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Abstract Large scale datasets created from crowdsourced labels or openly avail-
able data have become crucial to provide training data for large scale learning
algorithms. While these datasets are easier to acquire, the data are frequently
noisy and unreliable, which is motivating research on weakly supervised learn-
ing techniques. In this paper we propose original ideas that help us to leverage
such datasets in the context of change detection. First, we propose the guided
anisotropic diffusion (GAD) algorithm, which improves semantic segmentation re-
sults using the input images as guides to perform edge preserving filtering. We
then show its potential in two weakly-supervised learning strategies tailored for
change detection. The first strategy is an iterative learning method that combines
model optimisation and data cleansing using GAD to extract the useful informa-
tion from a large scale change detection dataset generated from open vector data.
The second one incorporates GAD within a novel spatial attention layer that in-
creases the accuracy of weakly supervised networks trained to perform pixel-level
predictions from image-level labels. Improvements with respect to state-of-the-art
are demonstrated on 4 different public datasets.

Keywords Remote sensing · Change detection · Weak supervision · Neural
networks · Anisotropic diffusion

1 Introduction

Change detection (CD) is one of the oldest problems studied in the field of remote
sensing image analysis [25,51]. It consists of comparing a pair or sequence of coreg-
istered images and identifying the regions where meaningful changes have taken
place between the first and last acquisitions. However, the definition of meaningful
change varies depending on the application. Changes of interest can be, for exam-
ple, new buildings and roads, forest fires, and growth or shrinkage of water bodies
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for environmental monitoring. Although exceptions exist, such as object-based and
change vector analysis methods, it is common for change detection algorithms to
predict a change label for each pixel in the provided images by modelling the task
mathematically as a segmentation or clustering problem.

Many variations of convolutional neural networks (CNNs) [35], notably fully
convolutional networks (FCNs) [36], have recently achieved excellent performances
in change detection tasks [10,13,7,21]. These methods require large amounts of
training data to perform supervised training of the proposed networks [34]. Un-
supervised change detection methods with CNNs also exist, which circumvent
the problem of scarce annotations [47,48,38,2]. Open labelled datasets for change
detection are extremely scarce and are predominantly very small compared to
labelled datasets in other computer vision areas. Benedek and Szirányi [6] cre-
ated the Air Change dataset which contain 13 small annotated images, divided
into three regions. Daudt et al. created the OSCD [11] dataset from Sentinel-2
multispectral images, with a total of 24 fully annotated image pairs. While these
datasets allow for simple models to be trained in a supervised manner, training
more complex models with these data would lead to overfitting.

New datasets have recently appeared which change the scale of what is pos-
sible for machine learning approaches, but they also raise new issues which are
illustrated by the two following examples. The High Resolution Semantic Change
Detection (HRSCD) dataset [13] is a large scale change detection dataset that was
generated by combining an aerial image database with open change and land cover
data. Change maps and land cover maps were generated for 291 5000x5000 RGB
image pairs, resulting in over 3000 times more annotated pixels than previous
change detection datasets. This dataset, however, contains unreliable labels due

(a) Image 1 (b) Image 2 (c) Reference data

(d) Manual GT (e) Naive (f) Proposed

Fig. 1 (a)-(b) image pair, (c) change labels from the HRSCD dataset, (d) ground truth created
by manually annotating changes, (e) result obtained by naive supervised training, (f) result
obtained by our proposed method.
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to having been generated automatically. The effect of naively using these data for
supervised learning of change detection networks is shown in Fig. 1. Inaccuracies
in the reference data stem primarily from two causes: imperfections in the vector
data at different semantic levels, and temporal misalignment between the annota-
tions and the images. Naive supervision using such data leads to overestimation
of the detected changes, as can be seen in Fig. 1(e). Nevertheless, there is much
useful information in the available annotations that, if used adequately, can lead
to better CD systems. Due to the way the ground truth was generated, the labels
in the dataset mark changes at a land parcel level with imprecise boundaries. That
is often the case when labels are extracted from parcel polygons. While useful for
global monitoring of changes in land cover, such labellings often do not delineate
precise object-level changes.

Other change detection datasets rely on cross referencing data obtained by on-
site surveys with available remote sensing imagery. Such is the case of the ABCD
dataset [20], which contains image pairs centered on buildings in a region that has
been affected by a tsunami. Images before and after the event were taken with
different sensors, and were registered and cropped around each known building in
the area. Binary change labels for each image pair are available, but segmentation
labels are not. This dataset contains over 8000 labelled image pairs, and is available
in two versions: fixed scale, where the spatial resolution of the images is kept
constant, and resized, where images are resized so that the length of the imaged
building takes up roughly a third of the patch size.

We explore in this paper how to leverage and learn from imprecise or ap-
proximate labels for remote sensing image analysis. In particular, we propose the
guided anisotropic diffusion (GAD) algorithm for label refinement. GAD is useful
to improve the accuracy of prediction boundaries using the input images as guides,
which is especially useful in a weakly supervised setting where accurate boundary
predictions are often challenging to obtain. We validate its contribution in two
weakly supervised learning settings that improve on previously proposed methods
for semantic segmentation. First, we use GAD in a training scheme that harnesses
the useful information in the HRSCD dataset for parcel-wise change detection, at-
tempting to refine the reference data while training a fully convolutional network.
By acknowledging the presence of incorrect labels in the training dataset (with re-
spect to our fine grained objective), we are able to focus on good data and ignore
bad ones, improving the final results as seen in Fig. 1(f). A preliminary version of
this idea has been proposed in [12,9]. Second, we also assess GAD in a different
task: performing pixel-level damage estimation in the ABCD dataset initially only
designed for classification. GAD improves spatial attention weights, which are then
used for classification and weakly supervised segmentation of changes. Finally, we
evaluate the effectiveness of GAD as a postprocessing algorithm for enhancing the
accuracy of region boundaries in semantic segmentation using fully convolutional
networks.

