physiological parameters, 
and limitations of the PBPK model

The PBPK model (rat and human) we developed contains 
seven compartments: lungs, blood, brain, skin, adipose 
tissue, liver, and the rest of the body (RE), which corre-
sponds to other tissues or organs not specifically described 
as compartments (Fig. 1). Each described compartment has 
a rationale:

• The Lung, Skin, and GIT compartments represent the 
routes of exposure. The literature has reported CD expo-
sure via dermal and inhalation routes. Thus, these routes 
are described in the current PBPK model, although vali-
dation will require supplementary data. Oral ingestion, 
mostly from the diet, represents the major route of expo-
sure. The GIT is described as a pseudo-compartment.

• The Blood compartment for the systemic circulation and 
protein binding (described as the percentage not affected 
by saturation). Only free chlordecone  (CDfree) can leave 
the blood to enter other compartments.

• The Brain compartment because it is a target of organ 
toxicity.

• The Adipose tissue compartment because of the lipophi-
licity of CD.

• The Liver compartment is the major site of metabolism 
and storage, contributing to the biliary elimination of 
CD, CD-OH, and CD-O-G in humans and the enterohe-
patic cycle in humans and rats.

• The extravascular lipoprotein and lymphatic circulation 
sub-compartment (ELPLC) includes communication 
with the GIT, portal vein, and veins and arterial blood, 
which is important as CD follows the reverse cholesterol 
pathway via HDL according to the literature.

• The rest of the body compartment (RE) is described to 
maintain the mass balance.

All compartments, except the RE and lung have been 
reported to show permeability-limited distribution, sug-
gesting that CD slowly diffuses between the sub-compart-
ments of the tissue blood and cellular matrix, requiring time 
for diffusion. The ELPLC is part of the RE (Fig. 1). For a 
better visual description, the ELPLC is shown separately 
extracted from the RE compartment in Fig. 1. This PBPK 
model was rigorously developed following the anatomical, 
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physiological, and pharmacokinetic data from the literature. 
Both the rat and human models were used to determine life-
time exposure. The elimination half-life assumed for the 
models is 21 days for the rat model (based on the range of 18 
and 24 days reported in the literature) and 131 days for the 
human model (corresponding to the mean value of 96 days 
and 165 days provided in the literature).

Parametrization of the model (rats and humans)

Parameters of the PBPK model (e.g., volumes of the com-
partments, body weight) were determined based on age 
using polynomial equations (Luecke et al. 2007; USEPA 
2010). All equations and descriptions of the parameters 
are presented in the Supplementary Materials. To simu-
late anatomical and physiological parameters in rats and 
humans at any age, whole-life polynomial equations were 
included in the model (regardless of the blood T1/2 of a 
chemical). The cardiac output and alveolar ventilation rate 
were calculated based on the body weight of the species 
(Krishnan and Andersen 2008) (Supplementary Table S1). 

The partition coefficient was calculated from the Lucakova 
equation for humans and rats (GastroPlus 2018) (Supple-
mentary Table S1). The partition coefficient handles part of 
the distribution of the CD in compartments based on their 
lipophilicity, represented by the ratio of the concentration 
in the tissue/blood at SS. Because of binding in the liver 
and blood, the partition coefficient showed numbers dif-
ferent than the observed ratios. The parameters for linking 
the interaction between the ELPC, GIT, liver, and systemic 
circulation are presented in Supplementary Table S2. The 
fraction of blood binding and those of proximal and distal 
absorption from the GIT are presented in Supplementary 
Table S3. In addition, there are several switches that need 
to be activated or inactivated, depending on the exposure 
scenario (Supplementary Table S4).

Software, algorithms, model code, and statistics

The model was developed using the Advanced Continu-
ous Simulation Language (acslX) version 3.1.5.1 (AEgis 
Technologies, Huntsville, AL), which allows users to write 

Fig. 1  Conceptual representa-
tion of the PBPK model to 
study CD exposure in rats and 
humans. For rats, only CD is 
described, as there is almost 
none of the metabolite CD-OH. 
For humans, CD-OH is present 
as the major metabolite. The 
structure is the same for both 
species
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differential equations and run them as required by the model. 
The models described with acslX consists of two base files: 
the first file (extension “.csl”) contains the codes that make 
up the model; the second file (extension “.m”) contains the 
model parameters adapted after simulations. Parameter fit-
ting was driven using the relative-error model estimation. 
Maximization of the log likelihood function was critical for 
fitting.

