Continuous Well-Composedness Implies Digital Well-Composedness in n-D - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Imaging and Vision Année : 2022

Continuous Well-Composedness Implies Digital Well-Composedness in n-D

Laurent Najman
Thierry Géraud

Résumé

In this paper, we prove that when a n-D cubical set is continuously well-composed (CWC), that is, when the boundary of its continuous analog is a topological (n − 1)-manifold, then it is digitally wellcomposed (DWC), which means that it does not contain any critical configuration. We prove this result thanks to local homology. This paper is the sequel of a previous paper where we proved that DWCness does not imply CWCness in 4D.
Fichier principal
Vignette du fichier
boutry.22.jmiv.pdf (1.91 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03575456 , version 1 (15-02-2022)

Identifiants

Citer

Nicolas Boutry, Rocio Gonzalez-Diaz, Laurent Najman, Thierry Géraud. Continuous Well-Composedness Implies Digital Well-Composedness in n-D. Journal of Mathematical Imaging and Vision, 2022, 64 (2), pp.131-150. ⟨10.1007/s10851-021-01058-8⟩. ⟨hal-03575456⟩

Collections

TDS-MACS
22 Consultations
63 Téléchargements

Altmetric

Partager

More