2 Related Work

Change detection has a long history, being one of the early problems tackled in
remote sensing image understanding [51]. It is done using coregistered image pairs
or sequences, and consists of identifying areas in the images that have experienced
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significant modifications between the acquisitions. Many of the state-of-the-art
ideas in pattern recognition have been used for change detection in the past, from
pixel-level comparison of images, to superpixel segmentation, object-level image
analysis, and image descriptors [25]. In this paper we treat change detection as a
two class semantic segmentation problem, in which a label is predicted for each
pixel in the input images. With the rise of machine learning algorithms for seman-
tic segmentation, notably convolutional neural networks, many algorithms have
attempted to learn to perform change detection. Most algorithms circumvented
the problem of the scarcity of training data through transfer learning by using
pretrained networks to generate pixel descriptors [50,15,16]. Fully convolutional
networks trained end-to-end to perform change detection have recently been pro-
posed by several authors independently, usually using Siamese architectures [54,
10,13,7,21]. Unsupervised [47,48,38,2] and semi-supervised [49] alternatives have
also been proposed to cope with the scarcity of accurately labelled data.

Semantic segmentation algorithms attempt to understand an input image
and predict to which class among a known set of classes each pixel in an input
image belongs. Change detection is modelled in this paper and many others as a
semantic segmentation problem which takes as input two or more images. Long
et al. proposed the first fully convolutional network for semantic segmentation,
which achieved excellent performance and inference speed [36]. Since then, several
improvements have been proposed for CNNs and FCNs. Ioffe and Szegedy have
proposed batch normalization layers, which normalize activations and help avoid
the vanishing/exploding gradient problem while training deep networks [26]. Ron-
neberger et al. proposed the usage of skip connections that transfer details and
boundary information from earlier to later layers in the network, which improves
the accuracy around the edges between semantic regions [46]. He et al. proposed
the idea of residual connections, which have improved the performance of CNNs
and FCNs and made it easier to train deep networks [24].

Noisy labels for supervised learning is a topic that has already been widely
explored [18,19]. In many cases, label noise is random (by this we mean, following
the literature terminology, independent of the data and not correlated) and is
modelled mathematically as such [41,53,45]. Rolnick et al. showed that supervised
learning algorithms are robust to random label noise, and proposed strategies to
further minimize the effect label noise has on training, such as increasing the
training batch sizes [45]. In the case presented in this paper, the assumption that
the label noise is random does not hold. Incorrect change detection labels are
usually around edges between regions or grouped together, which leads the network
to learn to overestimate detected changes as seen in Fig. 1(e). Ignoring part of the
training dataset, known as data cleansing (or cleaning), has already been proposed
in different contexts [40,28,22,27].

Weakly supervised learning is the name given to the group of machine
learning algorithms that aim to perform different or more complex tasks than
normally allowed by the training data at hand. Weakly supervised algorithms
have recently gained popularity because they provide an alternative when data
acquisition is too expensive. The problem of learning to perform semantic seg-
mentation using only bounding box data or image level labels is closely related to
the task discussed in this paper, since most methods propose the creation of an
approximate semantic segmentation ground truth for training and dealing with its
imperfections accordingly. Dai et al. proposed the BoxSup algorithm [8] where re-
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gion proposal algorithms are used to generate region candidates in each bounding
box, before a semantic segmentation network is trained using these annotations
and finally used to iteratively select better region proposal candidates. Khoreva
et al. proposed improvements to the BoxSup algorithm that include using ad hoc
heuristics and an ignore class during training [29]. They obtained best results using
region proposal algorithms to create semantic segmentation training data directly
from bounding boxes. Lu et al. modelled this problem as a simultaneous learning
and denoising task through a convex optimization problem [37]. Ahn and Kwak
proposed combining class activation maps, random walk and a learned network
that predicts if pixels belong to the same region to perform semantic segmenta-
tion from image level labels [1]. Zhou et al. proposed the class activation mapping
technique [55], which allows the networks to localize what regions in the image
contribute to the prediction of each class, which can be harnessed for generating
pixel-level predictions from image-level labels.

Post-processing methods that use information from guide images to filter
other images, such as semantic segmentation results, have also been proposed [44,
32,17]. A notable example is the Dense CRF algorithm proposed by Krähenbühl
and Koltun, in which an efficient solver is proposed for fully connected conditional
random fields with Gaussian edge potentials [33]. The idea of using a guide image
for processing another is also the base of the Guided Image Filtering algorithm
proposed by He et al. [23], where a linear model that transforms a guide image
into the best approximation of the filtered image is calculated, thus transferring
details from the guide image to the filtered image. The use of joint filtering is
popular in the field of computational photography, and has been used for several
applications [44,32,17]. One of the building blocks of the filtering method we pro-
pose in this paper is the anisotropic diffusion, proposed by Perona and Malik [43],
an edge preserving filtering algorithm in which the filtering of an image is mod-
elled as a heat equation with a different diffusion coefficient at each edge between
neighbouring pixels depending on the local geometry and contrast. However, to the
best of our knowledge, this algorithm has not yet been used for guided filtering.

3 Method

The main contributions of this paper are: 1) the guided anisotropic diffusion algo-
rithm, which uses information from the input images to filter and improve semantic
segmentation results (section 3.1), 2) an iterative training scheme that aims to ef-
ficiently learn from inaccurate and unreliable ground truth semantic segmentation
data (section 3.2), and 3) a learned spatial attention layer that improves classi-
fication and weakly supervised semantic segmentation for datasets whose images
have been cropped using the geographical coordinates of objects of interest. (sec-
tion 3.3). These contributions are described in detail below. While these ideas are
presented in this paper in the context of change detection, the proposed methods’
scope is broader and they could be used for other semantic segmentation problems,
as we show in Sections 3.4 and 4.3.
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3.1 Guided Anisotropic Diffusion

In their seminal paper, Perona and Malik proposed an anisotropic diffusion algo-
rithm with the aim of performing scale space image analysis and edge preserving
filtering [43]. Their diffusion scheme has the ability to blur the inside of homoge-
neous regions while preserving or even enhancing edges. This is done by modelling
the filtering as a diffusion equation with spatially variable coefficients. The cor-
responding equation is an extension of the linear heat equation, whose solution
is mathematically equivalent to Gaussian filtering when diffusion coefficients are
constant [31]. Diffusion coefficients are set to be higher where the local contrast
of the image is lower.