Calibration of the model (and not predictability)

Calibration of the rat and human models was performed 
using data from published studies and is graphically repre-
sented in Supplementary Figs. S1, S2, and S3 for rats and 
S4 and S5 for humans.

Predictability assessment

Predictability was assessed using three studies that focused 
on low and high doses and repetitive doses at different times 
for rats. For humans, three different simulations of reverse 
dosimetry assessment were conducted using blood CD con-
centrations: (1) 38 sequential measurement from workers 
highly exposed in Hopewell (Adir et al. 1978), (2) those 
of four different groups of people related to Hopewell (Gr 
A represents workers revealing illness, Gr B workers with-
out illness, Gr C the family members of workers, and Gr 
D residents living near the Hopewell plant), for which we 
used the means of the detectable blood CD measurements 
for each group (Cannon et al. 1978), and (3) 671 individual 
measurements from healthy adult males in the general popu-
lation of the FWI ranging in age from 45 to 88 years (median 
age 60.6 years) and distributed in quartiles (Emeville et al. 
2015).

Sensitivity analysis

Sensitivity analysis (SA) identifies the ways in which the 
human model response (here, plasma concentration at 
SS) changes under the influence of an individual param-
eter (Easterling et al. 2000). The results are expressed as 
the magnitude of change for the endpoint of interest. All 40 
parameters in the PBPK model were subjected to SA using a 
daily CD exposure of 1.0 ×  10–3 µg/kg bw/day for 655 days, 
corresponding to five blood T1/2. For the SA, each parameter 
was varied by ± 5% and compared to the optimised value to 
determine the influence of small changes in blood concentra-
tion using Eq. (1):

(1)SA% =
Cplasma±10% − Cplasmaoptimized

Cplasmaoptimized

× 100%.

Results

Observations from the experiments

Assessment and optimization of the model (and 
not predictability)

The model simulates physiological variables in rats and 
humans that are within reasonable limits in terms of the data-
set. The variables used were largely identical for the physiol-
ogy of the two species (rats and humans) considered. Several 
parameters were estimated, including tissue permeability for 
the adult brain (blood–brain barrier) and the extraction coef-
ficient. The extraction coefficient was optimised for blood and 
liver concentrations.

PBPK model development and calibration for rats

We calibrated the rat PBPK model using three published data-
sets: (1) a single oral dose of 1 mg CD/kg bw (Bungay et al. 
1981), (2) a single oral dose of 40 mg CD/kg bw followed by 
sequential measurements from day 1 to day 182 for blood, 
liver, adipose tissue, and faeces, and 3) from day 1 to day 7 for 
urine (Egle et al. 1978) (Supplementary Figs. S1 to S3). This 
simulation made it possible to adjust for enterohepatic circula-
tion, GIT excretion from the blood, and the excretion constant 
in the faeces and urine.

PBPK model development and calibration for humans

The objective of this task was to assess the match between the 
measured concentrations in blood, liver, and adipose tissue 
over time. A simulation using a sub-chronic exposure scenario 
assumed the concentration measurements were conducted until 
SS because workers were exposed at Hopewell plant over a 
certain period of time until SS was presumably reached (Cohn 
et al. 1976). Thus, the blood, liver, and adipose tissue con-
centrations were simulated for 1000 days, corresponding to 
a plateau with a blood T1/2 = 131 days (Hallare and Gerriets 
2020). The corresponding daily CD dose was 0.19 mg CD/
kg bw/day (Supplementary Fig. S4). All three-simulated com-
partments (whole blood, fat, and liver) precisely reached the 
measured data point for blood, liver, and adipose tissue (Cohn 
et al. 1976). These simulations appear to be reasonable and 
confirm the good predictability of the PBPK model.

Predictability of the model

Rat model

We assessed the predictability of the PBPK model using four 
studies (see Fig. 2A–D). The first (Fig. 2A) represented a 
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single intravenous exposure dose of 1 mg CD/kg bw in rats 
(Bungay et al. 1981). The second (Fig. 2B) corresponded 
to an oral exposure of 0.33 mg CD/kg of bw/day for three 
consecutive days followed by measuring CD concentrations 
in the blood, liver, and adipose tissue for 25 days post-expo-
sure. The third (Fig. 2C) represented a sub-chronic expo-
sure to CD in a diet at a dose of 5 ppm, corresponding to 
0.125 mg CD/kg bw/day, (based on 10 g of food per 100 g 
of animal bw, for animals with 250 g of bw) for 90 days, fol-
lowed by sacrifice of the animals and sampling to measure 
blood, liver, and adipose tissue 24 h after the last exposure. 
The fourth study (Fig. 2D) corresponded to a single oral 
exposure of 40 mg CD/kg bw, followed by sacrifice of the 
animals at 24, 336, and 720 h post-exposure and measure-
ment of CD concentrations in the blood, liver, and adipose 
tissue. All simulations adequately reproduced the experi-
mental values (For more simulations, see Supplementary 
Figs. S5 to S17).

