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A relation between Wiener index and Mostar index for
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May 12, 2022

Abstract

Daisy cubes are a class of isometric subgraphs of the hypercubes Qn. Daisy
cubes include some previously well known families of graphs like Fibonacci cubes
and Lucas cubes. Moreover they appear in chemical graph theory.

Two distance invariants, Wiener and Mostar indices, have been introduced in
the context of the mathematical chemistry. The Wiener index W (G) is the sum of
distance between all unordered pairs of vertices of a graph G. The Mostar index
Mo(G) is a measure of how far G is from being distance balanced.

In this paper we establish that the Wiener and the Mostar indices of a daisy
cube G are linked by the relation 2W (G)−Mo(G) = |V (G)||E(G)|. We deduce an
expression of Wiener and Mostar index for daisy cubes.

Keywords: daisy cube, Wiener index, Mostar index, Fibonacci cube, partial cube.
AMS Subj. Class. : 05C07,05C35

1 Introduction

The Fibonacci cube of dimension n, denoted as Γn, is the subgraph of the hypercube
Qn induced by vertices with no consecutive 1’s. This graph was introduced in [5] as an
interconnection network.

Lucas cubes [16], are the cyclic version of Fibonacci cubes. Structural properties
of these graphs have been widely studied (see [9] for a survey). Fibonacci cubes also
play a role in mathematical chemistry. Indeed they are precisely the resonance graphs
of fibonacenes an important class of hexagonal chains [14]. Later in [20], a similar
connection have been found between Lucas cubes and the resonance graphs of cyclic
polyphenanthrenes, which are related to non-cyclic fibonacenes. Fibonacci cubes and
Lucas cubes belong to daisy cubes [12] a familly of isometrical subgraphs of hypercubes.
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The connection between daisy cubes and resonance graphs of catacondensed even ring
systems have been explored in [1].

The Wiener index W (G) of a connected graph G is the sum of distance all unordred
pairs of vertices of G. This distance invariant is important in mathematical chemistry.
The Wiener index of Γn and Λn have been determined in [11]. Recently the Mostar
index Mo(G) has been introduced in [2] again in the context of graph chemical theory.
It measures how far G is from being distance-balanced. The Mostar index of Fibonacci
and Lucas cubes have been determined in [3]. In this note we prove that if G is a daisy
cube then the Wiener and the Mostar index are linked by the relation

2W (G)−Mo(G) = |V (G)||E(G)|.

In the last section we derive similar expressions for W (G) andMo(G) from the sequence
of the number of edges using the direction i for i ∈ [n].

2 Preliminaries

We will next give some concepts and notations needed in this paper. We denote by [n]
the set of integers i such that 1 ≤ i ≤ n. Let {Fn} be the Fibonacci numbers: F0 = 0,
F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2. Let B = {0, 1}. If will be convenient to identify
elements u = (u1, . . . , un) ∈ Bn and strings of length n over B. We thus briefly write u
as u1 . . . un and call ui the ith coordinate of u. We will use the power notation for the
concatenation of bits, for instance 0n = 0 . . . 0 ∈ Bn. We will denote by ui the binary
complement of ui.

The vertex set of Qn, the hypercube of dimension n, is the set Bn, two vertices
being adjacent iff they differ in precisely one coordinate. We will say that an edge uv

of Qn uses the direction i if u and v differ in the coordinate i.
The distance between two vertices u and v of a graph G is the number of edges on

a shortest shortest u, v-path. It is immediate that the distance between two vertices of
Qn is the number of coordinates the strings differ, sometime called Hamming distance.

The Wiener index W (G) of a connected graph G is defined as the sum of all
distances between pairs of vertices of G. Hence,

W (G) =
∑

{u,v}⊂V (G)

d(u, v).

A Fibonacci string of length n is a binary string b = b1b2 . . . bn with bi · bi+1 = 0 for
1 ≤ i < n. In other words a Fibonacci string is a binary string without 11 as substring.
The Fibonacci cube Γn (n ≥ 1) is the subgraph of Qn induced by Fn the set of Fibonacci
strings of length n. Because of the empty string ǫ, Γ0 = K1.

Not that for any integer n, |V (Γn)| = Fn+2.
A Fibonacci string b of length n is a Lucas string if b1 · bn 6= 1. That is, a Lucas

string has no two consecutive 1s including the first and the last elements of the string.
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The Lucas cube Λn is the subgraph of Qn induced by the Lucas strings of length n. We
have Λ0 = Λ1 = K1.