More precisely, we consider the anisotropic diffusion equation

∂I

∂t
= div(c(x, y, t)∇I) = c(x, y, t)∆I +∇c · ∇I (1)

where I is the input image, c(x, y, t) is the coefficient diffusion at position (x, y) and
time t, div represents the divergence, ∇ represents the gradient, and ∆ represents
the Laplacian. In its original formulation, c(x, y, t) is a function of the input image
I. To perform edge preserving filtering, one approach is using the coefficient

c(x, y, t) =
1

1 +
(
||∇I(x,y,t)||

K

)2 , (2)

which approaches 1 (strong diffusion) where the gradient is small, and approaches
0 (weak diffusion) for large gradient values. Other functions with these properties
and bound in [0, 1] may also be used. The parameter K controls the sensitivity to
contrast in the image.

In the guided anisotropic diffusion (GAD) algorithm, the aim is to perform
edge preserving filtering on an input image, but instead of preserving the edges
in the filtered image we preserve edges coming from a separate guide image (or
images). Doing so allows us to transfer properties from the guide image Ig onto
Iinput, producing the filtered image If . An illustrative example is shown in Fig. 2,
where the image of a cathedral (a) is used as a guide to filter the image of a
rough segmentation (b). The edges from the guide image Ig are used to calculate
c(x, y, t), which in practice creates barriers in the diffusion of the filtered image If ,
effectively transferring details from Ig to If . These edges effectively separate the
image in two regions, inside and outside the region of interest, and the pixel values
in each of these regions experience diffusion, but there is virtually no diffusion
happening between them.

Our primary aim is to use this GAD algorithm to improve semantic segmen-
tation results based on the input images. Weakly supervised learning methods are
often used when there is an overestimation or underestimation of the target area:
either the whole image is the starting point in classification to segmentation tasks,
or the reference region is too large in parcel to region segmentation tasks, or a
subset of pixels (points or squiggles) are used for supervision. GAD provides a
way to improve these semantic segmentation results by making them more pre-
cisely fit the edges present in the input images. A few design choices were made to
extend the anisotropic diffusion from gray level images to RGB image pairs. The
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Algorithm 1 Guided Anisotropic Diffusion pseudocode.
1: Input:Ig,1, Ig,2, Iinput, N , K, λ
2: Output:If
3: If ← Iinput

4: for (i← 1; i ≤ N ; i+ +) do
5: for (Ij = {I1, I2}) do
6: ∇Ij ← Calculate gradient of Ij
7: cIj ← Calculate diffusion coefficients using Eq. 3
8: Ij ← Ij + λ · ∇Ij · cIj
9: end for

10: ∇If ← Calculate gradient of If
11: cf ← Calculate diffusion coefficients using Eq. 4
12: If ← If + λ · ∇If · cf
13: end for

(a) Guide image (b) Input image (c) 300 it.

(d) 1000 it. (e) 3000 it. (f) 10000 it.

Fig. 2 Results of guided anisotropic diffusion. Edges in the guide image (a) are preserved in
the filtered image (b). (c)-(f) show results using different numbers of iterations.

extension to RGB images was done by taking the mean of the gradient norm at
each location

cIg (x, y, t) =
1

1 +
(∑

C∈{R,G,B}
||∇Ig,C(x,y,t)||

3·K

)2 , (3)

so that edges in any of the color channels would prevent diffusion in the filtered
image. To extend this further to be capable of taking multiple guide images simul-
taneously, which is necessary for the problem of change detection, the minimum
diffusion coefficient at each position (x, y, t) was used, once again to ensure that
any edge present in any guide image would be transferred to the filtered image:

cIg,1,Ig,2(x, y, t) = mini∈{1,2}cIi(x, y, t). (4)
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Guided anisotropic diffusion aims to improve semantic segmentation predic-
tions by filtering the class probabilities yielded by a fully convolutional network.
It is less adequate to correct for large classification mistakes, as opposed to non-
local methods such as Dense CRF, but it leads to smoother predictions with more
accurate edges. It can also be easily extended for any number of guide images by
increasing the number of images considered in Eq. 4. The pseudocode for the GAD
algorithm can be found in Alg. 1. As mentioned in the original anisotropic diffu-
sion paper, the algorithm is unstable for λ > 0.25 when using 4-neighborhoods for
the calculations. For more information the reader can refer to the mathematical
derivations presented in [43,3].

GAD parameters are tuned visually by performing anisotropic diffusion on
guide images from the dataset. Each parameter offers different trade-offs:

– K allows us to choose the magnitude of gradients that should be considered as
edges (and therefore diffusion should be restricted at that point).

– A larger number of iterations N allows for the diffusion to mix pixel values at
longer ranges (the ”receptive field” radius is equal to the number if iterations).

– If λ is set closer to 0 the algorithm approaches the continuous time solution
of the equations, at the cost of diffusion speed. This has not been observed to
improve results as long as λ is kept below the threshold of stability at λ = 0.25.

In the following sections, we show two ways to use GAD in approaches to
learn to perform semantic segmentation with imperfect labels. First, we address
in Section 3.2 the inaccurate labelling problem with an iterative data cleansing
scheme. Second, in Section 3.3 we explore another use-case and use GAD to learn
to segment changes from classification labels only.

3.2 Iterative Training Scheme

The first use-case we investigate for deploying GAD tackles the type of label noise
present in parcel-based change detection datasets where pixel labels are generated
from vector data . It is challenging due to its spatial structure and correlation
between neighbors. In the taxonomy presented in [18,19], this type of label noise
would be classified as ”noisy not at random” (NNAR). NNAR is the most complex
among the label noise models in the taxonomy. This is the classification applied to
noise when the samples that are mislabelled are not randomly dispersed, and the
type of noise is also not random. For labels generated from parcel polygons, label
noise will be concentrated around region boundaries and the type of noise will be
defined by the classes of the imaged objects. In the case of HRSCD, most errors
can be attributed to one of the following reasons: the available information is in-
sufficient to perform labelling, errors on the part of the annotators, subjectiveness
of the labelling task, and temporal misalignment between the databases used to
create the HRSCD dataset.

