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Daisy cubes are a class of isometric subgraphs of the hypercubes Q n . Daisy cubes include some previously well known families of graphs like Fibonacci cubes and Lucas cubes. Moreover they appear in chemical graph theory.

Two distance invariants, Wiener and Mostar indices, have been introduced in the context of the mathematical chemistry. The Wiener index W (G) is the sum of distance between all unordered pairs of vertices of a graph G. The Mostar index Mo(G) is a measure of how far G is from being distance balanced.

In this paper we establish that the Wiener and the Mostar indices of a daisy cube G are linked by the relation 2W

We deduce an expression of Wiener and Mostar index for daisy cubes.

Introduction

The Fibonacci cube of dimension n, denoted as Γ n , is the subgraph of the hypercube Q n induced by vertices with no consecutive 1's. This graph was introduced in [START_REF] Hsu | Fibonacci cubes a new interconnection technology[END_REF] as an interconnection network.

Lucas cubes [START_REF] Munarini | On the Lucas cubes[END_REF], are the cyclic version of Fibonacci cubes. Structural properties of these graphs have been widely studied (see [START_REF] Klavžar | Structure of Fibonacci cubes: a survey[END_REF] for a survey). Fibonacci cubes also play a role in mathematical chemistry. Indeed they are precisely the resonance graphs of fibonacenes an important class of hexagonal chains [START_REF] Klavžar | Fibonacci cubes are the resonance graphs of Fibonaccenes[END_REF]. Later in [START_REF] Žigert | Lucas cubes and resonance graphs of cyclic polyphenantrenes[END_REF], a similar connection have been found between Lucas cubes and the resonance graphs of cyclic polyphenanthrenes, which are related to non-cyclic fibonacenes. Fibonacci cubes and Lucas cubes belong to daisy cubes [START_REF] Klavžar | Daisy cubes and distance polynomial[END_REF] a familly of isometrical subgraphs of hypercubes.
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The connection between daisy cubes and resonance graphs of catacondensed even ring systems have been explored in [START_REF] Brezovnik | Resonance graphs of catacondensed even ring systems[END_REF].

The Wiener index W (G) of a connected graph G is the sum of distance all unordred pairs of vertices of G. This distance invariant is important in mathematical chemistry. The Wiener index of Γ n and Λ n have been determined in [START_REF] Klavžar | Wiener Index and Hosoya polynomials of Fibonacci and Lucas cubes[END_REF]. Recently the Mostar index Mo(G) has been introduced in [START_REF] Došlić | Mostar Index[END_REF] again in the context of graph chemical theory. It measures how far G is from being distance-balanced. The Mostar index of Fibonacci and Lucas cubes have been determined in [START_REF] Egecioglu | The Mostar Index of Fibonacci and Lucas Cubes[END_REF]. In this note we prove that if G is a daisy cube then the Wiener and the Mostar index are linked by the relation

2W (G) -Mo(G) = |V (G)||E(G)|.
In the last section we derive similar expressions for W (G) and Mo(G) from the sequence of the number of edges using the direction i for i ∈ [n].

Preliminaries

We will next give some concepts and notations needed in this paper. We denote by [n] the set of integers i such that 1 ≤ i ≤ n. Let {F n } be the Fibonacci numbers:

F 0 = 0, F 1 = 1, F n = F n-1 + F n-2 for n ≥ 2. Let B = {0, 1}.
If will be convenient to identify elements u = (u 1 , . . . , u n ) ∈ B n and strings of length n over B. We thus briefly write u as u 1 . . . u n and call u i the ith coordinate of u. We will use the power notation for the concatenation of bits, for instance 0 n = 0 . . . 0 ∈ B n . We will denote by u i the binary complement of u i .

The vertex set of Q n , the hypercube of dimension n, is the set B n , two vertices being adjacent iff they differ in precisely one coordinate. We will say that an edge uv of Q n uses the direction i if u and v differ in the coordinate i.

The distance between two vertices u and v of a graph G is the number of edges on a shortest shortest u, v-path. It is immediate that the distance between two vertices of Q n is the number of coordinates the strings differ, sometime called Hamming distance.

The Wiener index W (G) of a connected graph G is defined as the sum of all distances between pairs of vertices of G. Hence,

W (G) = {u,v}⊂V (G) d(u, v). A Fibonacci string of length n is a binary string b = b 1 b 2 . . . b n with b i • b i+1 = 0 for 1 ≤ i < n.
In other words a Fibonacci string is a binary string without 11 as substring. The Fibonacci cube Γ n (n ≥ 1) is the subgraph of Q n induced by F n the set of Fibonacci strings of length n. Because of the empty string ǫ, Γ 0 = K 1 .