Human model

The human PBPK model simulation was compared to 38 
measured concentrations of CD in the blood of 12 CD work-
ers at Hopewell plant (Fig. 3). Each worker had three or 
four sequential data points. CD blood concentrations ranged 
between 120 and 2109 µg/L (Adir et al. 1978). A Spearman’s 
nonparametric test was used to compare the experimental to 
the simulation values and showed a Rho (ρ) correlation of 
0.960 (p < 0.001).

A second scenario reproduced the CD blood concentra-
tion at SS of four groups of exposed people at Hopewell 
(Cannon et al. 1978). The simulation spanned affected plant 
workers (Gr A) to Hopewell residents who were not directly 
exposed to CD at the plant (Gr D) (Fig. 4). Evaluation of 
the daily exposure scenario made it possible to determine 
the external mean concentrations to which the four groups 
were exposed.

Fig. 2  A Distribution of CD following a single intravenous exposure 
to 1 mg CD/kg bw. The experimental data were from Bungay et  al. 
(1981). B Distribution of CD following exposure to 0.33 mg of CD/
kg bw in the diet for three days. The experimental data were from 
Richter et  al. (1979). C Distribution of CD following oral exposure 
to 5 ppm in the diet for 90 days and sampling 24 h after the last expo-
sure on day 91 (2184 h the beginning of the treatment). The experi-

mental data were from Linder et al. (1983). D Distribution of CD in 
male rats after a single oral dose of 40 mg/kg bw. The experimental 
data were from Belfiore et al. (2007). _Sim is the simulation profile 
and _Exp is the experimental data measured. The CD concentration 
(mg/L) or (µg/L) is shown on the Y axes and the hours or days on the 
X axes. Cb CD in the blood, Cbr CD in the brain, CF CD in the adi-
pose tissue, CLi CD in the liver
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Prediction of external doses for the French West 
Indies population based on blood concentrations

We conducted a simulation using the oral daily dose 
expressed in µg of CD/kg bw/day and compared it to a popu-
lation of healthy adult men living in the FWI as a function 
of the percentile of the plasma CD concentration (internal 
dose). Among the 671 men, 166 had blood CD concentra-
tions below the 25th percentile (Gr. 1 [< 0.18 µg/L, median 
0.04 µg/L]), 337 between the 25th and 75th percentiles 
(Gr. 2 [0.18 to 0.86 µg/L, median of 0.42 µg/L]), and 168 
above the 75th percentile (Gr. 3 [0.86 to 49.12 µg/L, median 
1.48 µg/L]) (Emeville et al. 2015). Values below the limit of 
detection (0.06 µg/L) were imputed as the limit of detection/
square root of 2 (Hornung and Reed 1990). The simulated 

external doses using the median values were 0.00068, 0.007, 
and 0.025 µg CD/kg bw/day, respectively (Fig. 5).

Model sensitivity analysis (SA)

A SA of the human PBPK model was conducted for all 
40 parameters (Supplementary Fig. S18). The parameters 
retained were those for which a change by ± 5% of the 
parameter values influenced the output blood concentra-
tion by more than ± 0.2% following chronic oral exposure 
of 0.001 µg/kg bw/day for 655 days. The most sensitive 
parameters observed were BIND (the fraction of CD bound 
to blood proteins), KA (absorption fraction in the GIT), 
KBILE (the metabolism fraction), KST (the unabsorbed 
fraction in the GIT), LIBMAXCD1 (the concentration of 
protein CDBP in the liver), and PF (the partition coefficient 
between adipose tissue and the blood).

Discussion

In the FWI, the pesticide CD was used in banana farming 
from 1973 to 1993, resulting in permanently polluted soil 
and waterways. Recent epidemiological studies identified 
health effects resulting from environmental exposure (Legoff 
et al. 2021b; Multigner et al. 2016). The chronic external 
 TLVexternal for CD recently reassessed (Anses 2021) high-
lighted the difficulty of performing such assessments without 
a human PBPK model. The objective of this study was to 
develop a mathematical PBPK model in rats using data in 
the literature and then extrapolate it to a human model to 
support health regulatory agencies.