It is important to note that, as discussed by Frénay and Kabán in [18], label
noise has an even more powerful damaging impact when a dataset is imbalanced
since it alters the perceived, but not the real, class imbalance and therefore the
methods used to mitigate class imbalance during training are less effective. In the
case of change detection with the HRSCD dataset, the no change class outnumbers
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CLEAN DATA

New reference
data

Predictions

Original
ground truth
(first step)
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training with
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TRAIN NETWORK

Reference
generation

1. Process
predictions

2. Combine
with original GT

3. Recalculate
class weights

First step
Initialization
of the loop

Prediction / refinement loop

Fig. 3 Iterative training method: alternating between training and data cleaning allows the
network to simultaneously learn the desired task and to remove bad examples from the training
dataset.

Algorithm 2 Iterative training pseudocode.
Input: I: Image pairs, GTo: Original unreliable ground truths, N : Number of hyperepochs,
Φr: Initial random network weights.
Output: ΦN : Trained network weights.
w0 ← calculate class weights inversely proportional to number of class examples
Φ0 ← Train network with I and GT0 until convergence or fixed number of epochs
for (i← 1; i ≤ N ; i+ +) do
Pi ← generate predictions for training dataset with current network
Pi,pp ← Post-processing of predictions
GTi ← Combine Pi,pp with GT0 to generate cleaner ground truth data
Φi ← Continue training network from Φi−1 using I and GTi until convergence

end for

the change class 130 to 1, which means the label noise could significantly alter the
calculated class weights used for training.

It has been noticed in [13] and in the experiments presented in this paper that
change detection networks trained directly on the HRSCD dataset had the capacity
to detect changes in image pairs but tended to predict blobs around the detected
change instances, as is depicted in Fig. 8(c), likely in an attempt to minimize the
loss for the training images where the surrounding pixels of true changes are also
marked as having experienced changes. In many cases, it was observed that the
network predictions were correct where the ground truth labels were not. Based
on this observation, we propose a method for training the network that alternates
between actual minimization of a loss function and using the network predictions to
clean the reference data before continuing the training. A schematic that illustrates
the main ideas of this method is shown in Fig. 3. For the remainder of this paper,
the iteration cycles of training the network and cleaning of training data will be
referred to as hyperepochs.

Alternating between training a semantic segmentation network and using it to
make changes to the training data has already been explored [8,29]. Such iterative
methods are named ”classification filtering” [19]. The main differences between
the method proposed in this paper and previous ones are:
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Original GT
P

re
d

.
0 1

0 0 0
1 0 1

(a) Intersection
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1 0 1

(b) FN← Ignore

Original GT
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d
.

0 1
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1 2 1

(c) FN∪FP← Ignore

Fig. 4 Proposed methods for merging original labels and network predictions. Classes: 0 is
no change, 1 is change, 2 is ignore. (a) Intersection between original and detected changes. (b)
Ignore false negatives from the perspective of original labels. (c) Ignore all pixels with label
disagreements.

1. No bounding box information is available: we work directly with pixel
level annotations, which were generated form vector data;

2. Each annotated region may contain more than one instance: the an-
notations often group several change instances together;

3. Annotations are not flawless: the HRSCD dataset contains both false pos-
itives and false negatives in change annotations.

It has also been shown by Khoreva et al. in [29] that simply using the outputs
of the network as training data leads to degradation of the results, and that it is
necessary to use priors and heuristics specific to the problem at hand to prevent a
degradation in performance. In this paper we use two ways to avoid degradation
of the results with iterative training. The first is using processing techniques that
bring information from the input images into the predicted semantic segmenta-
tions, improving the results and providing a stronger correlation between inputs
and predictions. The GAD algorithm presented in Section 3.1 serves this purpose,
but other algorithms such as Dense CRF [33] may also be used. The second way
the degradation of results is avoided is by combining network predictions with the
original reference data at each iteration, instead of simply using predictions as
reference data.

We propose three ways of merging the original labels with network predictions.
When merging, each pixel will have a binary label from the original ground truth
and a binary label from the network prediction. If these labels agree, there is
no reason to believe the label for that pixel is wrong, and it is therefore kept
unchanged. In case the labels disagree, the following options to decide the pixel’s
label are proposed:

1. The intersection of predicted and reference change labels is kept as
change: this strategy assumes all changes are marked in both the reference
data and in the prediction. It also puts pixels with uncertain labels in the no
change class, where they are more easily diluted during training due to the
class imbalance.

2. Ignore false negatives: using an ignore class for false negatives attempts
to keep only good examples in the change class, improving the quality of the
training data. It assumes all changes are marked in the original labels provided.

3. Ignore all disagreements: marking all label disagreements to be ignored
during training attempts to keep only clean labels for training at the cost of
reducing the number of training examples. This approach is the only one that
is class agnostic.
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(a) Image 1 (b) Image 2 (c) GT and prediction

(d) Intersection (e) FN← Ignore (f) FN∪FP← Ign.

Fig. 5 Example case of the three proposed merge strategies. In (c), black is true negative,
white is true positive, magenta is false negative, and green is false positive. In (d)-(f) blue
represents the ignore class.

In practice, the ignored pixels are marked as a different class that is given a class
weight of 0 during the training. Tables for the three proposed methods can be
found in Fig. 4, and an example can be found in Fig. 5.

3.3 Scene-Invariant Spatial Attention Layer

Our second change detection use-case for GAD-enhanced weak supervision ad-
dresses the more challenging task of inferring segmentation masks from image-level
classification labels. Many datasets in remote sensing contain georeferenced data,
such as patches cropped from large images using the coordinates of known objects
for which a label is known. In such cases, objects to which the labels refer are
located in the center of the images, while the characteristics of their surroundings
are not directly related to the available labels. Pooling techniques such as max
pooling and average pooling that are very often used in CNNs are invariant with
respect to the image position. These operations fail to make use of the heuristic
described above, and do not learn to prioritize some areas of the image over others
when making classification predictions.