Not that for any integer n,

|V (Γ n )| = F n+2 . A Fibonacci string b of length n is a Lucas string if b 1 • b n = 1.
That is, a Lucas string has no two consecutive 1s including the first and the last elements of the string.

The Lucas cube Λ n is the subgraph of Q n induced by the Lucas strings of length n. We have Λ

0 = Λ 1 = K 1 .
Fibonacci cubes and Lucas cubes where extended to generalized Fibonacci cubes [START_REF] Ilić | Generalized Fibonacci cubes[END_REF] and generalized Lucas cubes [START_REF] Ilić | Generalized Lucas cubes[END_REF]. For any arbitrary string f the generalized Fibonacci cubes If u and v are vertices of a graph G, the interval I G (u, v) between u and v (in G) is the set of vertices lying on shortest u, v-path, that is,

Q n [f ] is the subgraph of Q n induced
I G (u, v) = {w|d(u, v) = d(u, w) + d(w, v)}.
We will also write I(u, v) when G will be clear from the context. A subgraph G of a graph H is an isometric subgraph if the distance between any vertices of G equals the distance between the same vertices in H. Isometric subgraphs of hypercubes are called partial cubes. The dimension of a partial cube G is the smallest integer d such that G is an isometric subgraph of Q d . Many important classes of graphs are partial cubes, in particular trees, median graphs, benzenoid graphs, phenylenes, grid graphs and bipartite torus graphs. In addition, Fibonacci and Lucas cubes are partial cubes as well, see [START_REF] Klavžar | On median nature and enumerative properties of Fibonacci-like cubes[END_REF].

If G = (V (G), E(G)) is a graph and X ⊆ V (G), then X denotes the subgraph of G induced by X. Let ≤ be a partial order on B n defined with u 1 . . .

u n ≤ v 1 . . . v n if u i ≤ v i holds for i ∈ [n]. For X ⊆ B n we define the graph Q n (X) as the subgraph of Q n with Q n (X) = {u ∈ B n |u ≤ x for some x ∈ X}
and say that Q n (X) is the daisy cube generated by X. Note that if X is the antichain consisting of the maximal elements of the poset (X, ≤), then Q n ( X) = Q n (X). As noticed in the daisy cube introductory paper [START_REF] Klavžar | Daisy cubes and distance polynomial[END_REF] we can alternatively say that

Q n (X) = x∈X I Qn (x, 0 n ) = x∈ X I Qn (x, 0 n ) .
Finally we will say that a graph G is a daisy cube if there exist an isometrical embedding of G in some hypercube Q n and a subset X of B n such that G is the daisy cube generated by X. Such an embedding will be called a proper embedding.

By construction daisy cubes are partial cubes and as noticed in the same paper Fibonacci cubes, Lucas cubes, bipartite wheels, vertex-deleted cubes and hypercubes themselves are daisy cubes. It is easy to see that Pell graphs [START_REF] Munarini | Pell graphs[END_REF] are also daisy cubes. Furthermore A. Vesel proved [START_REF] Vesel | Cube-complement of generalized Fibonacci cubes[END_REF] that the cube complement of a daisy cube is a daisy cube.

For any fixed integer s ≥ 2 the generalized Fibonacci cubes Q n [1 s ] and Lucas cubes

Q n [ ← 1 
s ] are also daisy cubes. The Wiener index of these two families of graphs have been studied in [START_REF] Klavžar | On the Wiener Index of generalized Fibonacci and Lucas cubes[END_REF].

A construction of daisy cubes in terms of expansion procedure is given in [START_REF] Taranenko | Daisy cubes: A characterization and a generalization[END_REF]. Let a partial cube G of dimension n be given together with its isometric embedding into Q n . Then for i = 1, 2, . . . , n and χ = 0, 1 the semicube W (i,χ) is defined as follows:

W (i,χ) (G) = {u = u 1 u 2 . . . u n ∈ V (G) | u i = χ} .
For a fixed i, the pair W (i,0) (G), W (i,1) (G) of semicubes is called a complementary pair of semicubes. The Wiener index of partial cubes can be determined using the following result [START_REF] Klavžar | Labeling of benzenoid systems which reflects the vertex-distance relations[END_REF].