Fibonacci cubes and Lucas cubes where extended to generalized Fibonacci cubes [6]
and generalized Lucas cubes [7]. For any arbitrary string f the generalized Fibonacci
cubes Qn[f ] is the subgraph of Qninduced by strings of Bn which do not contain f as

substring. Similarly the generalized Lucas cubes Qn[
←
f ] is induced by strings without a

circulation containing f as substring. Classical Fibonacci and Lucas cubes correspond
to f = 11.

If u and v are vertices of a graph G, the interval IG(u, v) between u and v (in
G) is the set of vertices lying on shortest u, v-path, that is, IG(u, v) = {w|d(u, v) =
d(u,w) + d(w, v)}. We will also write I(u, v) when G will be clear from the context.
A subgraph G of a graph H is an isometric subgraph if the distance between any
vertices of G equals the distance between the same vertices in H. Isometric subgraphs
of hypercubes are called partial cubes. The dimension of a partial cube G is the smallest
integer d such that G is an isometric subgraph of Qd. Many important classes of graphs
are partial cubes, in particular trees, median graphs, benzenoid graphs, phenylenes, grid
graphs and bipartite torus graphs. In addition, Fibonacci and Lucas cubes are partial
cubes as well, see [8].

If G = (V (G), E(G)) is a graph and X ⊆ V (G), then 〈X〉 denotes the subgraph of
G induced by X. Let ≤ be a partial order on Bn defined with u1 . . . un ≤ v1 . . . vn if
ui ≤ vi holds for i ∈ [n]. For X ⊆ Bn we define the graph Qn(X) as the subgraph of
Qn with

Qn(X) = 〈{u ∈ Bn|u ≤ x for some x ∈ X}〉

and say that Qn(X) is the daisy cube generated by X. Note that if X̂ is the antichain
consisting of the maximal elements of the poset (X,≤), then Qn(X̂) = Qn(X). As
noticed in the daisy cube introductory paper [12] we can alternatively say that

Qn(X) =

〈
⋃

x∈X

IQn
(x, 0n)

〉
=

〈
⋃

x∈X̂

IQn
(x, 0n)

〉
.

Finally we will say that a graph G is a daisy cube if there exist an isometrical embedding
ofG in some hypercubeQn and a subsetX of Bn such thatG is the daisy cube generated
by X. Such an embedding will be called a proper embedding.

By construction daisy cubes are partial cubes and as noticed in the same paper
Fibonacci cubes, Lucas cubes, bipartite wheels, vertex-deleted cubes and hypercubes
themselves are daisy cubes. It is easy to see that Pell graphs [15] are also daisy cubes.
Furthermore A. Vesel proved [18] that the cube complement of a daisy cube is a daisy
cube.

For any fixed integer s ≥ 2 the generalized Fibonacci cubes Qn[1
s] and Lucas cubes

Qn[
←
1s] are also daisy cubes. The Wiener index of these two families of graphs have

been studied in [13].
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A construction of daisy cubes in terms of expansion procedure is given in [17].
Let a partial cube G of dimension n be given together with its isometric embedding

into Qn. Then for i = 1, 2, . . . , n and χ = 0, 1 the semicube W(i,χ) is defined as follows:

W(i,χ)(G) = {u = u1u2 . . . un ∈ V (G) | ui = χ} .

For a fixed i, the pair W(i,0)(G),W(i,1)(G) of semicubes is called a complementary pair

of semicubes. The Wiener index of partial cubes can be determined using the following
result [10].

Theorem 2.1 Let G be a partial cube of dimension n isometrically embedded into Qn.

Then

W (G) =

n∑

i=1

|W(i,0)(G)| · |W(i,1)(G)| .

Notice that, as expected, this expression is independent of the embedding. Indeed
isometric embeddings of G into Qn are unique up to the automorphisms of Qn, see [19].
These automorphisms are generated by Θ = {θi,j|i, j ∈ [n]} and T = {τi|i ∈ [n]}
where θi,j is the permutation of coordinates i and j and τi is the complementation of
the coordinate i. A permutation θi,j induces a similar permutation on complementary
pairs and an element of T is also without effect on the expression of W (G) since τi
exchanges W(i,0)(G) and W(i,1)(G).

Let G = (V (G), E(G)) be a connected graph. For any edge uv ∈ E(G), let nu,v

denote the number of vertices wich are closer to u than to v. The Mostar index Mo(G)
is defined as

Mo(G) =
∑

uv∈E(G)

|nu,v − nv,u|.

An expression of the Mostar index for partial cubes in given in [4].

3 A relation

This section is devoted to the proof of the following theorem.