To increase the localization capability through the global average pooling op-
eration, we propose here a learned spatial attention layer that can be used to
allow the network to learn which positions of the images are more discriminative
and should be prioritized over others when making inferences. We also propose
to use the GAD algorithm to further focus the attention of the network on the
most relevant features. Let’s assume that a feature map x of size C ×M × N is
obtained after any number of convolution, pooling and other operations from an
input image (or images in the case of change detection), where C is the number
of channels and M and N are spatial dimensions. We define a matrix A of size
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Conv.
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Att.
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|CA-CB|
GAPSoftmax

Classification
0 / 1

Softmax
Segmentation

Fig. 6 Basic schematic of the network used for weakly supervised change detection. Two
paths can be taken: the classification path uses the proposed attention layer and global average
pooling to produce a classification of the image, while the segmentation path avoids these steps
to output pixel-level predictions. Supervision is only available on the classification path.

M ×N which will be learned by the network, and will serve as attention weights
given to spatial locations. The attention operation f(x) can then be defined as

f(x)c,i,j = α · xc,i,j · σ(ai,j), (5)

where ai,j denotes the element of A in position (i, j), σ denotes the sigmoid func-
tion and α is a normalization term defined as

α =

M∑
i=1

N∑
j=1

σ(ai,j). (6)

The sigmoid function is used to ensure the attention weights given to each spatial
location is in the range (0, 1). The matrix A is initialized as a null matrix so
that all spatial locations have equal attention values of σ(ai,j) = 0.5. Random
initialization of A is neither necessary nor recommended.

The proposed attention layer is designed to be used after a softmax operation
and before a global average pooling (GAP) layer. Doing so will force the network to
produce per-pixel classification predictions, which are then put through a weighted
average operation whose weights are learnable parameters which depend only on
the spatial position of each feature. Global average pooling is preferable to max
pooling at the end of a network when we want the network to be able to localize
objects, as was discussed in [55]. Note that the number of learnable parameters
introduced by this attention layer is only M ·N , which is extremely small in the
context of deep neural networks. At inference time, the learned attention weights
can be further adapted to the input images by using the GAD algorithm proposed
in Section 3.1. This helps the network to focus its attention at the building at the
center of the image pair, further increasing classification performance.

In this paper, we incorporate this attention layer into the classification branch
of the architecture depicted in Fig. 6. The images are processed by two convolu-
tions with stride 1

2 and 5 residual blocks before their features are merged, and 4
residual blocks after. This architecture allows us to perform either classification
or segmentation by choosing either of the paths at the end. This architecture is
a straightforward Siamese extension of the ideas presented in [55]. Supervision is
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Fig. 7 Schematic for the experiments performed to evaluate if GAD is able to compensate for
supervision using images at a lower resolution and improve prediction accuracy around region
boundaries.

only available for the classification branch, but the structure of the network al-
lows us to apply equivalent classification operations at each spatial locations by
avoiding the attention and global average pooling layers, effectively performing
semantic segmentation.

3.4 Edge Enhancement Using Guided Anisotropic Diffusion for Segmentation
Upsampling

We further propose an experiment to evaluate the efficacy of the proposed guided
anisotropic diffusion algorithm in a more general semantic segmentation setting.
In this case, we attempt to compensate for when the network is supervised with
images with a lower ground sample distance (GSD) when it is applied to images
with a higher GSD. In this case, a network that is supervised with images at a
lower resolution struggles to predict region boundaries at higher resolutions.

To apply a CNN trained with images with a smaller GSD to images with
higher GSDs, it is first necessary to downsample the higher resolution images.
This is necessary because the network has learned to detect objects at a given
scale, and changing the scale of the input images would pose additional problems
due to the shift in dataset statistics. The downsampled image is then segmented
using the fully convolutional network, which produces softmax activations, i.e.
class probabilities, for each pixel. To bring these low resolution predictions back
to the higher GSD, these class probabilities are upsampled back to the original
resolution. This procedure leads to semantic region boundaries not being very
accurate. In our experiments, we use the proposed guided anisotropic diffusion
algorithm to recover boundary information using the high resolution as a guide
for where the semantic boundaries should be located. A diagram that illustrates
this procedure can be found in Fig. 7.

These experiments illustrate how GAD could be used to help networks adapt
to new applications with different data. Resolution differences is very common in
remote sensing due to images coming from different satellite or aerial sources, and
thus coping with such variations is important.
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(a) Image 1 (b) Image 2 (c) Naive
prediction

(d) 2000 it. (e) 5000 it. (f) 20000 it.

Fig. 8 Guided anisotropic diffusion for filtering a real example of semantic segmentation. The
diffusion allows edges from the guide images to be transferred to the target image, improving
the results (change area in red).

(a) Image 1 (b) Image 2 (c) Reference
data

(d) Naive
prediction

(e) Dense
CRF

(f) GAD

Fig. 9 Comparison between (c) original dataset ground truth, (e) prediction filtered by Dense
CRF, and (f) prediction filtered with guided anisotropic diffusion for 20000 iterations. (changes
in red).

4 Experiments

The experiments presented in this paper have been divided into three sections.
The first one, in Section 4.1, explores how the integration of GAD in the iterative
training scheme of section 3.2 allows us to refine approximate labels to obtain
pixel-level change detection more accurately than through direct supervision. The
second one, in Section 4.2, shows the effectiveness of GAD combined with a spatial
attention layer (Section 3.3) in performing weakly supervised change detection
using only image-level labels to perform pixel-level predictions. Finally, we evaluate
in Section 4.3 the usage of GAD for adapting to multiple spatial resolutions for
building and generic segmentation tasks, as defined in Section 3.4.

4.1 Label Refinement Through Iterative Learning

To validate the iterative training scheme proposed in Section 3.2 we adopted the
hybrid change detection and land cover mapping fully convolutional network pre-
sented in [13], since it was already proven to work with the HRSCD dataset. We
adopted strategy 4.2 described in [13], in which the land cover mapping branches
of the network are trained before the change detection one to avoid setting a bal-
ancing hyperparameter. The land cover mapping branches of the network were
fixed to have the same parameter weights for all tests presented in this paper, and
evaluating those results is not done here as the scope of this paper is restricted to
the problem of change detection.