Theorem 2.1 Let G be a partial cube of dimension n isometrically embedded into Q n . Then W (G) = n i=1 |W (i,0) (G)| • |W (i,1) (G)| .
Notice that, as expected, this expression is independent of the embedding. Indeed isometric embeddings of G into Q n are unique up to the automorphisms of Q n , see [START_REF] Winkler | Isometric embedding in products of complete graphs[END_REF]. These automorphisms are generated by Θ = {θ i,j |i, j ∈ [n]} and T = {τ i |i ∈ [n]} where θ i,j is the permutation of coordinates i and j and τ i is the complementation of the coordinate i. A permutation θ i,j induces a similar permutation on complementary pairs and an element of T is also without effect on the expression of W (G) since τ i exchanges W (i,0) (G) and W (i,1) (G).

Let G = (V (G), E(G)) be a connected graph. For any edge uv ∈ E(G), let n u,v denote the number of vertices wich are closer to u than to v. The Mostar index Mo(G) is defined as

Mo(G) = uv∈E(G) |n u,v -n v,u |.
An expression of the Mostar index for partial cubes in given in [START_REF] Ghorbani | Some New Results on Mostar Index of Graphs[END_REF].

A relation

This section is devoted to the proof of the following theorem. 

2W (G) -Mo(G) = |V (G)||E(G)|.
Like in [START_REF] Klavžar | Wiener Index and Hosoya polynomials of Fibonacci and Lucas cubes[END_REF] where it is applied in particular to Fibonacci cubes and Lucas cubes, theorem 2.1 will be our starting point for proving the relation. Consider a proper embedding of G in Q n and thus let X ⊆ B n such that G = {u ∈ B n |u ≤ x for some x ∈ X} . For any i ∈ [n] let E i be the set of edges of G using the direction i.

We can now proceed to the proof of our relation. By theorem 2.1 we obtain Combining this identity with that of theorem 3.1 we obtain the following assertion. In conclusion of this paper note that it will be interesting to give bijective proofs of theorem 3.1 and its corollary.

W (G) = n i=1 |W (i,0) (G)| • |W (i,1) (G)| . Since |W (i,0) (G)| + |W (i,1) (G)| = |V (G)| we deduce from Lemma 3.5 that 2W (G) -Mo(G) = n i=1 |W (i,1) (G)|(2|W (i,0) (G)| -|W (i,0) (G)| + |W (i,1) (G)|) = n i=1 |W (i,1) (G)|.|V (G)| . Since E(G) is the disjoint union E(G) = ∪ n i=1 E i we have n i=1 |W (i , 

  by strings of B n which do not contain f as substring. Similarly the generalized Lucas cubes Q n [ ← f ] is induced by strings without a circulation containing f as substring. Classical Fibonacci and Lucas cubes correspond to f = 11.

Theorem 3 . 1

 31 Let G be a daisy cube. Then the Wiener and the Mostar indices of G are linked by the relation

  1) (G)| = |E(G)| and the relation follows.

4 Conclusion

 4 The Wiener and Mostar indices of daisy cubes are completely determined by |V (G)| and the sequence |E i | (for i ∈ [n]) of the number of edges using the direction i which is identical to the sequence of |W (i,1) (G)|. Indeed From theorem 2.1 and lemma 3.5 we have the relation W (G) -Mo(G) = n i=1 |W (i,1) (G)| 2 .

Corollary 4 . 1

 41 Let G be a daisy cube properly embedded into Q n . For i ∈ [n] let |E i | be the number of edges using the direction i. Then the Wiener and the Mostar indices of G areW (G) = |V (G)||E(G)| -n i=1 |E i | 2 Mo(G) = |V (G)||E(G)| -2 n i=1 |E i | 2 .

Proposition 3.2 For any i ∈ [n] we have

Proof. Let u = u 1 u 2 . . . u n in W (i,1) (G) and consider θ(u) = u 1 . . . u i-1 0u i+1 . . . u n . Note that θ(u) ≤ u and since u is a vertex of G there exists x ∈ X with u ≤ x. Therefore θ(u) ≤ x and θ(u) ∈ V (G). By this way we construct an injective mapping from W (i,1) (G) to W (i,0) (G).

Proposition 3.3 For any i ∈ [n] we have

and that the edge uv belongs to E i . Reciprocally exactly one of the extremities of a given edge of E i belongs to W (i,1) (G). We obtain a bijective mapping between W (i,1) (G) and E i . Proposition 3.4 For any edge uv of E i with u i = 0 we have 

Proof. Let e = uv be an edge of E i with u i = 0. By propositions 3.4 and 3.2 we have n The conclusion follows from proposition 3.3.