Fig. 3  Comparison between simulated blood concentrations (n = 38) 
and sequential measurements of CD in humans (Adir et  al. 1978). 
A Spearman’s nonparametric test showed a Rho correlation of 0.96 
(p < 0.001)

Fig. 4  Profile concentrations of 
CD in the blood (expressed in 
µg/L) after repetitive exposure 
to different daily doses (in mg/
kg bw/day). Each lines repre-
sents different a simulation; dots 
represent the mean of the meas-
ured concentrations in blood 
for the different groups. Gr A 
represents affected workers, Gr 
B unaffected workers, Gr C the 
family members of a worker, 
and Gr D Hopewell residents 
(Cannon et al. 1978)
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Rats and humans share similar pharmacokinetic proper-
ties, except for metabolism, as rats have a limited hepatic 
CD reductase capacity to convert CD into its reduced form 
CD-OH (Houston et al. 1981; Molowa et al. 1986). In terms 
of absorption, distribution, and elimination, most CD is 
found in the rats’ faeces (Houston et al. 1981), whereas CD 
and CD-OH are found in human faeces (Fariss et al. 1978). 
The enterohepatic circulation and blood (Belfiore et al. 
2007; Skalsky et al. 1979b) and hepatic binding (Guzelian 
et al. 1981) provide a plausible explanation for the long half-
life of CD described for rats and humans (Boylan et al. 1978; 
Guzelian 1981). Only parent CD is present in the blood of 
both species (Fariss et al. 1980). In humans, the CD-OH 
found in faeces comes solely from bile (Guzelian 1981). 
Only negligible fractions of CD-OH have been detected in 
the urine and plasma for both rats and humans (Fariss et al. 
1978, 1980). Reconversion of CD-O-G and CD-OH to CD 
from GIT is mathematically described in this human PBPK 
model (Cohn et al. 1978; Scheline 1973).

The rat PBPK model was optimised with experimental 
measurements, such as a single oral low dose of 1 mg CD/
kg bw (Bungay et al. 1981) and a single oral high dose of 
40 mg CD/kg bw in rats, followed by sequential sampling 
(Egle et al. 1978). After optimization, the simulation for 
various exposure scenarios was relatively accurate, even 
when it involved a single exposure (Belfiore et al. 2007; 
Bungay et al. 1981) or repetitive exposure in the diet or by 
gavage (Linder et al. 1983; Richter et al. 1979). Addition 
simulations showing relatively good prediction are pre-
sented in Supplementary Figs. S5 to S17. Part of the old 
rat experimental dataset involved 14C labelled CD, making 
it impossible to distinguish the metabolites from the par-
ent compound. This may explain part of the discrepancy 
between the observed and simulated profiles. Overall, we 
consider our rat model to be adequate for risk assessments 
and extrapolation to humans. For all rat models described 
in the supplementary materials, that of Belfiore et al. (2007) 
provided graphs. This allowed us to compare the present 
model with the Belfiore PBPK model. The Belfiore model 
simulated their own data and that of Egle et al. (1978). Our 

rat PBPK model resulted in a better prediction than that of 
Belfiore et al. (2007) when simulating data from Egle et al. 
(1978) but in a similar prediction with data generated by 
Belfiore et al. (2007) (Fig. 2d).

Data for the pharmacokinetic mechanisms in the literature 
related to exposure measurements for humans are limited. 
Thus, we used the same coding template as that used for rats 
to improve confidence in the model structure. For the extrap-
olation, we studied and optimised the parameters based on 
the Hopewell observations. We assessed the predictive qual-
ity of the model by simulating workers highly exposed to CD 
at the Hopewell plant (Cohn et al. 1976; Taylor et al. 1978). 
We simulated a daily exposure for 1000 days, correspond-
ing to seven elimination T1/2 (131 days) and estimated the 
mean concentration at SS for blood, adipose tissue, and liver 
and then compared it the mean tissue concentrations from 
the literature (Cohn et al. 1976; Taylor et al. 1978). This 
simulation resulted in a good prediction using the reverse 
dosimetry approach, resulting in an estimated external daily 
dose of 0.19 mg CD/kg bw/day. Overall, these simulations 
provide crucial information to enhance our knowledge of 
the enterohepatic cycle, which is a transit parameter from 
the blood to the GIT lumen. As we anticipated, the human 
PBPK model based on the rat PBPK structure accurately 
predicted the results for three tissues (adipose tissue, blood, 
and liver concentration) of interest (Supplementary Fig. S5).