We applied the GAD algorithm to the predictions from a network trained
directly on the reference data from HRSCD to evaluate its performance. In Fig. 8
is displayed an example of the obtained results. As noted before, we can see in (c)
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Fig. 10 Ablation studies. (a) Comparison between strategies for merging network predictions
and reference data. (b) Comparison between iterative training with and without the usage of
original reference data. (c) Comparison between GAD and Dense CRF. Top row contains Dice
scores, bottom row contains global accuracy curves.

that the change is detected but that unchanged pixels around it are also classified
as changes by the network. In (d)-(f) it can be clearly seen how the GAD algorithm
improves the results by diffusing the labels across similar pixels while preserving
edges from the input images in the semantic segmentation results. As expected,
more iterations of the algorithm lead to a stronger erosion of incorrect labels. For
these results, GAD was applied with K = 5 and λ = 0.24. In Fig. 9 we can see
a comparison between GAD and the Dense CRF1 algorithm [33]. While the non-
local nature of fully connected CRFs is useful in some cases, we can see the results
are less precise and significantly noisier than the ones obtained by using GAD.

To perform quantitative analysis of results, it would be meaningless to use
the test data in the HRSCD dataset. Using a GeForce GTX 1060 GPU, applying
GAD to a 512x512 image for 100 iterations took approximately 230 ms. Indeed,
we are attempting to perform a task which is not the one for which ground truth
data are available since i.e.we are attempting to perform pixel-level precise change
detection and not parcel-level change detection. For this reason we have manually
annotated the changes as precisely as possible for two 10000x10000 image pairs
in the dataset, for a total of 2·108 test pixels, or 50 km2. The image pairs were
chosen before any tests were made to avoid biasing the results. Due to the class
imbalance, total accuracy, i.e.the percentage of correctly classified pixels, provides
us with a skewed view of the results biased towards the performance on the class
more strongly represented. Therefore, the Sørensen-Dice coefficient (equivalent to
the F1 score for binary problems) from the point of view of the change class was
used [14,52]. The Sørensen-Dice coefficient score is defined as

Dice = (2 · TP )/(2 · TP + FP + FN) (7)

where TP means true positive, FP means false positive, and FN means false neg-
ative. It serves as a balanced measurement of performance even for unbalanced
data.

1 https://github.com/lucasb-eyer/pydensecrf

https://github.com/lucasb-eyer/pydensecrf


16 Rodrigo Caye Daudt et al.

(a) Image 1 (b) Image 2 (c) Baseline (d) GAD
2500 it.

(e) No ref.
constraint

(f) Dense
CRF

Fig. 11 Change maps obtained by using different methods on two image pairs. Detected
changes are marked in red color.

All tests presented here were done using PyTorch [42]. At each hyperepoch,
the network was trained for 100 epochs with an ADAM algorithm for stochastic
optimization [30], with learning rate of 10−3 for the first 75 epochs and 10−4 for
the other 25 epochs. The tests show the performance of networks trained with
the proposed method for 5 hyperepochs (iterations of training and cleaning the
data), where the first one is done directly on the available data from the HRSCD
dataset. For accurate comparison of methods and to minimize the randomness
in the comparisons, the obtained network at the end of hyperepoch 1 is used as
a starting point for all the methods. This ensures all networks have the same
initialization at the point in the algorithm where they diverge. A baseline network
was trained for the same amount of epochs and hyperepochs but with no changes
done to the training data. This serves as a reference point as to the performance
of the fully convolutional network with no weakly supervised training methods.

The first comparison, shown in Fig. 10(a), compares the three methods pro-
posed in Section 3.2 to combine the network predictions with the original ground
truth from the HRSCD dataset. We notice that all three strategies surpass the
baseline network using the proposed iterative training method, which validates
the ideas presented earlier. In Fig. 10(b) we see a comparison between a training
using the full training scheme proposed in this paper (without the usage of an
ignore class) and the same method but without using the original reference data,
i.e.using only network predictions processed by GAD to continue training at each
hyperepoch. Our results, which corroborate the ones in [29], show that referring
back to the original data at each hyperepoch is essential to avoid a degradation in
performance.

In Fig. 10(c) we show a comparison between using the proposed GAD algorithm
versus the Dense CRF [33] algorithm in the iterated training procedure, as well
as using both together. We see that using the Dense CRF algorithm to process
predictions leads to good performance in early hyperepochs, but is surpassed by
GAD later on. This is likely explained by the non local nature of Dense CRF and
its ability to deal with larger errors, but its inferior performance relative to GAD
for finer prediction errors.

Figure 11 shows the predictions by networks trained by different methods on
two example images. We see that the best results are obtained by using the full
training scheme with GAD in (d)/(j), followed by Dense CRF, which also achieves
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(a) Image 1 (b) Image 2 (c) Reference
data

(d) Naive
prediction

(e) GAD

Fig. 12 Results using the complete inference pipeline (changes in red). GAD is used to improve
predictions during the iterative training process as well as for improving the final segmenta-
tions.

good results shown in (f)/(l). The baseline results in (c)/(i), obtained by naively
training the network in a supervised manner, and the ones without using the
reference data as constraint in the iterative training scheme shown in (e)/(k) are
significantly less accurate than those using GAD or Dense CRF. The final change
maps that were produced by the proposed method for two test cases can be seen
in Fig. 12.

4.2 Scene-Invariant Spatial Attention Layer

We tested the proposed method using the ABCD dataset proposed by Fujita et
al. [20]. This dataset contains pairs of crops of images centered on buildings that
have been surveyed to evaluate their destruction after a tsunami. We have followed
the 5-fold cross validation that was defined by the dataset’s creators. All networks
were trained from scratch using only the ABCD dataset, using an initial learning
rate of 0.005 for 10 epochs, then with a linearly decaying learning rate for 90
epochs for a total of 100 epochs. The classification results for these tests are
presented in Table 1. These results show that our network with the attention
module performed very similarly to the ones presented in [20]. It is also clear
that the proposed attention module improved the classification accuracy of the
networks significantly. The obtained results also show that filtering the attention
weights using the GAD algorithm further increases the classification performance
of the proposed network, improving the quality of the attention weights by using
the input images as guides.