Theorem 3.1 Let G be a daisy cube. Then the Wiener and the Mostar indices of G

are linked by the relation

2W (G)−Mo(G) = |V (G)||E(G)|.

Like in [11] where it is applied in particular to Fibonacci cubes and Lucas cubes, the-
orem 2.1 will be our starting point for proving the relation. Consider a proper embed-
ding of G in Qn and thus let X ⊆ Bn such that G = 〈{u ∈ Bn|u ≤ x for some x ∈ X}〉.
For any i ∈ [n] let Ei be the set of edges of G using the direction i.
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Proposition 3.2 For any i ∈ [n] we have

|W(i,0)(G)| ≥ |W(i,1)(G)| .

Proof. Let u = u1u2 . . . un in W(i,1)(G) and consider θ(u) = u1 . . . ui−10ui+1 . . . un.
Note that θ(u) ≤ u and since u is a vertex of G there exists x ∈ X with u ≤ x.
Therefore θ(u) ≤ x and θ(u) ∈ V (G). By this way we construct an injective mapping
from W(i,1)(G) to W(i,0)(G). �

Proposition 3.3 For any i ∈ [n] we have

|Ei| = |W(i,1)(G)| .

Proof. Indeed let u = u1u2 . . . un in W(i,1)(G) and let v = u1 . . . ui−10ui+1 . . . un. It is
clear that v is a vertex of G and that the edge uv belongs to Ei. Reciprocally exactly
one of the extremities of a given edge of Ei belongs to W(i,1)(G). We obtain a bijective
mapping between W(i,1)(G) and Ei. �

Proposition 3.4 For any edge uv of Ei with ui = 0 we have

W(i,0)(G) = {w ∈ V (G)|d(w, u) < d(w, v)}

W(i,1)(G) = {w ∈ V (G)|d(w, v) < d(w, u)} .

Proof. Since d(w, u) and d(w, v) are the number of coordinates the strings differ and
since u, v differ only by the coordinate i it is clear that d(w, u) = d(w, v) + 1 if w ∈
W(i,1)(G) and d(w, u) = d(w, v) − 1 otherwise. �

Lemma 3.5 Let G be a daisy cube of dimension n properly embedded into Qn. Then

Mo(G) =

n∑

i=1

|W(i,1)(G)|(|W(i,0)(G)| − |W(i,1)(G)|) .

Proof. Let e = uv be an edge of Ei with ui = 0. By propositions 3.4 and 3.2
we have nu,v = |W(i,0)(G)| ≥ |W(i,1)(G)| = nv,u. The contribution of the edge e to∑

uv∈E(G) |nu,v − nv,u| is thus |W(i,0)(G)| − |W(i,1)(G)|. Therefore

Mo(G) =
n∑

i=1

∑

uv∈Ei

(|W(i,0)(G)| − |W(i,1)(G)|) =
n∑

i=1

|Ei|(|W(i,0)(G)| − |W(i,1)(G)|).

The conclusion follows from proposition 3.3. �
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We can now proceed to the proof of our relation. By theorem 2.1 we obtain

W (G) =
n∑

i=1

|W(i,0)(G)| · |W(i,1)(G)| .

Since |W(i,0)(G)| + |W(i,1)(G)| = |V (G)| we deduce from Lemma 3.5 that

2W (G) −Mo(G) =
n∑

i=1

|W(i,1)(G)|(2|W(i,0)(G)| − |W(i,0)(G)| + |W(i,1)(G)|)

=

n∑

i=1

|W(i,1)(G)|.|V (G)| .

Since E(G) is the disjoint union E(G) = ∪n
i=1Ei we have

∑n
i=1 |W(i,1)(G)| = |E(G)|

and the relation follows. �

4 Conclusion

The Wiener and Mostar indices of daisy cubes are completely determined by |V (G)|
and the sequence |Ei| (for i ∈ [n]) of the number of edges using the direction i which
is identical to the sequence of |W(i,1)(G)|. Indeed From theorem 2.1 and lemma 3.5 we
have the relation

W (G)−Mo(G) =
n∑

i=1

|W(i,1)(G)|2.

Combining this identity with that of theorem 3.1 we obtain the following assertion.

Corollary 4.1 Let G be a daisy cube properly embedded into Qn. For i ∈ [n] let |Ei|
be the number of edges using the direction i. Then the Wiener and the Mostar indices

of G are

W (G) = |V (G)||E(G)| −

n∑

i=1

|Ei|
2

Mo(G) = |V (G)||E(G)| − 2
n∑

i=1

|Ei|
2.

In conclusion of this paper note that it will be interesting to give bijective proofs
of theorem 3.1 and its corollary.
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