Concerning the human PBPK model, we performed two 
exercises with the same strategy using reverse dosimetry: 
(1) four groups of people exposed to CD at Hopewell at dif-
ferent exposure levels (from affected workers to Hopewell 
residents) (Fig. 4) (Cannon et al. 1978) and (2) an adult 
male population in FWI (Fig. 5) (Emeville et al. 2015). The 
simulations of external doses for the various groups related 
to Hopewell suggested that the resident population (Gr D, 
Fig. 4) was exposed to 0.3 µg CD/kg bw/day, which was 
260 times lower than the exposure of the poisoned workers 
of 78 µg CD/kg bw/day (Gr A Fig. 4). Concerning the FWI 
population, the median external dose of Gr. 3 (0.025 µg/
kg bw/day) and Gr.1 (0.00068 µg/kg bw/day) showed a gap 
≈ 37 times between the two groups (Fig. 5), suggesting a 

Fig. 5  Profile simulation 
reproducing the daily exposure 
of 671 adult healthy males from 
FWI. Three groups of blood 
concentrations were measured: 
Gr. 1 (n = 166), Gr. 2 (n = 337), 
and Gr. 3 (n = 168). Lines repre-
sent the simulation. Dots repre-
sent the blood concentration for 
each group for 1000 days. The 
measurements at 1000 days are 
arbitrary and correspond to the 
SS in blood based on a half-life 
of 131 days
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large diversity in the exposure profiles of this population. 
No comparison was possible between the Hopewell and FWI 
population, because the first dataset considered only detect-
able CD values and the second all values. We can only men-
tion that the difference was of several orders of magnitude 
between these two datasets.

Emeville et al. (2015) reported a significant increased risk 
of prostate cancer among subjects with blood CD concentra-
tions > 1.03 µg/L. The corresponding simulated threshold 
external oral dose was 0.0176 µg CD/kg bw/day. In another 
epidemiological study, Kadhel et al. (2014) reported a signif-
icantly increased risk of preterm birth for pregnant women 
with blood CD concentrations > 0.52 µg/L. Assuming a 
negligible impact of pregnancy on CD blood concentration, 
the simulated external dose corresponds to 0.009 µg CD/
kg bw/day. This suggests that an external CD concentration 
below 0.009 or 0.0176 µg/kg bw/day may have no effect 
on humans. These figures appear to be lower than the CD 
 TLVexternal (0.17 µg/kg bw/day) recommended by the ANSES 
using the Belfiore rat PBPK model (Anses 2021). This dis-
crepancy can be explained by differences in the pharma-
cokinetics and pharmacodynamics between the two species 
(including enterohepatic recirculation, distal GIT secretion, 
and biliary elimination).

The sensitivity analysis (SA) for the human model was 
performed by modifying optimized parameters by ± 5%. 
Such modification of only six among the 40 parameters 
modified the blood CD concentrations by more than ± 0.2%. 
This suggests that all the other parameters do not have an 
important impact, even if there is uncertainty in the accu-
racy. There are data for BIND and KBILE to support the val-
ues we obtained. Overall, the literature captured the pharma-
cokinetics of these parameters relatively well, which ensured 
our confidence in using them. We believe that these rat and 
human models simulate the observations from the literature 
relatively well.

The human CD PBPK model has several strengths. It can 
model epidemiological data and directly estimate the mean 
dose of exposure by reverse dosimetry without an interspe-
cies and intra-species uncertainty factor. This model also 
describes enterohepatic circulation and the reduction of 
CD to CD-OH. The limitations of this human PBPK model 
are related to certain pharmacodynamic components for 
which our knowledge is still insufficient: the importance of 
the lymphatic circulation for CD, the liver CDBP, how the 
CDBP influences CD storage in the liver, and how reabsorp-
tion and non-biliary excretion appear in the GIT. Despite 
these limitations, the present human PBPK model generated 
predictions that were relatively accurate and in accordance 
with several simulations of studies in rats (Supplementary 
Figs S5–S18). In addition, the measured blood concentra-
tions from epidemiological studies improve the confidence 
in the human PBPK model. This human PBPK model will 

be important in correlating the doses of external exposure 
to health effects based on blood concentrations and in sup-
porting governmental agencies in updating the chronic TLV 
based on human data.

Conclusion

This is the first human PBPK model applied to CD. Such a 
model can support health regulatory agencies in their efforts 
to help FWI populations currently exposed to CD. This 
model was designed, optimized, and assessed using all the 
data available in the literature for rats. We also performed a 
comparison with available human data. This human PBPK 
model is a good predictive tool and can be used to estimate 
external CD exposure dose scenarios based on internal CD 
blood concentrations.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00204- 022- 03231-3.
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