Figure 13 show the learned spatial attention weights learned in each of the
performed tests. We can clearly see how consistent the network was in identifying
that the most discriminative region of the images was located in the center. It
is also apparent that the network identified that the scale of this discriminative
region is larger in the resized version of the dataset compared to the fixed-scale
version.
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Fig. 13 Spatial attention weights that were learned in each of the cross-validation tests. Top
row contains all 5 tests using fixed scale ABCD dataset, bottom row are the results using the
rescaled version of the dataset. Note that the network was incredibly consistent in identifying
the center of the images as most discriminative without any explicit knowledge. These attention
matrices are of size 40× 40.

Table 1 Accuracy and standard deviation for each test on ABCD dataset using 5-fold cross
validation. Fixed scale and resized variations of the ABCD dataset were tested. Results from
methods proposed by Fujita et al. are included for comparison.

Method Fixed scale Resized

6-ch [20] 94.5± 0.5 94.7± 0.3
siam [20] 94.8± 0.3 94.9± 0.4

No attention 89.33± 0.79 90.96± 0.65
Attention 94.36± 0.26 94.88± 0.18
Attention + GAD 94.58± 0.27 94.90± 0.22

Qualitative analysis of segmentation results show that the usage of the pro-
posed spatial attention operation allowed the network to vastly increase its ca-
pacity to localize features in the input images, which led to much more accurate
segmentation, as depicted in Fig. 14. The results also show how using the GAD
algorithm for post-processing further increased the spatial accuracy of the seg-
mentation results. In these images, the application of our algorithm without an
attention layer or GAD (column ”No attention”) can be seen as a simple Siamese
extension of the CAM technique for handling two input images [55]

These results suggest that there is a positive feedback loop that happens during
the training process between the network’s ability to localize discriminative fea-
tures and the spatial attention operation. Once the network develops the ability
to roughly localize discriminative features, this allows the training of the spatial
attention layer, which leads the network to learn even more local features, and so
on.

Two notable examples can be seen in Fig. 14. The first one is the example in
the fourth row, which shows that the network is not simply finding buildings in
the second image and marking those as unchanged. In this example, a building
is present in the second image but it is marked as a change nonetheless since it
doesn’t match the buildings in the first image. The second notable example is the
one showed in the last row, where a very small change was detected in the center
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Image 1 Image 2 No attention Attention Att. + GAD Att. coef.

Fig. 14 Results obtained by using the proposed method. Note that when the attention layer is
not used, the network does not learn to localize the features and tends to predict all pixels into
the same class. The attention layer enables the network to localize features much more accu-
rately, and the GAD post-processing further increases the spatial accuracy of such predictions.
Changes are marked in red.

of the image, surrounded only by unchanged buildings. Since the position of this
detected change coincided to the spatial attention position, the network was able
to mark this image pair as a change, which is correct according to the ground
truth label. The same was not accomplished by the network without the attention
layer.

4.3 Edge Enhancement for Segmentation Upsampling

To further validate the effectiveness of GAD as a postprocessing tool in a more
general setting, we perform the experiments described in Section 3.4, where we
study how GAD can be used for edge enhancement for upsampled softmax acti-
vations. To simulate a setting where data with different resolutions are available,
we use subsampled images for training the network and study their predictions
following the steps depicted in Fig. 7.

We performed these experiments using two datasets. The first one is the Inria
Aerial Image Labeling Dataset [39], which contain RGB images of several urban
areas in different countries and environments at a spatial resolution of 0.3 m/px,
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along with binary pixel-level labels that indicate the presence of buildings. The
train/validation split that was proposed by the dataset creators (i.e. keeping the
first five images for each location for validation) was used, which results in 155
images for training and 25 images for validation, all of size 5000 × 5000 pixels.
The second dataset used for testing this approach was the Vaihingen Dataset2,
which contains false color images for the urban area of Vaihingen at a spatial
resolution of 0.09 m/px, as well as pixel-level semantic segmentation labels. We
followed the train/validation split proposed by Audebert et al. in [4]. The code
for this work3 was also used with the appropriate modification to perform the
subsampling experiments. The standard SegNet architecture was used for all the
experiments in this section [5]. The parameters for the GAD algorithms were tuned
visually using a few example images before being applied to the validation dataset.
For the experiments presented in this section, the parameters that were used were:
λ = 0.24, N = 1000, and K = 0.002 (for images normalized between 0 and 1).

Input
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ss=1+GAD

ss=4

ss=4+GAD

ss=8

ss=8+GAD

ss=12

ss=12+GAD

ss=16

ss=16+GAD

Fig. 15 Results obtained from experiments on the Inria Aerial Image Labeling Dataset. GAD
successfully mitigated the accuracy loss in region boundaries at higher subsampling rates.

Qualitative and quantitative results for the experiments performed on the Inria
dataset can be seen in Figs. 15 and 16, respectively. Figure 15 clearly shows the
efficacy of GAD to transfer edges from the guide image onto the predictions.
It also shows that, as a postprocessing algorithm, the quality of the output is
strongly linked to the quality of the input, and GAD is not able to accurately
fix large errors in the predictions if the inputs miss large parts of the objects.
These images illustrate that higher subsampling factors led to worse results, as is
expected. Nevertheless, GAD was able to improve the precision of predicted region
boundaries in all cases.

The quantitative analysis presented in Fig. 16 shows a small but consistent
improvement due to the GAD algorithm. The small scale of these quantitative
improvements can be explained by the fact that GAD only affects region bound-
aries, which is itself only a small fraction of the total number of pixels. But the
consistency that is observed in the improvement of these results show that GAD is
clearly improving the predictions. It is also important to note that the Dice scores

2 https://www2.isprs.org/commissions/comm2/wg4/benchmark/
2d-sem-label-vaihingen/

3 https://github.com/nshaud/DeepNetsForEO

https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-vaihingen/
https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-vaihingen/
https://github.com/nshaud/DeepNetsForEO
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Fig. 16 Results for improving segmentation boundaries on the Inria Aerial Image Labeling
Dataset. Consistent improvements across all metrics have been observed for all subsampling
rates bigger than 1.
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Fig. 17 Results obtained from experiments on Vaihingen dataset. GAD performs well in larger
objects with visible boundaries in the guide image. Classes with weak color differences (e.g.
trees next to low vegetation) don’t provide the clear gradient maps that GAD needs to perform
well.

are improved for both classes. According to these results, the subsampling rate at
which GAD leads to the biggest gain is ss = 8.

Results on the Vaihingen dataset can be seen in Figs. 17, 18, and 19. Two main
conclusions can be drawn from Fig. 17. First, objects with well defined boundaries
in the guide image (e.g. buildings) benefit from GAD postprocessing. Second,
objects with fuzzy borders or near objects with similar colors (e.g. trees next to
grass) do not provide the necessary gradients that guide the anisotropic diffusion,
and therefore do not benefit from GAD postprocessing.
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Figure 17 shows that the classes ”buildings”, ”roads”, and ”low vegetation”
profit from GAD postprocessing similarly to the results on the Inria dataset. Once
again, the small gains can be explained by the fact that GAD acts only on region
boundaries. The ”trees” and ”cars” classes did not benefit from GAD postprocess-
ing, likely for different reasons. The ”trees” regions often had colours very similar
to the ones of to the neighbouring regions, which did not lead to sharp gradient
maps. The ”cars” class contained objects that are relatively small, and therefore
could easily be eroded away by the anisotropic diffusion. At higher subsampling
rates, cars would only occupy one or two pixels in the image, which explains why
the network itself failed to detect them at these scales.

To highlight the impact of GAD postprocessing around region boundaries, the
same metrics were calculated using only pixels around region boundaries. The loca-
tions of such pixels were calculated using the complement of the ”gts eroded for participants”
available with the Vaihingen dataset files. These results can be seen in Fig. 19.
These results show that the effects of GAD postprocessing is much stronger around
region boundaries, which is coherent with what was expected.
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Fig. 18 Results for improving semantic segmentation on the Vaihingen dataset. Using GAD
to postprocess the outputs consistently improves results for classes with larger objects and
sharp visible edges.

5 Analysis

The experiments presented in the previous section showed how GAD was suc-
cessfully used in two different weakly supervised change detection settings. The
results show an increase in performance in object-level segmentation from parcel-
level labels through label cleaning, as well as the seldom explored task of weakly
supervised image co-segmentation using classification labels.

The iterative training results made clear that it is of paramount importance
to refer back to the ground truth data every time the training ground truth is
being modified. Not doing so leads to a fast degradation in performance, since the
network simply attempts to learn to copy itself and stops learning useful operations
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Fig. 19 Results for improving segmentation boundaries on the Vaihingen dataset considering
only pixels around region boundaries. The effect of postprocessing results with GAD becomes
clearer where one semantic region encounters another.

from the data. The results also showed that separating dubiously labelled pixels
leads to a small increase in performance, likely due to the fact that we end up
providing a cleaner and more trustworthy dataset at training time.

The guided anisotropic diffusion algorithm was compared against the Dense
CRF algorithm for using information from the input images to improve seman-
tic segmentation results. While both algorithms were successful when used in the
proposed iterative training scheme, GAD outperformed Dense CRF at later hyper-
epochs for quantitative metrics. Both algorithms yielded visually pleasing results,
each performing better in different test cases.

One possible criticism of the proposed iterative training method is that it would
get rid of hard and important examples in the training dataset. It is true that the
performance of this weakly supervised training scheme would likely never reach
that of one supervised with perfectly clean data, but the results in Section 4 show
that using the proposed method we can consistently train networks that perform
better than those naively trained with noisy data directly.

The proposed spatial attention operation was showed to be useful in improving
the classification and weakly supervised segmentation results for datasets which are
cropped using object locations as reference points. While this is a particular case,
such datasets are often available or can be easily generated for remote sensing
applications, where georeferenced data is widely available. The proposed ideas
have been only tested in a two-class problem, but there is nothing that indicates
that such methods would not work just as well in a multi-class context. Filtering
the attention weights with the GAD algorithm further increased the classification
performance of the network by increasing the coherence between the attention
weights and the region where the building of interest is located in each image.

Finally, the usage of GAD as an edge enhancing postprocessing algorithm was
tested in a semantic segmentation setting using two remote sensing datasets to
compensate for networks trained with lower spatial resolution images. The results
were mostly positive, and showed that GAD is effective at improving segmentation
boundaries for classes with well defined edges and strong gradients, as long as the
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objects are not too small. This shows that GAD is a versatile tool for enhancing
segmentation edges in a variety of settings.

6 Conclusion

In this paper we have proposed the guided anisotropic diffusion algorithm for im-
proving semantic segmentation results by performing a cross-image edge preserving
filtering. It was shown to improve semantic segmentation results on two standard
aerial datasets, leading to better boundary accuracy for semantic segmentation re-
sults. We have then proposed two GAD-based weakly supervised change detection
methods to demonstrate how it can help to recover from inaccurate segmentation
labels or go beyond the available classification labels.

We first proposed an iterative training method for training networks with noisy
data that alternates between training a fully convolutional network and leverag-
ing its predictions to clean the training dataset from mislabelled examples. We
showed that the proposed method outperforms naive supervised training using
the provided reference data for change detection. The GAD algorithm was used
in conjunction with the iterative training method to obtain the best results in our
tests. The GAD algorithm was compared against the Dense CRF algorithm, and
was found to be superior in performance.

Finally, we proposed a spatial attention operation that can be easily incorpo-
rated into existing classification networks that significantly improve the classifica-
tion and weakly supervised segmentation performances for datasets with object-
aligned crops.

The proposed methods are useful when using data-based approaches in data-
scarce domains, as is the case of change detection. We have observed improvement
in all of our tests when approaching the problem from a weakly supervised perspec-
tive, as opposed to naive supervision. It would be interesting to test the efficacy of
the proposed ideas outside the context of change detection. The proposed methods
could be applied with minor adaptations to other applications to help mitigate the
effects of data scarcity.
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